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Figure 1: We investigate the recognition of social relations in a domain-based approach. Our study is based on Burgental’s

social psychology theory [1] that partitions social life into 5 domains from which we derive 16 social relations.

Abstract

Social relations are the foundation of human daily life.

Developing techniques to analyze such relations from vi-

sual data bears great potential to build machines that bet-

ter understand us and are capable of interacting with us at

a social level. Previous investigations have remained par-

tial due to the overwhelming diversity and complexity of the

topic and consequently have only focused on a handful of

social relations. In this paper, we argue that the domain-

based theory from social psychology is a great starting

point to systematically approach this problem. The the-

ory provides coverage of all aspects of social relations and

equally is concrete and predictive about the visual attributes

and behaviors defining the relations included in each do-

main. We provide the first dataset built on this holistic con-

ceptualization of social life that is composed of a hierarchi-

cal label space of social domains and social relations. We

also contribute the first models to recognize such domains

and relations and find superior performance for attribute

based features. Beyond the encouraging performance of

the attribute based approach, we also find interpretable fea-

tures that are in accordance with the predictions from social

psychology literature. Beyond our findings, we believe that

our contributions more tightly interleave visual recognition

and social psychology theory that has the potential to com-

plement the theoretical work in the area with empirical and

data-driven models of social life.

1. Introduction

Today, major part of our social life is captured via social

media. As we communicate through multi-modal channels

such as Facebook or Twitter, we leave traces that explicitly

and implicitly capture social relations in texts, blogs, im-

ages and video [4]. As we are approaching a future, where

intelligent and potential autonomous systems become our

assistants and coworkers, we not only want them to be pro-

ficient at their task, but also enable them to blend in and

act appropriately in different situations of our – human –

life. Additionally, through better understanding about such

hidden information we would like to inform users about po-

tential privacy risks.

Both tasks require conceptualizations and models of so-

cial life that provide coverage of all aspects of social life

and lend themselves to computational models from sensory

input. While initial efforts have been undertaken to address

this challenging problem, progress is hampered by the over-

whelming diversity and complexity of social life. Most of-
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ten, computational models to recognize social relations are

limited only to a handful of adhoc defined classes.

Therefore, in this paper we start from the social psychol-

ogy literature to identify a conceptualization of human so-

cial life that is holistic and thereby encapsulates all aspects

of interpersonal interaction, but at the same time is concrete

and specific, so that a computational model can be build on

top of this theoretic underpinning. We argue to build on

Bugental’s domain-based theory [1] which partitions social

life into 5 domains, namely: Attachment, Reciprocity, Mat-

ing, Hierarchical power, and Coalitional groups. Based on

these social domains, we derive a list of 16 social relations.

This conceptualization of social life is illustrated in Figure

1 with specific photo examples.

In order to study social domains and relations, we build

a dataset based on this domain-based theory. We extend the

dataset called People in Photo Album (PIPA) [36] by 26,915

person pair annotations. The label space is hierarchical, by

assigning social domain labels that partition the data into 5

domain classes as well as assigning a label for the particular

relation that two persons appear to be in.

Finally, we build the first computation models based on

this theory that predicts social domain and relation from im-

age data. We analyze fully data-driven models as well as

semantic attribute based models whose attributes are based

on the domain-based theory. In experiments, we find that

these semantic attributes perform best in our dataset and that

in addition lead to interpretability of the empirically found

concepts of social life. Importantly, our empirical models

correlate with the predictions of the domain-based theory.

Our contribution is three-fold: (1) we adapt the social do-

main theory as a framework for computer vision based anal-

ysis of social relations; (2) by annotating a large scale Flickr

photo dataset with both relation and domain labels, we pro-

vide a more comprehensive dataset than previous work; (3)

we collect semantic attributes from human body and head

images according to the social psychology study [1]. An

in-depth analysis of attribute significance is performed to

bridge the gap between social psychology theories and our

computational models.

2. Related works

Social relation is a significant part of social network

study [4, 12, 13]. This section focuses on the related work

in computer vision while the next section outlines different

theories in the psychology literature.

Kinship recognition. Relationships among family mem-

bers are the most basic social relations for human. There

exist a large number of studies about family member

recognition and kinship verification [24, 25, 26, 27, 28,

29, 30, 31, 32]. Most of these works focus on fa-

milial relations: husband-wife, parents-children, siblings,

grandparents-grandchildren. Researchers leverage certain

visual patterns exhibited in these relations. For instance,

for two people in a wife-husband relation, husband’s face is

usually in a higher position than wife’s [24, 26]. Not only

the location information but also the facial appearance, at-

tributes and landmarks are essential features to verify fam-

ily members. Dehghan et al. [31] learn the optimal face fea-

tures to answer the question of “Do offspring resemble their

parents?”. Singla et al. [25] propose some attribute-related

assumptions, e.g., two people of similar age and opposite

gender appearing together are spouses.

Based on the social domain definition in [1], familial re-

lations between adults and offspring are in Attachment do-

main, for which attribute categories such as age, gender and

emotion are essential cues. Sibling relation is categorized

in Reciprocity domain, which shows more functional and

appearance equality than Attachment domain. This is also

consistent with the visual pattern of siblings.

Social role recognition in events. In social events, there

are immediate social roles and inherent relations among

participants. The notion of “social roles” here models the

expected behaviors of certain people [14, 15, 16, 17]. For

example, in a child birthday party, social roles are birthday

child, parents, friends and guests [14]. Instead of immediate

roles, we focus on the identity-specified interpersonal rela-

tions, which naturally derive permanent social roles. For

example, if “leader and subordinate” is confirmed, then it

is easy to define the leader’s social role as a manager/boss

which is much more permanent than “the guest in a party”.

More importantly, our social relation definition is based

on psychology studies that suggest comprehensive social

scopes in people’s long life.

Social categorization and occupation recognition. Social

life endows various social appearances to people. Some re-

search focus on urban tribes in daily life [18], social cate-

gories defined by Wikipedia [19, 20], and popular groups

such as “Loli”, “Syota” and “Goddess” which are mostly

derived from social networks [21]. These fine-grained cat-

egorization uses body/face positions and attributes such as

age, face appearance, hair style, clothing style and so on.

Occupation recognition studies [22, 23] not only use per-

sonal attributes but also leverage the contextual information

in a semantic level, e.g., a waiter is more likely to stand

beside sitting consumers in a restaurant.

Relation prediction. Social relation is different with the

visual relation of “subject-predicate-object” [33, 34], but it

is derived from human social behaviors. A relevant topic

is intimacy prediction based on interactive poses [10, 11].

In [10], human poses combined with relative distance, lean-

ing direction and orientation are proposed rich representa-

tion. Another interesting work is relation traits estimation

by faces [39]. It predicts relation traits such as “warm”,

“friendly” and “dominant” in face images. Our work is dif-

ferent that we aim to do relation categorization and analyze
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social domains covering people’s social life. The social psy-

chology basis is introduced in the following section.

3. Social psychology theories

People organize their social life in terms of their relations

with other people [3]. The traditional view is that socializa-

tion consists of the individuals’ learning of principles that

can be applied to all social situations [2]. Due to the di-

versity of social situations, it is almost impossible to define

a completed list of social relations. We study social psy-

chological theories to identify a theory that: (1) provides a

broad coverage of our social life, (2) is concrete enough to

allow deriving relevant social relations, and (3) lends itself

for computational modeling and recognition in images and

video. After reviewing on related theories, we argue that

Bugental’s social domain theory [1] is a suitable candidate.

3.1. Social domain theory [1]

Social domain theory [1] partitions social life into 5 so-

cial domains and argues that these cover all relevant aspects

of our social interactions. Additionally, these domains man-

ifest themselves in concrete social behavior that can be rec-

ognized from visual data. Bugental [1] gives comprehensive

definitions for each domain including explanations of social

cues like appearances and behaviors. Concrete and exem-

plary social relations are also proposed to illustrate the high-

level concept of each domain. While it is illusive to expect

that a comprehensive list of all social relations within a do-

main can be given, the domain partition along with its clear

definition serves as a basis to derive social relations from

our dataset (see Section 4.1). Specifically, domain defini-

tions and some of the examples given for social relations

are as follows:

Attachment domain, characterized by proximity mainte-

nance within a protective relationship, e.g. kinship between

parents and children. Human attributes such as age differ-

ence, proximity and the activity of seeking protection are

social cues which can be visually recognizable.

Reciprocity domain, characterized by the negotiation of

matched benefits with functional equality between people.

Key features are the matched and mutually beneficial in-

teractions in long-term accounting process, which are quite

common among friends and siblings. Typically, age differ-

ence among peers is small, which is an important semantic

attribute. Also, mutual activities such as “gathering” and

“sharing” often appear in this domain. Sequenced exchange

of positive effect is another factor, which is hard to predict

in an image but might be useful when employing video.

Mating domain, concerned with the selection and protec-

tion of access to the sexual partner, e.g., the relationship

between lovers. Gender cues and the behavior cue of car-

ing offspring are essential for this domain. Bugental also

emphasized the facial attractiveness of prospective partners

suggesting that facial and most likely also full body appear-

ance are important cues.

Hierarchical power domain, characterized by using or ex-

pressing social dominance. Dominance appears in resource

provision and threatening activities. Concrete examples are

leaders, powerful peers and teachers. On the other hand,

submissive activities like “listening” and “agreeing” are

more adaptive for those who lack dominance.

Coalitional groups domain, concerned with the identifica-

tion of the lines dividing “us” and “them”. The focus is on

the grouping and conformity cues which ranges from col-

leagues at work, over sport team members to band mem-

bers. Coalitional group members often share similar or

identical clothing and perform joint activities.

3.2. Related theories

For completeness, we briefly discuss several related so-

cial psychology theories ordered by the time of appearance.

(1) Parson’s theory of role expectations [8] uses five

pattern variables to compose a systematic classification

of social relations, namely General-categorical, Personal-

categorical, General-behavioral and Personal-behavioral.

(2) MacCrimmon and Messick’s theory of social motives

[9] studies individualism and proposes six motives: Altru-

ism, Cooperation, Individualism, Competition and Aggres-

sion. (3) Mills and Clark’s theory of Communal and Ex-

change relations [6], focuses on the rules and expectations

governing “give” and “take” benefits. (4) Foa and Foa’s

theory of resource exchange [7], defines social relations

based on six social resources: Love, Status, Money, Goods,

Services and Information. (5) Fiske’s theory of relational

models [3] argues that relations can be differentiated into

four parts: Communal sharing, Authority ranking, Equality

matching, and Market pricing.

Theories (1)-(3) are rather abstract and theoretical in the

field of social psychology and thus not concrete enough for

our purpose in computer vision. Theory (4) considers so-

cial resources which are concrete but are difficult to infer

from visual data. Theory (5) is similar to Bugental’s the-

ory but focuses on the cognitive individual experiences re-

flecting personal history, while Bugental concerned more to

link the theory to social behaviors, appearances and envi-

ronments, which are often visually interpretable. Moreover,

Bugental’s domain partitioning is based on a large number

of social cues (e.g. the Table 1 of [1]), which helps to devise

computational models for his theory.

4. Social domain and relation data set

To study social domains and relations, we start from the

PIPA dataset [36]. The following discusses the dataset,

how we have derived the social relations for annotation and

presents the annotation process itself.
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grandma-grandchild √ √  √  √   √ colleagues √     √  √ √ 
leader-subordinate  √     √

friends √  √  √ 
classmates √ √ √
colleagues √  √

friends √ 
trainer-trainee √ 
leader-subordinate  √
colleagues √ √   √

(a) agr = 5 (b) agr = 3 (c) agr = 1 (d) agr = 2

Figure 2: Photo samples of different agreements (agr). Annotators in the dashed box are in agreement. (a) is obvious a

family photo and contains grandma-grandchild. In (b), the forth annotator gives a vote to colleagues but is not counted in

agreement, since agreement means annotators’ recognitions are exactly the same. (c)(d) contain ambiguous social relations,

thus result in very low agreement.

PIPA dataset. The PIPA dataset was collected from Flickr

photo albums for the task of person recognition [36]. Pho-

tos from Flickr cover a wide range of social situations and

are thus a good starting point for our study. PIPA contains

37,107 photos with 63,188 instances of 2,356 identities. For

each annotated person, the head bounding box and the iden-

tity ID are available. The same person often appears in dif-

ferent social scenarios and interacting with different people

which make it ideal for our purpose. Identity information is

used for selecting person pairs and defining train-validation-

test splits (see Section 6.1).

4.1. Social relation labels

As argued before, the social domain theory is a good ba-

sis to derive social relations for annotation. While the do-

mains are precisely described, we still have to obtain a set

of relation labels. We proceed in three steps.

(1) In [1]. 12 exemplary social relations are listed for the

different domains. We takes these as a starting point.

(2) As this list is unlikely to cover all social relations in

PIPA, we start with a pre-annotation phase of PIPA covering

10% of the data. During this pre-annotation phase, we iden-

tify social relations not yet covered and use FrameNet [35]

to name the relation and the detailed social domain descrip-

tion to associate the social relation to its domain. This in-

creases the number of relation labels from 12 to 20.

(3) Finally, We ask five annotators to annotate all of PIPA

using the derived list of 20 relations. After the annotation

process was concluded, we analyze the statistics and found

4 relations with insufficient occurrences (≤ 20) or insuffi-

cient agreement. This results in our final list of 16 relations.

For example, kinship like “mother-child” is in Attachment

domain, and the relation “leader-subordinate” is in Hierar-

chical power domain.

4.2. Annotation process

Annotators. Annotating social relations might be subjec-

tive and ambiguous. One reason is that a person pair may

have multiple plausible relations, as shown in Figure 2. An-

other reason is that the definition of the same social relation

might differ, depending on the cultural backgrounds of the

annotators. We selected five annotators from Asia, Africa,

Europe and America and gave them detailed explanations

and photo examples to help them keep some basic consis-

tency (given in supplementary files).

Annotation Protocol. Annotators are asked to individually

annotate all person pairs for which we present pairs of head

bounding boxes. For each pair the annotator can either pick

a relation from our list or, if they are too uncertain, can skip

this pair. For example, two people wearing uniforms and

working in the factory should be labeled as “colleagues”, as

the cues of action “working”, clothing “uniforms” and envi-

ronment “factory” are obvious. If the annotators are uncer-

tain they are asked to indicate this by clicking “maybe” for

this relation. Based on our pre-annotation phase we allowed

at most 3 relation labels per person pair which is justified

also by the following statistics: 92.3% of the person pairs

have 1 relation annotated, 7.5% have 2 relations and only

0.3% have 3 relations.

4.3. Label statistics

After the annotation process we have 26,915 person pairs

annotated by five annotators. Given the fact that each anno-

tator can give up to 3 labels per pair or skip a pair, we obtain

a total number of 134,556 annotations. For about 8% of an-

notations, the annotators choose “maybe”. Given that this

is a rather small part of the data we include those in the

following statistics.

As mentioned before, annotation of social relations us-

ing single images might be ambiguous and subjective. In-

terestingly, for 53% of person pairs at most one relation was

chosen across annotators. For 38.8% of pairs two relations,

for 7.4% three relations and only for 0.8% four relations are

chosen across annotators.

Three examples where multiple annotations are chosen

are shown in Figure 2 (b)(c)(d). For the image in (d), there

are four annotations which are all plausible: the two men

might be friends, colleagues, in a leader-subordinate rela-
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Figure 3: Person pair counting in terms of agreement (agr).

“Skipped” denotes the pairs skipped by all annotators when

they couldn’t recognize any relation. This paper uses anno-

tations with agr ≥ 3, i.e., useful annotations take 82.6% of

all person pairs.

tion, or a trainer-trainee relation. Such highly ambiguous

cases however are less prominent in our dataset than one

might expect, and for a significant number of person pairs

there are at most two relations chosen which indicates that

a visual recognition approach is indeed feasible.

4.4. Consistency analysis

We define consistency ∈ [1, 5] to be the level of com-

plete agreement (agr) among the 5 annotators. For instance,

consistency=3 means agr ≥ 3 that at least 3 annotators give

the exact same labels to a person pair. For examples see fig-

ure 2 from left to right: as all annotators give just one and

the same label, the first image has agr=5; the second has

agr=3 only, as the fourth annotator not only gives the col-

leagues relation but also a second relation and is thus not in

complete agreement with the first three annotators; the third

and the fourth image correspond to agr=1 and agr=2. It is

noted that agr=1 is the lowest possible value as each anno-

tator is always in complete agreement with herself/himself.

Figure 3 shows agreement statistics for our dataset. Even

though we require complete agreement as discussed above,

for 42% of our person pairs agr=5. This reinforces the ob-

servation that the annotations are less ambiguous than one

might have expected. In 19.9% of cases agr=4 and in 20.7%

of cases agr=3. Given these encouraging agreement lev-

els we decided to use the annotations, where agr ≥ 3 as

groundtruth. We refer to it as consistency=3 in the follow-

ing, corresponding to 82.6% of our annotations.

In Figure 4, we show all numbers for photos, identi-

ties, person pairs, social relations and domains in terms of

consistency. As each relation is exactly in one domain, the

domain samples is the sum of its relations.

5. Modeling social domains and relations

To model semantic head/body attributes, we choose two

image regions based on the groundtruth annotation of PIPA:

the head region corresponding to the groundtruth annota-

tion and the body region, defined as 3×head width, 6×head

height, following [44]. For recognition, a pair of head or

body regions are fed into the model (see Figure 5). We ex-

periment with two types of models: the first type of models

are CNN models trained end-to-end; the second type trains

CNN models for semantic attributes derived from the social

domain theory, then uses the concatenated feature to learn

linear SVM.

5.1. End­to­end model

In order to model pairwise relations, we introduce a

double-stream CaffeNet, which learns an end-to-end map-

ping from an image pair to either 5 domain classes or 16

relation classes. This double-stream model is similar to

multi-region CNNs [37], based on LeNet [43]. Other sim-

ilar models can also be considered, such as Siamese-like

architectures used for face modeling [41, 38, 39], and multi-

channel CNNs used for person identification [40].

The double-stream CaffeNet architecture is shown in

Figure 5. Each stream has CONV layers as in CaffeNet

[42]. After 5 CONV layers, features are concatenated into

one vector that is fed into fc6 layer. After fc7 layer, we add

an fc8 to predict either 5 domains or 16 relations.

This model is used to compute baseline recognition re-

sults. The same model can be used to predict semantic at-

tributes. This attribute adaption method involves the social

cues such as age, emotion and proximity, mentioned in the

social psychology article [1].

5.2. Semantic attributes

The second type of model we propose first predicts

an intermediate semantic attribute representation and uses

this intermediate representation to predict both social do-

mains and relations. In our view there are three advantages

that make this representation attractive. First, semantic at-

tributes lend themselves for interpretability. Second, rele-

vant semantic attributes can be derived from the social do-

main theory and thus can be seen as a way to derive a com-

putational model which in turn allows to link back to the

theory. Third, semantic attributes allow to leverage other

datasets annotated with such attributes which we consider

crucial as it seems illusive to expect large amounts of train-

ing data for recognizing fine-grained social relations.

To start, we collected the semantic head/body attribute

categories mentioned in the definition of social domains [1].

For example, in the Attachment domain, a mother and her

child have a large age difference and some proximity behav-

iors, therefore, age and proximity are included. Then, for

each attribute category, we either leverage existing datasets

to train attribute classifiers using our double-stream Caf-

feNet (default) or use pre-trained models published in pre-

vious works [10, 47]. Following presents all attributes used.

Age infant, child, young, middleAge, senior, unknown are

annotated in PIPA by [44]. Additionally, we add small-
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Figure 5: Architecture of double-stream CaffeNet used for

modeling social relations and domains. CONV layers are

same with those in CaffeNet [42]. Either head image pair

or body image pair are fed into the network. The weights of

CONV layers are independently trained for double streams.

AgeDiff, middleAgeDiff, largeAgeDiff, because age differ-

ence is important for distinguishing social relations [1]. We

use head age and body age respectively trained on the head

and body regions of PIPA images.

Gender male, female are annotated in [44]. We add

sameGender, diffGender. Same with the age case, we use

head gender and body gender.

Location & Scale directly collected from head/body re-

gions of a person pair in PIPA. It is composed of 4-dim

location coordinates (x, y, width, height), relativeDistance

(far, close) and relativeSizeRatio (large, small).

Head appearance 40 classes such as straight hair, wavy

hair, wearing earring, wearing hat and so on. This attribute

model is trained on the CelebA dataset [46], which contains

202,599 head photos of 10,177 identities.

Head pose, Face emotion. Poses are frontal, left, right,

up and down. Emotions are anger, happiness, sadness, sur-

prise, fear, disgust and neutral. Both models are trained on

the IMFDB dataset [48], which contains 34,512 head im-

ages collected from movies.

Clothing longHair, glasses, hat, tShirt, shorts, jeans, long-

Pants and longSleeves. We learn the model on Berkeley

People Attribute dataset [45] containing 8,035 body images,

then we extract the features in PIPA using body regions.

Additionally, we utilize the published models of proxim-

ity [10] and activity [47] for extracting body features.

Proximity holdingFromBehind, holdingHands, highFive,

hug, armOverShoulder, shoulderToShoulder and armIn-

Arm. We use the published Multi-task RNN model [10],

which was trained on 10,000 images. We first extract

the features for PIPA from its fconv9 layer which is a

338x50x50 feature tensor containing 338 feature maps. In

order to reduce the feature dimension, we use a max pool-

ing operator (to select the most significant feature) along the

channel axis, and flatten the feature into 2500 dimensions.

Activity 504 activities such as adjusting, ailing, applauding,

arranging, attacking, ballooning, baptizing and so on. We

use the published CNN-CRF model, which was trained on

a dataset of 126,102 images [47]. We extract the features for

PIPA of the fc7 layer which is a 1024-dim feature vector.

6. Experiments

Our experiments analyze three aspects. The first set of

experiments compare end-to-end training with the proposed

semantic attribute model to recognize both social domains

and relations. Additionally, motivated by the fact that it

is illusive to have a comprehensive dataset of all relations

within a domain, we also analyze domain recognition in a

leave-one-relation-out setting that measures domain gener-

alization performance. Finally, we give insights into our

semantic attribute models, in particular in the light of the

social domain theory that we base our investigation on.

6.1. Data splits

We introduce two data splitting methods. All-class

(AC) splits are used for traditional recognition, where train-

ing data cover all classes of social relations (or domains).

Single-relation(SR) splits each time leave the data of a re-

lation out of training, then predict the domain label of these

data. The goal is to evaluate the model ability to generalize

unseen relation classes within a social domain.

All-class(AC) splits. We keep the test split of PIPA

dataset unchanged. For train and validation sets, there are

strong data imbalance issues on relation classes, as PIPA

was originally proposed for person identification [36]. In

order to lessen this problem, we take 3 steps: (1) merge the

original train and validation sets; (2) build a new validation

set using person pairs from 8 random albums; (3) use the
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rest data for training. In summary, there are 13,729 person

pairs in train set, 709 in validation, and 5,106 in test.

Single-relation(SR) splits. In order to test domain gen-

eralization, each time we pick one relation for testing, and

randomly divide other data (of 15 relations) into 10 folders

by averaging identities. One folder is used for validation,

and others for training. Please note, (1) “10-folder identity

averaging” can not be exactly reached, because an identity

may compose multiple person pairs. We discard a pair when

one of its identities has samples in train set, meanwhile, the

other one has samples in validation set; (2) there is not train-

ing data for Mating domain when leaving lovers/spouses

out. Therefore, lovers/spouses data are always in train set.

Finally, we have 15 groups of train-validation-test splits,

thus we run the model for 15 epoches to get testing results.

6.2. Recognition

To our knowledge, this is the first work to recognize

social domains and test domain generalization across rela-

tions. Both are challenging problems. The data of a social

domain has large intra-variation, due to diverse relations in-

cluded. Generalization test is even more challenging, since

it is to predict the domain of an unseen relation class. This

is difficult but very essential to validate whether social do-

main theory can cover all its relations, and to what extent

our model achieves the coverage of social domain.

To evaluate the semantic attribute based model, we have

5 settings1 as shown in Table 1: (1) end-to-end double-

stream CaffeNet (default) trained from scratch; (2) end-to-

end finetuned model from pre-trained in ImageNet; (3) Ex-

tract features (from fc7 layer) by the ImageNet pre-trained

model, then train linear SVM; (4) Replace the pre-trained

model in setting (3) with a finetuned model; (5) Concate-

nate features extracted from attribute finetuned models, then

train linear SVM (ours). In setting (5), we test head features,

body features and concatenating both. Except that the ini-

tial learning rate 10−4 is used for scratch, 10−5 is fixed for

others. Each time we run 30 epoches of training samples.

MODEL RELATION DOMAIN GENERALIZATION

END-TO-END SCRATCH 34.4% 41.9% –

END-TO-END FINETUNED 46.2% 59.0% 18.5%

PRE-TRAINED, SVM 35.9% 53.3% 27.7%

FINETUNED, SVM 48.6% 63.2% 27.1%

HEAD ATTRIBUTES, SVM 44.8% 59.4% 21.5%

BODY ATTRIBUTES, SVM 57.2% 67.7% 32.8%

ALL ATTRIBUTES, SVM 57.2% 67.8% 33.3%

Table 1: Accuracies of relation/domain recognition (AC

splits), and domain generalization (SR splits). “ALL” means

concatenating all body and head attribute features.

“End-to-end finetuned” gets more than 10% improve-

ment over “scratch” for each recognition. However, it fails

1The dataset and trained models can be downloaded in our project page:

www.mpi-inf.mpg.de/social-relation

in the harder task of generalization test (last column), since

18.5% is around chance level of 20%. Using semantic at-

tribute based models, we get the highest 14.8% improve-

ment over “end-to-end finetuned” for the generalization test.

In the recognition tasks, our best results are 57.2% and

67.8%, respectively 8.6% and 4.6% higher than best base-

line numbers. On the one hand, recognizing relations is

much harder due to the larger class number than domains

(16 vs. 5). Our attribute model gains a larger improvement

for this harder task. On the other hand, the gap between rec-

ognizing relation and domain is not very significant (only

10.6%), due to the fact that the intra-variance of a domain

is quite larger than that of a relation. In particular, Hier-

archical power is the hardest domain to recognize. Its re-

lations such as “teacher-student” and “leader-subordinate”

are quite different in both behaviors and appearances.

We can conclude from these improvements that semantic

attributes proposed in the social psychology study are very

helpful to model high-level social concepts, even though

half of the attribute models were trained on other datasets.

In the next section, we further analyze our attribute model

to get insights into the contribution of specific attributes.

6.3. Analysis of semantic attributes

Firstly, we compare the contribution to the overall per-

formance of each attribute category. Then, we present qual-

itative examples to understand which detail attributes help

to improve the recognition.

Attribute categories. In Figure 6, we present the rel-

ative recognition contribution of each single attribute cate-

gory in relation vs. domain models. Taking body age as an

example, its X-Y coordinates is computed as follows: (1)

we train a model using only one feature: bodyAge; (2) we

evaluate the performance for relation and domain, denoted

as acc(bodyAge, relation) and acc(bodyAge, domain). Ac-

curacies of using all attributes, 52.7% and 67.8% in Table 1,

are denoted as acc(all, relation) and acc(all, domain); (3)

normalized results of acc(bodyAge, domain)/acc(all, do-

main) and acc(bodyAge, relation)/acc(all, relation) are used

as X, Y coordinates, respectively.

Overall, we can observe in Figure 6 that most attributes

are below the diagonal. This indicates that the relative, indi-

vidual contribution of attributes is stronger for recognizing

domains. We conclude that currently more attributes are

needed for the relation classification as it is a more chal-

lenging task due to more classes and finer granularity.

In terms of the attribute contribution, activity and cloth-

ing are ranked in top 2 for both relation and domain (up-

per right corner). This is consistent to our social domain

interpretation in Section 3.1 that social relations regulate

our behavior and “communicate” relations via appearance.

For example, band team members and dance team mem-

bers in Coalitional groups share similar or identical cloth-
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Figure 6: Normalized contributions from 12 attributes.

ing and perform joint activities both in the level of the spe-

cific relation and in the level of the shared domain. Al-

though these two attribute models are transferred from other

datasets [47, 45], they still make greater influence than age

and gender which are learned on PIPA dataset. This reflects

that our computational model successfully transfer the so-

cial cues from social psychology study to visual data. In

terms of the third and forth contributors, age and gender,

we can see body gender and head age are relatively impor-

tant. This is reasonable that in the social psychology defi-

nition of Mating domain and Attachment domain, age and

age difference, gender and gender difference are dominant

features. Another indication is that age is better learned in

head images and gender is better learned in body images.

Detail attributes. To figure out detail attributes con-

tributing to social relation recognition, we show some pos-

itive and negative examples in Figure 7. Predictions by all-

attribute model (our best) and top 4 single-attribute models

(ranked in Figure 6) are listed under images.

Among positive examples, (d)(e)(f) are correctly pre-

dicted by all-attribute and 4 single-attribute models. These

images contain many strong social cues, e.g. in (e), “large

age difference”, “senior-aged woman”, “little girl”, “daily

clothing” and “intimate hugging” contribute to the recog-

nition of grandma-grandchild. It is noted that the per-

son pair in (d) are almost in the hazy background but are

correctly recognized, validating the ability of our attribute

models to handle tough images. Other positive examples

in (a)(b)(c)(g)(h) are correctly recognized by all-attribute

model but get noisy predictions by single-attribute models,

e.g. in (g), clothing model makes a prediction of colleagues,

probably because this couple wear unified clothes for taking

part in an event. Other strong cues like the intimate activ-

ity of “arm on shoulder”, body proximity, age and gender

features contribute to the prediction of lovers/spouses when

combining all attributes.

Overall, negative examples show more unusual behav-

iors and confused visual cues than positive ones. For exam-

ple, the groundtruth of (i) is grandma-grandchild, while the

activities of “grandma crawling and trying to hold baby’s

All attributes: friends

Activity: friends

Clothing: friends

Body gender: grandm.

Head age: grandm.

All attributes: colleagues

Activity: friends

Clothing: lovers/spouses

Body gender: friends

Head age: colleagues
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(i) grandma-grandchild (j) friends (k) lovers/spouses (l) colleagues
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Activity: colleagues

Clothing: colleagues

Body gender: colleagues

Head age: friends

All attributes: lovers/spouses

Activity: lovers/spouses

Clothing: colleagues

Body gender: lovers/spouses

Head age: lovers/spouses

(g) lovers/spouses(e) grandma-grandchild

All attributes: friends

Activity: friends

Clothing: friends

Body gender: friends

Head age: friends

(f) friends

All attributes: grandm.

Activity: grandm.

Clothing: grandm.

Body gender: grandm.

Head age: grandm.

(h) colleagues

(d) colleagues

All attributes: colleagues

Activity: colleagues

Clothing: colleagues

Body gender: colleagues

Head age: colleagues

All attributes: band members

Activity: band members

Clothing: band members

Body gender: band members

Head age: colleagues

(c) band members

All attributes: father-child

Activity: father-child

Clothing: father-child 

Body gender: friends

Head age: friends

(a) father-child

All attributes: siblings

Activity: siblings

Clothing: siblings

Body gender: colleagues
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(b) siblings

Figure 7: Positive and negative examples of relation recog-

nition. Please note, “positive” and “negative” here refer to

the best results using all-attribute model. Image titles are the

groundtruth. Predicted relations using either all-attribution

model or top 4 attribute models (ranked in Figure 6) are

listed under images.

hand” seem very unusual. Although using age or gen-

der finntuned model make correct predictions, activity and

clothing are so dominant that the prediction by all-attribute

model is wrong. In another example (l), human annotators

can recognize the official colleagues in a press conference,

but the prediction of our model is failure due to unclear

body/head appearances in the image.

7. Conclusion

In this paper, we explore a challenging problem of recog-

nizing social relations in daily life photos. While prior work

remained partial in terms of the covered social relations, we

argue for a social domain based approach in order to in-

vestigate relations covering all aspects of social life. We

evaluate recognition performance of social relations, social

domains as well as generalization performance of recogniz-

ing domain across relations. Our experiments highlight the

importance of using semantic attributes, which in turn lends

to inspectable models that connect to the social psychology

theory. Beyond the presented work, we belief that our work

can pave the way to a more empirical study of social rela-

tions that is yet grounded and interpretable in the context of

social psychology theories.
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