
Image Super-Resolution via Deep Recursive Residual Network

Ying Tai∗ 1, Jian Yang1, and Xiaoming Liu2

1Department of Computer Science and Engineering, Nanjing University of Science and Technology
2Department of Computer Science and Engineering, Michigan State University

{taiying, csjyang}@njust.edu.cn, liuxm@cse.msu.edu

Abstract

Recently, Convolutional Neural Network (CNN) based

models have achieved great success in Single Image Super-

Resolution (SISR). Owing to the strength of deep networks,

these CNN models learn an effective nonlinear mapping

from the low-resolution input image to the high-resolution

target image, at the cost of requiring enormous parameters.

This paper proposes a very deep CNN model (up to 52 con-

volutional layers) named Deep Recursive Residual Network

(DRRN) that strives for deep yet concise networks. Specifi-

cally, residual learning is adopted, both in global and local

manners, to mitigate the difficulty of training very deep net-

works; recursive learning is used to control the model pa-

rameters while increasing the depth. Extensive benchmark

evaluation shows that DRRN significantly outperforms state

of the art in SISR, while utilizing far fewer parameters.

Code is available at https://github.com/tyshiwo

/DRRN CVPR17.

1. Introduction

Single Image Super-Resolution (SISR) is a classic com-

puter vision problem, which aims to recover a high-

resolution (HR) image from a low-resolution (LR) image.

Since SISR restores the high-frequency information, it is

widely used in applications such as medical imaging [26],

satellite imaging [29], security and surveillance [37], where

high-frequency details are greatly desired.

In recent years, due to the powerful learning ability,

Deep Learning (DL) models, especially Convolutional Neu-

ral Networks (CNN), are widely used to address the ill-

∗This work was conducted when the first author was a visiting scholar

at Michigan State University. It was supported by the National Sci-

ence Fund of China under Grant Nos. 91420201, 61472187, 61502235,

61233011, 61373063 and 61602244, the 973 Program No.2014CB349303,

Program for Changjiang Scholars and Innovative Research Team in Uni-

versity, and partially sponsored by CCF-Tencent Open Research Fund.

VDSR

CSCN

ESPCN

SRCNN

DRCN RED30

DRRN_B1U25

DRRN_B1U9

Figure 1. PSNR of recent CNN models for scale factor ×3 on

Set5 [1]. Red points are our models. △, ✩, and ◦ are models with

less than 5 layers, 20 layers, and more than 30 layers, respectively.

DRRN B1U9 means there is 1 recursive block, in which 9 residual

units are stacked. With the same depth but far fewer parameters,

DRRN B1U9 achieves better performance than the state-of-the-

art methods [13,14]. After increasing the depth without adding any

parameters, the 52-layer DRRN B1U25 further improves the per-

formance and significantly outperforms VDSR [13], DRCN [14]

and RED30 [17] by 0.37, 0.21 and 0.21 dB respectively.

posed inverse problem of Super Resolution (SR), and have

demonstrated superiority over reconstruction-based meth-

ods [4, 35] or other learning paradigms [20, 22, 23, 31]. As

the pioneer CNN model for SR, Super-Resolution Convo-

lutional Neural Network (SRCNN) [2] predicts the nonlin-

ear LR-HR mapping via a fully convolutional network, and

significantly outperforms classical non-DL methods. How-

ever, SRCNN does not consider any self similarity prop-

erty. To address this issue, the Deep Joint Super Resolution

(DJSR) jointly utilizes both the wealth of external examples

and the power of self examples unique to the input. Inspired

by the learning iterative shrinkage and thresholding algo-

rithm [5], Cascaded Sparse Coding Network (CSCN) [32]

is trained end-to-end to fully exploit the natural sparsity of

images. Shi et al. [25] observe that the prior models [2, 32]

increase LR image’s resolution via bicubic interpolation be-

13147

https://github.com/tyshiwo/DRRN_CVPR17
https://github.com/tyshiwo/DRRN_CVPR17


fore CNN learning, which increases the computational cost.

The Efficient Sub-Pixel Convolutional neural Network (ES-

PCN) reduces the computational and memory complexity,

by increasing the resolution from LR to HR only at the end

of the network.

One commonality among the above CNN models is that

their networks contain fewer than 5 layers, e.g., SRCNN [2]

uses 3 convolutional layers. Their deeper structures with 4
or 5 layers do not achieve better performance, which was

attributed to the difficulty of training deeper networks and

led to the observation that “the deeper the better” might not

be the case in SR. Inspired by the success of very deep net-

works [8, 27, 28] on ImageNet [21], Kim et al. [13, 14] pro-

pose two very deep convolutional networks for SR, both

stacking 20 convolutional layers, from the viewpoints of

training efficiency and storage, respectively. On the one

hand, to accelerate the convergence speed of very deep net-

works, the VDSR [13] is trained with a very high learning

rate (10−1, instead of 10−4 in SRCNN) and the authors fur-

ther use residual learning and adjustable gradient clipping

to solve gradient explosion problem. On the other hand, to

control the model parameters, the Deeply-Recursive Con-

volutional Network (DRCN) [14] introduces a very deep re-

cursive layer via a chain structure with up to 16 recursions.

To mitigate the difficulty of training DRCN, the authors use

recursive-supervision and skip-connection, and adopt an en-

semble strategy to further improve the performance. Very

recently, Mao et al. [17] propose a 30-layer convolutional

auto-encoder network named RED30 for image restoration,

which uses symmetric skip connections to help training. All

of the three models learn the residual image between the in-

put Interpolated LR (ILR) image and the ground truth HR

image in the residual branch. The residual image is then

added to the ILR image from the identity branch to esti-

mate the HR image. The three models outperform the pre-

vious DL and non-DL methods by a large margin, which

demonstrates “the deeper the better” is still true in SR.

Despite achieving excellent performance, the very deep

networks require enormous parameters. Compared to the

compact models, large models demand more storage space

and are less applicable to mobile systems [6]. To address

this issue, we propose a novel Deep Recursive Residual

Network (DRRN) to effectively build a very deep network

structure, which achieves better performance, but with 2×,

6×, and 14× fewer parameters than VDSR, DRCN, and

RED30, respectively. In a nutshell, DRRN advances the SR

performance with a deeper yet concise network. Specifi-

cally, DRRN has two major algorithmic novelties:

(1) Both global and local residual learning are introduced

in DRRN. In VDSR and DRCN, the residual image is es-

timated from the input and output of the networks, termed

as Global Residual Learning (GRL). Since the SR output is

vastly similar to the input, GRL is effective in easing the dif-

ficulty of training deep networks. Therefore, we also adopt

GRL in our identity branch. Further, very deep networks

could suffer from the performance degradation problem,

as observed in visual recognition [8] and image restora-

tion [17]. The reason may be a significant amount of image

details are lost after so many layers. To address this issue,

we introduce an enhanced residual unit structure, termed

as multi-path mode Local Residual Learning (LRL), where

the identity branch not only carries rich image details to late

layers, but also helps gradient flow. GRL and LRL mainly

differ in that LRL is performed in every few stacked lay-

ers, while GRL is performed between the input and output

images, i.e., DRRN has many LRLs and only 1 GRL.

(2) Recursive learning of residual units is proposed in

DRRN to keep our model compact. In DRCN [14], a

deep recursive layer (up to 16 convolutional recursions)

is learned and the weights are shared in the 16 convolu-

tional recursions. Our DRRN has two major differences

compared to DRCN: (a) Unlike DRCN that shares weights

among convolutional layers, DRRN has a recursive block

consisting of several residual units, and the weight set is

shared among these residual units. (b) To address the van-

ishing/exploding gradients problem of very deep models,

DRCN supervises every recursion so that the supervision

on early recursions help backpropagation. DRRN is re-

lieved from this burden by designing a recursive block with

a multi-path structure. Our model can be easily trained even

with 52 convolutional layers. Last but not least, through re-

cursive learning, DRRN can improve accuracy by increas-

ing depth without adding any weight parameters.

To illustrate the effectiveness of the two strategies used

in DRRN, Fig. 1 shows the Peak Signal-to-Noise Ratio

(PSNR) performance of several recent CNN models for

SR [2, 13, 14, 17, 25, 32] versus the number of parameters,

denoted as k. Compared to the prior CNN models, DRRN

achieves the best performance with fewer parameters.

2. Related Work

Since Sec. 1 overviews DL-based SISR, this section fo-

cuses on three most related work to ours: ResNet [8],

VDSR [13] and DRCN [14]. Fig. 2 illustrates these models

via simplified network structures with only 6 convolutional

layers, where the activation functions, batch normalization

(BN) [11] and ReLU [19], are omitted for clarity.

2.1. ResNet

The main idea of ResNet [8] is to use a residual learn-

ing framework to ease the training of very deep networks.

Instead of hoping every few stacked layers directly fit the

desired underlying mapping, the authors explicitly let these

layers fit a residual mapping, which is assumed to be easier

for optimization. Denoting the input as x and the underly-

ing mapping as H(x), the residual mapping is defined as

3148



Output 1

conv

conv

conv

conv

Output

Å

Å

conv

conv

(a) ResNet (b) VDSR (c) DRCN

Output

Å

conv

conv

conv

conv

conv

conv

w4w1

...

Input

conv

conv

conv

conv

conv

conv

Output 4

Output

Å

(d) DRRN (ours)

conv

Å

conv

conv

Å

conv

conv

conv

Output

Å

InputInputInput

Figure 2. Simplified structures of (a) ResNet [8]. The green dashed box means a residual unit. (b) VDSR [13]. The purple line refers to a

global identity mapping. (c) DRCN [14]. The blue dashed box refers to a recursive layer, among which the convolutional layers (with light

green color) share the same weights. (d) DRRN. The red dashed box refers to a recursive block consisting of two residual units. In the

recursive block, the corresponding convolutional layers in the residual units (with light green or light red color) share the same weights. In

all four cases, the outputs with light blue color are supervised, and
⊕

is the element-wise addition.

Method Key Strategies Mathematical Formulation

ResNet Chain mode local residual learning y = fRec(UU(UU−1(...(U1(f1(x)))...)))
VDSR Global residual learning y = fRec(fd−1(fd−2(...(f1(x))...))) + x

DRCN Global residual learning + recursive learning (single weight layer) + multi-CNN ensemble y = ΣT
t=1wt · (fRec(f

(t)
2 (f1(x))) + x)

DRRN
Multi-path mode local residual learning

y = fRec(RB(RB−1(...(R1(x))...))) + x
+ global residual learning + recursive learning (multiple weight layers in the residual unit)

Table 1. Strategies used in ResNet [8], VDSR [13], DRCN [14] and DRRN. U, d, T, and B are the numbers of residual units in ResNet,

convolutional layers in VDSR, recursions in DRCN, and recursive blocks in DRRN, respectively. x and y are input and output of networks.

f denotes function of convolutional layer. U denotes function of residual unit structure and R denotes function of our recursive block.

F(x) := H(x)− x, and a residual unit structure is thus:

x̂ = U(x) = σ(F(x,W ) + h(x)), (1)

where x̂ is the output of the residual unit, h(x) is an iden-

tity mapping [8] : h(x) = x, W is a set of weights (the bi-

ases are omitted to simplify notations), function σ denotes

ReLU, F(x,W ) is the residual mapping to be learned, and

U denotes the function of the residual unit structure. For

a basic residual unit that stacks two convolutional layers,

F(x,W ) = W2σ(W1x). By stacking such structures to

construct a very deep 152-layer network, ResNet won the

first place in the ILSVRC 2015 classification competition.

Since the residual learning in ResNet is adopted in every

few stacked layers, this strategy is a form of local residual

learning, where residual units are stacked in the chain mode.

2.2. VDSR

Differing from ResNet that uses residual learning in ev-

ery few stacked layers, VDSR [13] introduces GRL, i.e.,

residual learning between the input ILR image and the out-

put HR image. There are three notes for VDSR: (1) Un-

like SRCNN [2] that only uses 3 layers, VDSR stacks 20
weight layers (3 × 3 for each layer) in the residual branch,

which leads to a much larger receptive field (41 × 41 vs.

13 × 13). (2) GRL and adjustable gradient clipping enable

VDSR to converge very fast (∼4 hours on GPU Titan Z).

(3) By adopting scale augmentation, a single network of

VDSR is robust to images with different scales. Later, we

will show that VDSR actually is a special case of DRRN,

when there’s no residual unit in our recursive block.

2.3. DRCN

DRCN [14] is motivated by the observation that adding

more weight layers introduces more parameters, where the

model is likely to overfit and also becomes disk hungry. To

address these issues, the authors introduce a recursive layer

into the network, so that the model parameters do not in-

crease while more recursions are performed in the recursive

layer. DRCN consists of three parts: embedding net, infer-

ence net and reconstruction net, which are illustrated as the

first, middle 4, and last convolutional layer(s) in Fig. 2(c),

respectively. The embedding net f1(x) represents a given

3149



H
u

Å

H
u-1

conv

conv

BN

ReLU

weight

H
0

Figure 3. A close look at the u-th residual unit in DRRN. The black

dashed box represents the residual function F , which consists of

two “conv” layers and each stacked by BN-ReLU-weight layers.

image x as feature maps H0. The inference net f2(H0)
stacks T recursions (T = 16 in [14]) in a recursive layer,

with shared weights among these recursions. Finally, the

reconstruction net fRec(HT), where HT is the output of the

inference net, generates the intermediate HR image. How-

ever, since training such a deep network is difficult, the au-

thors further propose two mitigations, recursive-supervision

and skip-connection. Specifically, for the t-th intermediate

recursion in the recursive layer, the output after reconstruc-

tion net is formulated as

yt = fRec(f
(t)
2 (f1(x))) + x, (2)

where x is skip-connection and basically a GRL. Each in-

termediate prediction yt is learned with supervision. Fi-

nally, an ensemble strategy is adopted and the output is the

weighted average of all predictions y = ΣT
t=1wt · yt, with

weights wt learned during training.

3. Deep Recursive Residual Network

In this section, we present the technical parts of our pro-

posed DRRN. Specifically, we adopt global residual learn-

ing in the identity branch and introduce recursive learn-

ing into the residual branch by constructing the recursive

block structure, in which several residual units are stacked.

Noted that in ResNet [8], different residual units use dif-

ferent inputs for the identity branch (green dashed boxes in

Fig. 2(a)). However, in our recursive block, a multi-path

structure is used and all the residual units share the same in-

put for the identity branch (green dashed boxes in Fig. 2(d)),

which further facilitates the learning [16]. We highlight the

differences of the network structures between DRRN and

the related models in Tab. 1. Now, we will gradually present

more details of our model, from the residual unit to the re-

cursive block and finally the whole network structure.

3.1. Residual Unit

In ResNet [8], the basic residual unit is formulated as

Eq. 1 and the activation functions (BN [11] and ReLU [19])

are performed after the weight layers. In contrast to such

a “post-activation” structure, He et al. [9] propose a “pre-

activation” structure, which performs the activation before

the weight layers. They claim that the pre-activation version

xb-1

(a) U=1

xb

(b) U=2

conv

xb-1

xb

conv

Å

conv

conv

xb-1

(c) U=3

xb

conv

Å

conv

conv

Å

conv

conv

conv

Å

conv

conv

Å

conv

conv

Å

conv

Figure 4. Structures of our recursive blocks. U means number of

residual units in the recursive block.

is much easier to train and generates better performance

than the post-activation version. Specifically, the residual

unit with pre-activation structure is formulated as

Hu = F(Hu−1,Wu) +Hu−1, (3)

where u = 1, 2, ...,U, U is the number of residual units in a

recursive block, Hu−1 and Hu are the input and output of

the u-th residual unit, and F denotes the residual function.

Instead of directly using the above residual unit, we mod-

ify Eq. 3 so that the inputs to the identity branch and the

residual branch are different. As described in the beginning

of Sec. 3, the inputs to all of the identity branches of the

residual units in one recursive block are kept the same, i.e.,

H0 in Fig. 3. As a result, there are multiple paths between

the input and output of our recursive block, as shown in

Fig. 4. The residual paths help to learn highly complex fea-

tures and the identity paths help gradient backpropagation

during training. Compared to the chain mode, this multi-

path mode facilitates the learning and is less prone to over-

fitting [16]. Therefore, we formulate our residual unit as

Hu = G(Hu−1) = F(Hu−1,W ) +H0, (4)

where G denotes the function of our residual unit, H0 is the

result of the first convolutional layer in the recursive block.

Since the residual unit is recursively learned, the weight set

W is shared among the residual units within a recursive

block, but different across different recursive blocks.

3.2. Recursive Block

We now introduce the details of our recursive block.

First, we illustrate the structure of our recursive blocks in

Fig. 4. Motivated by [16], we introduce a convolutional

layer at the beginning of the recursive block, and then sev-

eral residual units mentioned in Sec. 3.1 are stacked. We

3150



x3

x4

conv

conv

Å

conv

conv

Å

conv

conv

Å

conv

x

RB

RB

RB

RB

RB

RB

conv

y

Å

Figure 5. An example network structure of DRRN with B = 6 and

U = 3. Here, “RB” layer refers to a recursive block.

denote B as the number of recursive blocks, xb−1 and xb

(b = 1, 2, ...,B) as the input and output of the b-th recursive

block, and H0
b = fb(xb−1) as the result after passing xb−1

through the first convolutional layer, whose function is fb.

According to Eq. 4, the result of u-th residual unit is

Hu
b = G(Hu−1) = F(Hu−1

b ,Wb) +H0
b . (5)

Thus, the output of the b-th recursive block xb is

xb = HU
b = G(U)(fb(xb−1)) = G(G(...(G(fb(xb−1)))...)),

(6)

where U-fold operations of Gb are performed.

3.3. Network Structure

Finally, we simply stack several recursive blocks, fol-

lowed by a convolutional layer reconstructing the residual

between the LR and HR images. The residual image is then

added to the global identity mapping from the input LR im-

age. The entire network structure of DRRN is illustrated in

Fig. 5. Actually, VDSR [13] can be viewed as a special case

of DRRN, i.e., when U = 0, DRRN becomes VDSR.

DRRN has two key parameters: the recursive block

number B and the residual unit number U in each recur-

sive block. Given different B and U, we can learn DRRN

with different depths – the number of convolutional layers.

Specifically, the depth of DRRN d is calculated as:

d = (1 + 2×U)× B+ 1. (7)

Denoting x and y to be the input and output of DRRN,

R to be the function of the b-th recursive block, we have

xb = Rb(xb−1) = G(U)(fb(xb−1)). (8)

When b = 1, we define x0 = x. Then, DRRN can be

formulated as

y = D(x) = fRec(RB(RB−1(...(R1(x))...))) + x, (9)

where fRec is a function for the last convolutional layer in

DRRN to reconstruct the residual. Tab. 1 lists the mathe-

matical formulations of ResNet, VDSR, DRCN and DRRN.

Given a training set {x(i), x̃(i)}Ni=1, where N is the num-

ber of training patches and x̃
(i) is the ground truth HR patch

of the LR patch x
(i), the loss function of DRRN is

L(Θ) =
1

2N

N∑

i=1

‖x̃(i) −D(x(i))‖2, (10)

where Θ denotes the parameter set. The objective function

is optimized via the mini-batch stochastic gradient descent

(SGD) with backpropagation [15]. We implement DRRN

via Caffe [12].

4. Experiments

4.1. Datasets

By following [13, 23], we use a training dataset of 291
images, where 91 images are from Yang et al. [35] and other

200 images are from Berkeley Segmentation Dataset [18].

For testing, we utilize four widely used benchmark datasets,

Set5 [1], Set14 [36], BSD100 [18] and Urban100 [10],

which have 5, 14, 100 and 100 images respectively.

4.2. Implementation Details

Data augmentation is performed on the 291-image train-

ing dataset. Inspired by [30], the flipped and rotated ver-

sions of the training images are considered. Specifically,

we rotate the original images by 90◦, 180◦, 270◦ and flip

them horizontally. After that, for each original image, we

have 7 additional augmented versions. Besides, inspired by

VDSR [13], we also use scale augmentation to train our

model, and images with different scales (×2, ×3 and ×4)

are all included in the training set. Therefore, for all differ-

ent scales, we only need to train a single model.

Training images are split into 31 × 31 patches, with the

stride of 21, by considering both the training time and stor-

age complexities. We set the mini-batch size of SGD to 128,

momentum parameter to 0.9, and weight decay to 10−4.

Every weight layer has 128 filters of the size 3× 3.

For weight initialization, we use the same method as He

et al. [7], which is shown to be suitable for networks utiliz-

ing ReLU. The initial learning rate is set to 0.1 and then de-

creased to half every 10 epochs. Since a large learning rate

is used in our work, we adopt the adjustable gradient clip-

ping [13] to boost the convergence rate while suppressing

exploding gradients. Specifically, the gradients are clipped

to [− θ
γ
, θ
γ
], where γ is the current learning rate and θ = 0.01

is the gradient clipping parameter. Training a DRRN of

d = 20 roughly takes 4 days with 2 Titan X GPUs.

4.3. Study of B and U

In this subsection, we explore various combinations of B
and U to construct different DRRN structures with different

3151



Dataset Scale Bicubic SRCNN [2] SelfEx [10] RFL [23] VDSR [13] DRCN [14] DRRN B1U9 DRRN B1U25

Set5

×2 33.66/0.9299 36.66/0.9542 36.49/0.9537 36.54/0.9537 37.53/0.9587 37.63/0.9588 37.66/0.9589 37.74/0.9591
×3 30.39/0.8682 32.75/0.9090 32.58/0.9093 32.43/0.9057 33.66/0.9213 33.82/0.9226 33.93/0.9234 34.03/0.9244
×4 28.42/0.8104 30.48/0.8628 30.31/0.8619 30.14/0.8548 31.35/0.8838 31.53/0.8854 31.58/0.8864 31.68/0.8888

Set14

×2 30.24/0.8688 32.45/0.9067 32.22/0.9034 32.26/0.9040 33.03/0.9124 33.04/0.9118 33.19/0.9133 33.23/0.9136
×3 27.55/0.7742 29.30/0.8215 29.16/0.8196 29.05/0.8164 29.77/0.8314 29.76/0.8311 29.94/0.8339 29.96/0.8349
×4 26.00/0.7027 27.50/0.7513 27.40/0.7518 27.24/0.7451 28.01/0.7674 28.02/0.7670 28.18/0.7701 28.21/0.7720

BSD100

×2 29.56/0.8431 31.36/0.8879 31.18/0.8855 31.16/0.8840 31.90/0.8960 31.85/0.8942 32.01/0.8969 32.05/0.8973
×3 27.21/0.7385 28.41/0.7863 28.29/0.7840 28.22/0.7806 28.82/0.7976 28.80/0.7963 28.91/0.7992 28.95/0.8004
×4 25.96/0.6675 26.90/0.7101 26.84/0.7106 26.75/0.7054 27.29/0.7251 27.23/0.7233 27.35/0.7262 27.38/0.7284

Urban100

×2 26.88/0.8403 29.50/0.8946 29.54/0.8967 29.11/0.8904 30.76/0.9140 30.75/0.9133 31.02/0.9164 31.23/0.9188
×3 24.46/0.7349 26.24/0.7989 26.44/0.8088 25.86/0.7900 27.14/0.8279 27.15/0.8276 27.38/0.8331 27.53/0.8378
×4 23.14/0.6577 24.52/0.7221 24.79/0.7374 24.19/0.7096 25.18/0.7524 25.14/0.7510 25.35/0.7576 25.44/0.7638

Table 2. Benchmark results. Average PSNR/SSIMs for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, BSD100 and Urban100. Red

color indicates the best performance of our methods and blue color indicates the best performance of previous methods.

params

more

less

Figure 6. PSNR of various DRRNs at B and U combinations. The

color of the point indicates the PSNR that corresponds to the bar

on the right and 4 depth contours (d = 50, 30, 20, 10) are also

plotted. The tests are conducted for scale factor ×3 on Set5.

depths, and see how the two parameters affect the perfor-

mance. In Fig. 6, we build a grid of B and U, and sample

several points in the grid with the depth ranging from 8 to 52
layers. The parameter number keeps the same when more

residual units are used in one recursive block, and linearly

increases when more recursive blocks are stacked.

First, to clearly show how a single parameter affects

DRRN, we fix one parameter to 3 and change the other

from 1 to 4. Fig. 6 shows that increasing B or U results

in deeper models and achieves better performance, which

indicates deeper is still better. Despite different structures,

these models are comparable as long as their depths are sim-

ilar, e.g., B2U3 (d = 15, k = 784K) and B3U2 (d = 16,

k = 1, 182K) achieve 33.76 and 33.77 dB, respectively.

The structures mentioned above all use the recursive

learning strategy. Next, we test three very different struc-

tures to demonstrate the effectiveness of such a strategy.

Specifically, we fix one parameter to 1 and change the other

to construct networks with d = 52. This results in two ex-

treme structures: B1U25 (k = 297K) and B17U1 (k =
7, 375K). For B1U25, only one recursive block is used, in

which 25 residual units are recursively learned. For B17U1,

17 recursive blocks are stacked, with no recursive learn-

ing. We also construct a normal structure B3U8 (d = 52,

k = 1, 182K). Fig. 6 shows that despite different struc-

tures, the three networks achieve comparable performance

(B17U1 34.03 dB, B3U8 34.04 dB and B1U25 34.03 dB)

and outperform the pervious shallow networks. Thanks to

the recursive learning strategy, B1U25 can achieve state-of-

the-art results using far fewer parameters.

4.4. Comparison with State­of­the­Art Models

We now provide quantitative and qualitative compar-

isons. Considering both the performance and number of

parameters, we choose DRRN B1U25 (d = 52, k = 297K)

as our best model. For fair comparison, we also construct

a DRRN B1U9 (d = 20, k = 297K) structure, which has

the same depth as VDSR and DRCN, but fewer parameters.

Both the DL [2, 13, 14] and non-DL [10, 20, 23] methods in

recent years are used for benchmark. Experimental setting

is kept the same as those previous methods. Specifically, we

first apply bicubic interpolation to the color components of

an image and all models are applied to its luminance com-

ponent only. Therefore, the input and output images are of

the same size. For fair comparison, similar to [2,13,14,23],

we crop pixels near image boundary before evaluation, al-

though this is unnecessary for DRRN.

Tab. 2 summarizes quantitative results on the four test-

ing sets, by citing the results of prior methods from [13,14].

The two DRRN models outperforms all existing methods in

all datasets and scale factors, in both PSNR and Structural

SIMilarity (SSIM) 1. Especially on the recent difficult Ur-

ban100 dataset [10], DRRN significantly advances the state

of the art, with the improvement margin of 0.47, 0.38, and

0.26 dB on scale factor ×2, ×3 and ×4 respectively.

Further, we also use another metric: Information Fidelity

Criterion (IFC) [24] for comparison, which claims to have

the highest correlation with perceptual scores for SR evalu-

ation [34]. The results are presented in Tab. 3. Note that

1With two convolutional layers in the residual branch, DRRN achieves

state-of-the-art performance. More complex designs have the potential to

improve performance but are not the focus of this work.

3152



Dataset Scale Bicubic SRCNN [2] SelfEx [10] RFL [23] PSyCo [20] VDSR [13] DRRN B1U9 DRRN B1U25

Set5

×2 6.083 8.036 7.811 8.556 8.642 8.569 8.583 8.671
×3 3.580 4.658 4.748 4.926 5.083 5.221 5.241 5.397
×4 2.329 2.991 3.166 3.191 3.379 3.547 3.581 3.703

Set14

×2 6.105 7.784 7.591 8.175 8.280 8.178 8.181 8.320
×3 3.473 4.338 4.371 4.531 4.660 4.730 4.732 4.878
×4 2.237 2.751 2.893 2.919 3.055 3.133 3.147 3.252

Urban100

×2 6.245 7.989 7.937 8.450 8.589 8.645 8.653 8.917
×3 3.620 4.584 4.843 4.801 5.031 5.194 5.259 5.456
×4 2.361 2.963 3.314 3.110 3.351 3.496 3.536 3.676

Table 3. Benchmark results. Average IFCs for the scale factor ×2, ×3 and ×4 on datasets Set5, Set14 and Urban100. Red color indicates

the best performance of our methods and blue color indicates the best performance of previous methods.

Ground Truth Bicubic SRCNN SelfEx VDSR DRRN_B1U9 DRRN_B1U25

(PSNR/SSIM/IFC) (21.10/0.7046/3.134) (21.77/0.7540/3.761) (21.94/0.7608/3.669) (22.58/0.7942/4.341) (22.74/0.7999/4.365) (23.37/0.8158/4.713)

(PSNR/SSIM/IFC) (22.55/0.7073/3.591) (23.51/0.7608/4.344) (23.42/0.7587/4.281) (23.99/0.7728/4.716) (24.23/0.7781/4.734) (24.41/0.7805/4.914)

(PSNR/SSIM/IFC) (21.98/0.8126/1.920) (24.80/0.8928/2.666) (24.85/0.9076/2.941) (25.85/0.9289/3.406) (26.33/0.9365/3.557) (26.48/0.9415/3.822)

Figure 7. Qualitative comparison. (1) The first row shows image “img059” (Urban100 with scale factor ×3). DRRN recovers sharp lines,

while others all give blurry results. (2) The second row shows image “253027” (BSD100 with scale factor ×3). DRRN accurately recovers

the pattern. (3) The last row shows image “ppt3” (Set14 with scale factor ×4). Texts in DRRN are sharp, while others are blurry.

the results of [2, 10, 20, 23] are cited from [20] 2, while

the results of VDSR come from our re-implementation.

Similar to DRRN, the VDSR re-implementation also uses

BN and ReLU as the activation functions, unlike the orig-

inal VDSR [13] that does not use BN. These results are

2Since PSyCo [20] does not present complete PSNR/SSIM perfor-

mance on the four benchmarks, we do not include it in Tab. 2.

faithful since our VDSR re-implementation achieves similar

benchmark performance as [13] reported in Tab. 2. Since

only Set5, Set14 and Urban100 are used in [20], we omit

BSD100 in this test. It is clear that DRRN still outperforms

all existing methods in all datasets and scale factors. Re-

garding the speed, our 20-layer B1U9 network takes 0.25
second to process a 288× 288 image on a Titan X GPU.

3153



22 layers 28 layers16 layers

Figure 8. PSNR for scale factor ×3 on Set5 using VDSR (blue),

DRRN NS (green), DRRN C (cyan) and DRRN (red).

Methods VDSR DRRN NS C DRRN NS DRRN C DRRN

Loc. Res. L ×
√ √ √ √

Recu. L × × ×
√ √

Multi-path × ×
√

×
√

PSNR 33.86 33.92 33.97 33.95 33.99

Table 4. Average PSNR when different DRRN components are

turned on or off, for scale factor ×3 on dataset Set5.

Qualitative comparisons among SRCNN [2],

SelfEx [10], VDSR [13] and DRRN are illustrated in

Fig. 7. For SRCNN and SelfEx, we use their public codes.

For VDSR, we use our re-implementation. As we can see,

our method produces relatively sharper edges with respect

to patterns, while other methods may give blurry results.

4.5. Discussions

Since global residual learning has been well discussed

in [13], in this section, we mainly focus on local residual

learning (LRL), recursive learning and multi-path structure.

Local Residual Learning To demonstrate the effective-

ness of LRL, DRRN is compared with VDSR [13], which

has no LRL. For fair comparison, the depth and number of

parameters are kept the same for both methods. Specifi-

cally, we evaluate three depths: 16(B3U2), 22(B3U3), and

28(B3U4) convolutional layers. Each convolutional layer

has 128 filters with the size 3 × 3. To keep the parameter

number the same, in this test we do not share the weight

set of the residual units in one recursive block, and denote

this DRRN structure as DRRN NS. Fig. 8 shows the PSNR

of both methods in different depths. We see that the LRL

strategy consistently improves VDSR at all depths.

Recursive Learning To contrast our recursive learning

strategy, the three DRRN NS versions are compared with

the three weight-shared versions (Fig. 8). Storage is an im-

portant factor to consider when building a deep model. The

recursive learning strategy can reduce the storage demand

and keep a concise model while increasing its depth. Inter-

estingly the weight-shared DRRN versions achieve compa-

rable or even better performance than DRRN NS versions

Shallow Deep Very deep

Figure 9. Comparing deep and shallow models proposed in recent

three years that report PSNR for scale factor ×3 on Set5 and Set14.

while using only a small fraction of parameters, which in-

dicates when limited training set (e.g., 291 images) is used,

the recursive learning is indeed effective under the same

structure, and less prone to overfitting [16].

Multi-Path Structure To demonstrate the effectiveness

of multi-path structure, we compare DRRN with the chain

structure, denoted as DRRN C. As shown in Fig. 8, with the

same depth and parameter number, the multi-path structures

achieve higher PSNR than the corresponding chain struc-

tures in all three cases. Further, Tab. 4 presents the compre-

hensive study on performance gains using network B3U4 as

the example. It shows how different technical parts improve

the performance compared to the baseline VDSR.

Deep vs. Shallow Finally, we give a comparison of the deep

and shallow SISR models, which are published in recent

three years (2014 to 2016) that report PSNR for scale factor

×3 on datasets Set5 and Set14. Shallow (non-DL) mod-

els include A+ [31], SelfEx [10], RFL [23], NBSRF [22],

PSyCo [20] and IA [30]. The deep models (d ≤ 8) in-

clude SRCNN [2], DJSR [33], CSCN [32], ESPCN [25]

and FSRCNN [3]. Very deep models (d ≥ 20) include

VDSR [13], DRCN [14], RED [17] and DRRN with d = 20
and 52. Fig. 9 shows that 1) very deep models signif-

icantly outperform the shallow models; 2) DRRN B1U9
(d = 20, k = 297K) already outperforms the state of the

arts with the same depth but fewer parameters; 3) a deeper

DRRN B1U25 (d = 52, k = 297K) further improves the

performance without adding any parameters.

5. Conclusions

In this paper, we propose Deep Recursive Residual Net-

work (DRRN) for single image super-resolution. In DRRN,

an enhanced residual unit structure is recursively learned in

a recursive block, and we stack several recursive blocks to

learn the residual image between the HR and LR images.

The residual image is then added to the input LR image

from a global identity branch to estimate the HR image.

Extensive benchmark experiments and analysis show that

DRRN is a deep, concise, and superior model for SISR.

3154



References

[1] C. M. Bevilacqua, A. Roumy, and M.-L. A. Morel. Low-

complexity single-image super-resolution based on nonneg-

ative neighbor embedding. In BMVC, 2012. 1, 5

[2] C. Dong, C. Loy, K. He, and X. Tang. Image super-resolution

using deep convolutional networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 38(2):295–307,

2016. 1, 2, 3, 6, 7, 8

[3] C. Dong, C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In ECCV, 2016.

8

[4] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a

single image. In ICCV, 2009. 1

[5] K. Gregor and Y. LeCun. Learning fast approximations of

sparse coding. In ICML, 2010. 1

[6] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. In ICLR, 2016. 2

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on ImageNet

classification. In ICCV, 2015. 5

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 3, 4

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. arXiv:1603.05027v2, 2016. 4

[10] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In CVPR, 2015.

5, 6, 7, 8

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 2, 4

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv:1408.5093,

2014. 5

[13] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016. 1, 2, 3, 5, 6, 7, 8

[14] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolu-

tional network for image super-resolution. In CVPR, 2016.

1, 2, 3, 4, 6, 8

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, 1998. 5

[16] M. Liang and X. Hu. Recurrent convolutional neural network

for object recognition. In CVPR, 2015. 4, 8

[17] X.-J. Mao, C. Shen, and Y.-B. Yang. Image restoration us-

ing very deep convolutional encoder-decoder networks with

symmetric skip connections. In NIPS, 2016. 1, 2, 8

[18] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 5

[19] V. Nair and G. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 2, 4

[20] E. Perez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and

B. Rosenhahn. PSyCo: Manifold span reduction for super

resolution. In CVPR, 2016. 1, 6, 7, 8

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

and et al. ImageNet large scale visual recognition challenge.

arXiv:1409.0575, 2014. 2

[22] J. Salvador and E. Perez-Pellitero. Naive bayes super-

resolution forest. In ICCV, 2015. 1, 8

[23] S. Schulter, C. Leistner, and H. Bischof. Fast and accu-

rate image upscaling with super-resolution forests. In CVPR,

2015. 1, 5, 6, 7, 8

[24] H. Sheikh, A. Bovik, and G. de Veciana. An information

fidelity criterion for image quality assessment using natu-

ral scene statistics. IEEE Transactions on image processing,

14(12):2117–2128, 2005. 6

[25] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In CVPR, 2016. 1, 2, 8

[26] W. Shi, J. Caballero, C. Ledig, X. Zhuang, W. Bai, K. Bha-

tia, A. Marvao, T. Dawes, D. ORegan, and D. Rueckert. Car-

diac image super-resolution with global correspondence us-

ing multi-atlas patchmatch. In MICCAI, 2013. 1

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

2

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Going

deeper with convolutions. In CVPR, 2015. 2

[29] M. W. Thornton, P. M. Atkinson, and D. a. Holland. Sub-

pixel mapping of rural land cover objects from fine spa-

tial resolution satellite sensor imagery using super-resolution

pixel-swapping. International Journal of Remote Sensing,

27(3):473–491, 2006. 1

[30] R. Timofte, R. Rothe, and L. V. Gool. Seven ways to improve

example-based single image super resolution. In CVPR,

2016. 5, 8

[31] R. Timofte, V. D. Smet, and L. V. Gool. A+: Adjusted an-

chored neighborhood regression for fast super-resolution. In

ACCV, 2014. 1, 8

[32] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep

networks for image super-resolution with sparse prior. In

ICCV, 2015. 1, 2, 8

[33] Z. Wang, Y. Yang, Z. Wang, S. Chang, W. Han, J. Yang,

and T. Huang. Self-tuned deep super resolution. In CVPR

workshop, 2015. 8

[34] C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-

resolution: A benchmark. In ECCV, 2014. 6

[35] J. Yang, J. Wright, T. Huang, and Y. Ma. Image superresolu-

tion via sparse representation. IEEE Transactions on image

processing, 19(11):2861–2873, 2010. 1, 5

[36] R. Zeyde, M. Elad, and M. Protter. On single image scale-

up using sparse-representations. Curves and Surfaces, pages

711–730, 2012. 5

[37] W. Zou and P. C. Yuen. Very low resolution face recog-

nition problem. IEEE Transactions on image processing,

21(1):327–340, 2012. 1

3155


