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Abstract

This paper proposes a new extrinsic calibration of kalei-

doscopic imaging system by estimating normals and dis-

tances of the mirrors. The problem to be solved in this paper

is a simultaneous estimation of all mirror parameters con-

sistent throughout multiple reflections. Unlike conventional

methods utilizing a pair of direct and mirrored images of

a reference 3D object to estimate the parameters on a per-

mirror basis, our method renders the simultaneous estima-

tion problem into solving a linear set of equations. The key

contribution of this paper is to introduce a linear estimation

of multiple mirror parameters from kaleidoscopic 2D pro-

jections of a single 3D point of unknown geometry. Eval-

uations with synthesized and real images demonstrate the

performance of the proposed algorithm in comparison with

conventional methods.

1. Introduction

Virtual multiple-view system with planar mirrors is

a practical approach to realize a multi-view capture of a

target by synchronized cameras with an identical intrin-

sic parameter, and it has been widely used for 3D shape

reconstruction by stereo [5, 6, 17], shape-from-silhouette

[2, 9, 22], structure-from-motion [19], structured-lighting

[13, 27], ToF [18], and also for reflectance analysis [10, 11,

26], for light-field imaging [3, 15, 24], etc.

This paper is aimed at proposing a new extrinsic calibra-

tion of kaleidoscopic system with planar mirrors to provide

an accurate and robust estimate of the mirror geometry for

such applications (Figure 1).

The problem addressed in this paper is to estimate all

mirror parameters, i.e. their normals and the distances from

the camera, consistent throughout multiple reflections si-

multaneously in a linear manner. While conventional meth-

∗Present affiliation: Nara Institute of Science and Technology.

A reference implementation is available at http://vision.

kuee.kyoto-u.ac.jp/˜nob/proj/kaleidoscope/.

Figure 1: Kaleidoscopic imaging system. Left: kaleido-

scopic projection of a 3D cat object. Right: a 3D recon-

struction result.

ods utilize a reference object of known geometry to estimate

the mirror parameters on a per-mirror basis, the proposed

method provides a linear solution of the mirror parameters

from kaleidoscopic projections of a single 3D point without

knowing its 3D geometry beforehand.

The key idea is to utilize the 2D projections of multiple

reflections to form a linear system on the mirror parameters.

While the 3D positions of multiple reflections of a 3D point

is defined as a nonlinear function of the mirror parameters

as described later in Eq (6), their 2D projections can be used

as a linear constraint on the mirror parameters.

The rest of this paper is organized as follows. Section

2 reviews related studies on kaleidoscopic mirror calibra-

tions. Section 3 defines the measurement model and Sec-

tion 4 introduces a single mirror calibration algorithm from

two pairs of projections based on the mirror-based binoc-

ular epipolar geometry [29]. Section 5 introduces our key

contribution, a linear estimation of multiple mirror parame-

ters from kaleidoscopic 2D projections of a single 3D point

of unknown geometry. Section 6 evaluates the proposed

method quantitatively and qualitatively in comparison with

conventional methods, and Section 7 concludes the paper

and outlines future work.

2. Related work

In the context of kaleidoscopic imaging, Ihrke et al. [10]

and Reshetouski and Ihrke [20, 21] have proposed a theory

on modeling the chamber detection, segmentation, bounce
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Figure 2: Measurement model. A 3D point p is reflected to

p′ by a mirror π of normal n and distance d, and they are

projected to q and q′ respectively.

tracing, shape-from-silhouette, etc. In these studies, how-

ever, the geometric calibration of the mirrors is simply

achieved by detecting chessboards first [30], and then by

estimating the mirror normals and the distances from chess-

board 3D positions in the camera frame.

By considering kaleidoscopic imaging as a system of

observing reflections of a single object via different mir-

rors, another possible approach is to utilize calibration tech-

niques from such mirrored observations [8,12,16,23,25,28].

While their original motivation is to estimate the 3D struc-

ture from its indirect views via mirrors, they can be used for

calibrating the kaleidoscopic system by supposing the di-

rect view were not available. For example, the orthogonal-

ity constraint on mirrored 3D points proposed by [28] can

be considered as another approach for kaleidoscopic system

calibration in [10, 21].

These conventional calibration approaches utilize 3D po-

sitions of a reference object and its reflections. That is, they

first recover the 3D pose of the reference object from each

of the virtual views, and then compute the mirror parame-

ters from their 3D positions. While the first step and the sec-

ond step can be done linearly, 3D pose estimation without

nonlinear optimizations (i.e. reprojection error minimiza-

tion) is not robust to observation noise.

On the other hand, the proposed method directly esti-

mates the mirror parameters linearly from kaleidoscopic

projections of a single 3D point of unknown geometry, i.e.

without knowing its 3D position. Since our algorithm is

based on a reprojection constraint, the result is as accurate

as those with nonlinear optimizations.

3. Kaleidoscopic imaging system

Figure 2 illustrates the measurement model with a mir-

ror. Let p denote a 3D point in the camera coordinate sys-

tem. The mirror π of normal n at distance d from the cam-

era generates its mirror as p′, and p and p′ are captured as

Camera
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p21

p23

p31

p32

Figure 3: Kaleidoscopic imaging system. A 3D point p is

reflected to p1, p2 and p3 by the mirrors π1, π2 and π3

respectively.
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Figure 4: Chamber arrangement

q and q′ in the camera image

λq = Ap, λ′q′ = Ap′, (1)

where A is the intrinsic matrix of the camera calibrated be-

forehand, and λ and λ′ are the depths from the camera.

The 3D points p and p′ satisfy

p = p′ + 2tn, (2)

where t denotes the distance from p to the mirror plane.

Also the projection of p′ to n gives

t+ d = −n⊤p′. (3)

These two equations yield

p = −2(n⊤p′ + d)n+ p′, (4)

and can be rewritten as

p̃ = Sp̃′ =

[

H −2dn
01×3 1

]

p̃′, (5)

where H = I3×3 − 2nn⊤ is a 3×3 Householder matrix,

x̃ denotes the homogeneous coordinate of x, and 0m×n de-

notes the m×n zero matrix.

Kaleidoscopic imaging system utilize multiple mirrors to

generate multiple viewpoints virtually (Figure 3), and the
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images captured by the camera consist of chambers cor-

responding to images captured by the real and the virtual

cameras as shown in Figure 4. Here we assume three mir-

rors system while our calibration can be adopted to other

configurations.

Let M0 denote the base chamber corresponding to the

direct view of the target. The three mirrors π1, π2 and π3

generate first reflection chambers M1, M2 and M3 respec-

tively. These three mirrors also generate virtual mirrors πij

by mirroring πj by πi (i, j = 1, 2, 3, i 6= j). The matrices

Sij and Hij of πij are given by

Sij = SiSj ,

Hij = HiHj ,
(6)

and the camera observes the second reflection chamber Mij

as the mirror of Mj by πi. The third and further reflections

are defined by

Πm
k=1Sik (ik = 1, 2, 3, ik 6= ik+1), (7)

where m is the number of reflections.

The goal of our extrinsic calibration is to estimate the

parameters ni and di of the real mirror πi from projections

of a single 3D point in the base chamber M0 and its mirrors

in Mi, Mij , and so on.

4. Single mirror calibration from projections

of two 3D points

Suppose the camera observes a 3D point of unknown ge-

ometry p. The mirror π of matrix S defined by the normal

n and the distance d reflects p to p′ = Sp (Eq (5)).

Based on the epipolar geometry [7, 29], n, p and p′ are

coplanar and satisfy

(n× p)
⊤
p′ = 0. (8)

By substituting p and p′ by λA−1q and λ′A−1q′ respec-

tively (Eq (1)), we obtain

q⊤A−⊤[n]⊤×A
−1q′ = 0, (9)

where [n]× denotes the 3 × 3 skew-symmetric matrix rep-

resenting the cross product by n and this is the essential

matrix of this mirror-based binocular geometry [29].

By representing the normalized image coordinates of q

and q′ by (x, y, 1)⊤ = A−1q and (x′, y′, 1)⊤ = A−1q′

respectively, Eq (9) can be rewritten as
(

y − y′ x′ − x xy′ − x′y
)

n = 0. (10)

This equation allows estimating n up to scale by using pro-

jections of more than or equal to two 3D points and their

mirrors. Since n is a unit vector, we can obtain a unique so-

lution by assuming the mirror is front-facing to the camera.

It should be noted the distance d from the camera to the

mirror cannot be estimated since it is identical to the scale

factor.

M0
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M3

M12

M13

M21 M23

M32

M31

q0
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q13

q2

q12

π1

Figure 5: Corresponding points. Three pairs 〈q0, q1〉,
〈q2, q12〉 and 〈q3, q13〉 (red) are available or mirror π1

(blue)

5. Multiple mirrors calibration from kaleido-

scopic projections of single 3D point

This section introduces our linear algorithm which esti-

mates the mirror normals and the distances from the kalei-

doscopic projections of a single 3D point. Notice that the

algorithm is first introduced by utilizing up to the second

reflections, but they can be extended to third or further re-

flections intuitively as described later.

5.1. Mirror normals n1, n2, and n3

The algorithm in Section 4 realizes a mirror calibration

on a per-mirror basis. That is, it can estimate the parameters

of π1, π2 and π3 independently. Furthermore, it can also

estimate those of virtual mirrors such as π13, π23, and so

forth.

However, such real mirror and virtual mirror parameters

are not guaranteed to be consistent with each other and Eq

(6) does not hold strictly. This results in inconsistent trian-

gulations in 3D geometry estimation for example.

Instead of such mirror-wise estimations, this section pro-

poses a new linear algorithm which calibrates the kalei-

doscopic mirror parameters simultaneously by observing a

single 3D point in the scene.

Suppose a 3D point p0 is projected to q0 in the base

chamber, and its mirror pi by πi is projected to qi in the

chamber Mi. Likewise, the second mirror pij by πij is pro-

jected to qij in the chamber Mij , and so forth.

Here p1 = S1p0 indicates that q0 and q1 satisfy Eq (10)

and provide a constraint for estimating the mirror normal n1

of π1 as described in Section 4. In addition, if p2 = S2p0

holds as well, we obtain S1p2 = S1S2p0 ⇔ p12 = S1p2.

That is, the projection q2 corresponding to the first reflec-

tion p2 and the projection q12 corresponding to the sec-

ond reflection p12 also satisfy Eq (10) on n1. Similarly,

if p3 = S3p0 holds, q3 and p12 provides a linear constraint

on n1 as well. From these three constraints, n1 can be esti-
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mated by solving





y0 − y1 x1 − x0 x0y1 − x1y0
y2 − y12 x12 − x2 x2y12 − x12y2
y3 − y13 x13 − x3 x3y13 − x13y3



n1 = 03×1.

(11)

Similarly, n2 and n3 can be estimated by solving





y0 − y2 x2 − x0 x0y2 − x2y0
y3 − y23 x23 − x3 x3y23 − x23y3
y2 − y21 x21 − x1 x1y21 − x21y1



n2 = 03×1,

(12)

and





y0 − y3 x3 − x0 x0y3 − x3y0
y1 − y31 x31 − x1 x1y31 − x31y1
y2 − y32 x32 − x2 x2y32 − x32y2



n3 = 03×1.

(13)

An important observation in this simple algorithm is the

fact that (1) this is a linear algorithm while it utilizes mul-

tiple reflections, and (2) the estimated normals n1, n2 and

n3 are enforced to be consistent with each other while they

are computed on a per-mirror basis apparently.

The first point is realized by using not the multiple re-

flections of a 3D position but their 2D projections. Intu-

itively a reasonable formalization of kaleidoscopic projec-

tion is to define a real 3D point in the scene, and then to

express each of the projections of its reflections by Eq (5)

coincides with the observed 2D position as introduced in

Section 5.3 later. This expression, however, is nonlinear in

the normals ni (i = 1, 2, 3) (e.g. p12 = S1S2p0). On the

other hand, projections of such multiple reflections can be

associated as a result of single reflection by Eq (10) directly

(e.g. n1 with q12 and q2 as the projections of p12 and S2p0

respectively). As a result, we can utilize 2D projections of

multiple reflections in the linear systems above.

This explains the second point as well. The above con-

straint on q12, q2 and n1 in Eq (11) assumes p2 = S2p0 be-

ing satisfied, and it is enforced by (A−1q2×A−1q0)
⊤n2 =

0 in the first row of Eq (12). Inversely, on estimating n1 by

Eq (11), it enforces p1 = S1p0 for Eqs (12) and (13).

It should be noted that this algorithm can be extended

to third or further reflections intuitively. For example, if

p23 and its reflection by π1 is observable as λ123q123 =
Ap123 = AS1p23, then it provides

(y23 − y123, x23 − x123, x23y123 − x123y23)n1 = 0,
(14)

and can be integrated with Eq (11).

5.2. Mirror distances d1, d2, and d3

Once the mirror normals n1, n2, and n3 are given lin-

early, the mirror distances d1, d2, and d3 can also be esti-

mated linearly as follows.

Kaleidoscopic reprojection constraint The perspective

projection Eq (1) indicates that a 3D point pi and its projec-

tion qi should satisfy the collinearity constraint:

(A−1qi)× pi = xi × pi = 03×1, (15)

where xi =
(

xi yi 1
)⊤

is the normalized camera co-

ordinate of qi as defined earlier. Since the mirrored points

pi (i = 1, 2, 3) are then given by Eq (5) as

pi = Hip0 − 2dini, (16)

and we obtain

xi × pi = xi × (Hip0 − 2dini)

= [xi]×
[

Hi −2ni

]

[

p0

di

]

= 03×1.

(17)

Similarly, the second reflection pij is also collinear with

its projection qij :

(A−1qij)× pij

=[xij ]×(Hipj − 2dini)

=[xij ]× (Hi (Hjp0 − 2djnj)− 2dini)

=[xij ]×
[

HiHj −2ni −2Hinj

]





p0

di
dj





=03×1.

(18)

By using these constraints, we obtain a linear system of

p0, d1, d2, and d3:

































[x0]× 03×1 03×1 03×1

h1 −2[x1]×n1 03×1 03×1

h2 03×1 −2[x2]×n2 03×1

h3 03×1 03×1 −2[x3]×n3

h′
1,2 −2[x12]×n1 −2h′′

1,2 03×1

h′
2,1 −2[x21]×n2 −2h′′

2,1 03×1

h′
2,3 03×1 −2[x23]×n2 −2h′′

2,3

h′
3,2 03×1 −2[x32]×n3 −2h′′

3,2

h′
3,1 −2h′′

3,1 03×1 −2[x31]×n3

h′
1,3 −2h′′

1,3 03×1 −2[x13]×n1









































p0

d1
d2
d3









=K









p0

d1
d2
d3









= 030×1,

(19)

where hi = [xi]×Hi, h′

i,j = [xij ]×HiHj , h′′

i,j =
[xij ]×Hinj . By computing the eigenvector corresponding

to the smallest eigenvalue of K⊤K, (p0, d1, d2, d3)
⊤ can

be determined up to a scale factor. In this paper, we choose

the scale that normalizes d1 = 1.
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Figure 6: Kaleidoscopic imaging system using (a) three, (b)

four, and (c) five mirrors. Discontinuities (red lines) appear

on the boundaries of overlapping chambers.

Notice that Eq (19) apparently has 30 equations, but only

20 of them are linearly independent. This is simply because

each of the cross products by Eqs (15) and (18) has only

two independent constraints by definition.

Also, as discussed in Section 5.1, the above algorithm

can be extended to third or further reflections as well. For

example, given the reflection of p23 by π1 as λ123q123 =
Ap123 = AS1p23, then it provides

[x123]×









(H1H2H3)
⊤

−2n⊤
1

−2(H1n2)
⊤

−2(H1H2n3)
⊤









⊤ 







p0

d1
d2
d3









= 03×1, (20)

and can be integrated with Eq (19).

Notice that our method works as long as the second re-

flections by non-parallel mirrors are given regardless of the

number of the mirrors. However, in cases of more than three

mirrors, discontinuities are more likely to happen in gen-

eral, and finding the second reflections itself become diffi-

cult (Figure 6).

5.3. Kaleidoscopic bundle adjustment

Once estimated the mirror normals ni and the distances

di(i = 1, 2, 3) linearly, the triangulation from kaleidoscopic

projections of a single 3D point can be given in a DLT man-

ner by solving:

K ′p0 = −K ′′d, (21)

as p∗
0 = −(K ′⊤K ′)−1K ′⊤K ′′d, where d = (d1, d2, d3)

⊤,

K ′ is the 30×3 matrix corresponding to the first three

columns of K:

K ′ =
[

[x0]
⊤
×, h

⊤
1 , h

⊤
2 , h

⊤
3 , h

′
⊤
1,2, h

′
⊤
2,1, h

′
⊤
2,3, h

′
⊤
3,2, h

′
⊤
3,1, h

′
⊤
1,3

]⊤

,

(22)

Figure 7: A capture of a chessboard used as the reference

object for conventional methods

and K ′′ is the 30×3 matrix corresponding to the 4th to 7th

columns of K:

K ′′ =

































03×1 03×1 03×1

−2[x1]×n1 03×1 03×1

03×1 −2[x2]×n2 03×1

03×1 03×1 −2[x3]×n3

−2[x12]×n1 −2h′′
1,2 03×1

−2[x21]×n2 −2h′′
2,1 03×1

03×1 −2[x23]×n2 −2h′′
2,3

03×1 −2[x32]×n3 −2h′′
3,2

−2h′′
3,1 03×1 −2[x31]×n3

−2h′′
1,3 03×1 −2[x13]×n1

































.

(23)

By reprojecting this p∗
0 to each of the chambers as

λq̂0 = Ap∗

0,

λq̂i = ASip
∗

0 (i = 1, 2, 3),

λq̂i,j = ASiSjp
∗

0 (i, j = 1, 2, 3, i 6= j),

(24)

we obtain a reprojection error as

E(n1,n2,n3, d1, d2, d3)

=
[

q0 − q̂0, e1, e2, e3, e
′
1,2, e

′
2,1, e

′
2,3, e

′
3,2, e

′
3,1, e

′
1,3

]⊤
,

(25)

where ei = qi − q̂i and e′i,j = q′

i,j − q̂′

i,j . By minimizing

||E(·)||2 nonlinearly over n1,n2,n3, d1, d2, d3, we obtain

a best estimate of the mirror normals and the distances.

6. Evaluations

To demonstrate the performance of the proposed algo-

rithm, this section provides evaluations using synthesized

and real images in comparison with the following two

conventional algorithms both utilize a reference object of

known geometry as shown in Figure 7.

Baseline Since the 3D geometry of the reference object is

known, the 3D positions of the real image p
(l)
0 and

their reflections p
(l)
i and p

(l)
i,j can be estimated by solv-

ing PnP [14]. Here the superscript (l) indicates the lth
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landmark in the reference object. Once L such land-

mark 3D positions are given, then the mirror normals

can be computed simply by

n1 =

L
∑

l

l
(l)
1,2,3/

∥

∥

∥

∥

∥

L
∑

l

l
(l)
1,2,3

∥

∥

∥

∥

∥

,

n2 =

L
∑

l

l
(l)
2,3,1/

∥

∥

∥

∥

∥

L
∑

l

l
(l)
2,3,1

∥

∥

∥

∥

∥

,

n3 =

L
∑

l

l
(l)
3,1,2/

∥

∥

∥

∥

∥

L
∑

l

l
(l)
3,1,2

∥

∥

∥

∥

∥

,

(26)

where l
(l)
i,j,k = p

(l)
i − p

(l)
0 + p

(l)
ij − p

(l)
j + p

(l)
ik − p

(l)
k ,

and then the mirror distances can be computed by

d1 =
1

6L
n⊤

1

L
∑

l

(

3
∑

i=0

(

p
(l)
i

)

+ p
(l)
12 + p

(l)
13

)

,

d2 =
1

6L
n⊤

2

L
∑

l

(

3
∑

i=0

(

p
(l)
i

)

+ p
(l)
23 + p

(l)
21

)

,

d3 =
1

6L
n⊤

3

L
∑

l

(

3
∑

i=0

(

p
(l)
i

)

+ p
(l)
31 + p

(l)
32

)

.

(27)

Notice that the above PnP procedure requires a non-

linear reprojection error minimization process in prac-

tice.

Takahashi et al. [28] As pointed out by Takahashi et al.

[28], two 3D points pi and pj defined as reflections

of a 3D point by different mirrors of normal ni and nj

respectively satisfy an orthogonality constraint:

(pi − pj)
⊤
(ni × nj) = (pi − pj)

⊤
mij = 0.

(28)

As illustrated by Figure 8, this constraint on m12

holds for four pairs 〈p1,p2〉, 〈p0,p21〉, 〈p12,p0〉, and

〈p13,p23〉 as the reflections of p0, p1, p2, and p3 re-

spectively. Similarly, 〈p2,p3〉, 〈p21,p31〉, 〈p0,p32〉,
and 〈p23,p0〉 can be used for computing m23 = n2×
n3, and 〈p3,p1〉, 〈p31,p0〉, 〈p32,p12〉, and 〈p0,p13〉
can be used for m31 = n3 × n1. Once obtained the

intersection vectors m12, m23 and m31, the mirror

normals and the distances can be estimated linearly as

described in [28].

The following three error metrics are used in this sec-

tion in order to evaluate the performance of the proposed

method in comparison with the above-mentioned conven-

tional approaches quantitatively. The average estimation er-

ror of normal En measures the average angular difference

from the ground truth by

En =
1

3

3
∑

i=1

∣

∣cos−1(n⊤

i ňi)
∣

∣ , (29)

M0

M1

M2

M3

M12

M13

M21 M23

M32

M31

q0

q1

q2

q12

m12

π1

π2

Figure 8: Corresponding points for the orthogonality con-

straint [28]. Four pairs 〈p1,p2〉, 〈p0,p21〉, 〈p12,p0〉, and

〈p13,p23〉 are available for the intersection m12 = n1×n2.

where ňi (i = 1, 2, 3) denotes the ground truth of the nor-

mal ni. The average estimation error of distance Ed is de-

fined as the average L1-norm to the ground truth:

Ed =
1

3

3
∑

i=1

|di − ďi|, (30)

where ďi (i = 1, 2, 3) denotes the ground truth of the dis-

tance di. Also, the average reprojection error Erep is de-

fined as:

Erep =
1

10L

L
∑

l=1

∣

∣

∣
E(l)(n1,n2,n3, d1, d2, d3)

∣

∣

∣
, (31)

where E(l)(·) denotes the reprojection error E(·) defined

by Eq (25) at lth point.

6.1. Quantitative evaluations with synthesized im­
ages

This section provides a quantitative performance evalu-

ation using synthesized dataset. A virtual camera and three

mirrors are arranged according to the real setup (Figure 13).

By virtually capturing 3D points simulating a reference ob-

ject, the corresponding 2D kaleidoscopic projections used

as the ground truth are generated first, and then random

pixel noise is injected to them at each trial of calibration.

Figures 9, 10 and 11 report average estimation errors En,

Ed, Erep over 100 trials at different noise levels and differ-

ent numbers of reference points. In these figures σq denotes

the standard deviation of zero-mean Gaussian pixel noise,

Np denotes the number of 3D points used in the calibration,

and Niter denotes the number of iterations required by the

kaleidoscopic bundle adjustment.

As shown in Table 12, the magenta and red lines de-

note the results by the proposed method with and without

the non-linear optimization (Section 5.3). They use kalei-

doscopic projections of non-planar random five 3D points,
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Figure 9: Estimation errors at different noise levels σq . Legends are provided in Table 12.
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Figure 10: Estimation errors at different numbers of reference points Np. Legends are provided in Table 12.
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Figure 11: Number of iterations at different σq with Np = 5 (left) and at

different Np with σq = 1 (right). Legends are provided in Table 12.

Line	 Method	 Model	 Bundle 

Adjustment	
Point	

Proposed	 Non-planar	 -	 5	

Proposed	 Non-planar	 ✓	 5	

Proposed	 Planar	 -	 5	

Proposed	 Planar	 ✓	 5	

Proposed	 -	 -	 1	

Proposed	 -	 ✓	 1	

Takahashi et al.	 Planar	 ✓	 5	

Baseline	 Planar	 ✓	 5	

Figure 12: Configurations

while the dashed red and magenta lines are the results with

planar five points simulating the chessboard (Figure 7). The

light and dark green lines are the results with a single 3D

point generated randomly followed by the non-linear opti-

mization or not.

The yellow and cyan dashed lines are the results by Taka-

hashi et al. [28] and the baseline with the same five points

for the red and magenta dashed lines. Notice that the base-

line and Takahashi et al. [28] without the final non-linear

optimization could not achieve comparable results (typi-

cally Erep ≫ 10 pixel). Also these methods using 3D refer-

ence positions without applying non-linear refinement after

a linear PnP [14] could not estimate valid initial parame-

ters for the final non-linear optimization. Therefore, they

are omitted in these figures. On the other hand, the final

non-linear optimization for our method does not improve

the result drastically. This is because our algorithm origi-

nally utilizes the reprojection error constraint.

From these results, we can conclude that (1) the pro-

posed method can achieve comparable estimation linearly

even with a single 3D point (dark green), and (2) the pro-

posed method (red and magenta) with the same number 3D

points used in the conventional methods (yellow and cyan)

performs better, even without the final non-linear optimiza-

tion.

Also in particular in the cases of σq ≥ 1, we can observe
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Figure 14: Calibration results. The colored lines in the bot-

tom illustrate dn (i.e. the foot of perpendicular from the

camera center) of each mirrors. The 10 patterns in the top

illustrate the 3D points estimated by PnP.

Takahashi et al. (yellow) do not show robust behavior. This

is because the method degenerates obviously if the inter-

section vectors m12, m23 and m31 are parallel since the

normal is recovered by ni = mij ×mki. Therefore if the

estimated 3D reference points by PnP return the intersection

vectors close to such a singular configuration due to noise,

then it will not perform robustly [1, 28].

6.2. Qualitative evaluations with real images

Figure 13 shows our kaleidoscopic capture setup.

The intrinsic parameter A of the camera (Nikon D600,

6016×4016 resolution) is calibrated beforehand [30], and

it observes the target object cat (about 4 × 5 × 1 cm) with

three planar first surface mirrors. The projector (MicroVi-

sion SHOWWX+ Laser Pico Projector, 848×480 resolu-

tion) is used to cast line patterns to the object for simplify-

ing the correspondence search problem in a light-sectioning

fashion (Figure 13 left), and the projector itself is not in-

volved in the calibration w.r.t. the camera and the mirrors.

Figures 7 shows a captured image of a chessboard, and

Figure 14 shows the mirror normals and distances cali-

brated by the proposed method and the conventional meth-

ods. While the estimated mirror parameters look close to

Figure 15: Reconstructed 3D shape

each other, the reprojection errors Erep of the proposed, the

baseline, and Takahashi et al. were 3.37, 4.75, and 13.6

pixels respectively. These reprojection errors are higher

than simulation results and this is because of the localiza-

tion accuracy of corresponding points and nonplanarity of

mirrors. Figure 15 shows a 3D rendering of the estimated

3D shape using the mirror parameters calibrated by the pro-

posed method, while the residual reprojection error indi-

cates the parameters can be further improved for example

through the 3D shape reconstruction process itself [4].

From these results, we can conclude that the proposed

method performs reasonably and provides a sufficiently ac-

curate calibration for 3D shape reconstruction.

7. Conclusion

This paper proposed a new linear calibration of kaleido-

scopic mirror system from 2D kaleidoscopic projections of

a single 3D point in the scene. The key point to realize our

linear method is to utilize not 3D positions of multiple re-

flections but their 2D projections.

One of the advantages of our approach is the fact that

the proposed method does not require knowing the 3D ge-

ometry of the 2D points for calibration, while the conven-

tional methods require 2D-to-3D correspondences. This in-

dicates that our method can utilize 3D points on the target

object surface of unknown geometry, and this point is veri-

fied by the evaluations in which the proposed method with

non-planar calibration points outperforms the conventional

methods even without bundle adjustment.

Inversely, our method assumes the 2D correspondences

are given a priori. This is not a trivial problem [20], and

integration with such automatic correspondence search and

chamber segmentation should be further investigated to re-

alize a complete calibration procedure for kaleidoscopic

imaging system.
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