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Abstract

We propose a novel measure for template matching

named Deformable Diversity Similarity – based on the di-

versity of feature matches between a target image window

and the template. We rely on both local appearance and

geometric information that jointly lead to a powerful ap-

proach for matching. Our key contribution is a similarity

measure, that is robust to complex deformations, significant

background clutter, and occlusions. Empirical evaluation

on the most up-to-date benchmark shows that our method

outperforms the current state-of-the-art in its detection ac-

curacy while improving computational complexity.

1. Introduction

Template Matching is a key component in many com-

puter vision applications such as object detection, tracking,

surveillance, medical imaging and image stitching. Our in-

terest is in Template Matching “in the wild” [4], i.e., when

no prior information is available on the target image. An

example application is to identify the same object in differ-

ent cameras of a surveillance system [1]. Another use case

is in video tracking, where Template Matching is used to

detect drifts and relocate the object after losing it [9]. This

is a challenging task when the transformation between the

template and the target in the image is complex, non-rigid,

or contains occlusions, as illustrated in Figure 1.

Traditional template matching approaches, such as Sum-

of-Squared-Distances or Normalized Cross-Correlation, do

not handle well these complex cases. This is largely be-

cause they penalize all pixels of the template, which re-

sults in false detections when occlusions or large deforma-

tions occur. To overcome this limitation the Best-Buddies-

Similarity (BBS) measure was proposed in [4, 18]. BBS is

based on properties of the Nearest-Neighbor (NN) matches

beween features of the target and features of the template.

It relies only on a subset of the points in the template, thus

hoping to latch on to the relevant features that correspond

between the template and the target. This makes BBS more

robust than previous methods.

∗Authors contributed equally

Figure 1: Template Matching challenges: Template

Matching results of the proposed Deformable Diversity

Similarity (DDIS). (Top) The Miami Heats logo on Lebron

James’s shirt, is marked as template (in green). (Bottom)

Best matches found by DDIS in four target images (in ma-

genta). Different challenges are evident: the ball occludes

the logo, Lebron moves non-rigidly with out-of-plane rota-

tion and complex deformation of the shirt.

In this paper we adopt the feature-based, parameter-free,

approach of BBS and propose a novel similarity measure

for template matching named DDIS: Deformable Diversity

Similarity. DDIS is based on two properties of the Near-

est Neighbor field of matches between points of a target

window and the template. The first is that the diversity

of NN matches forms a strong cue for template matching.

This idea is supported by observations in [11], where patch

diversity was used to match objects for texture synthesis.

We propose formulas for measuring the NN field diversity

and further provide theoretical analysis as well as empirical

evaluations that show the strength of these measures.

The second key idea behind DDIS is to explicitly con-

sider the deformation implied by the NN field. As was

shown by the seminal work of [7] on Deformable Part Mod-

els, allowing deformations while accounting for them in the
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matching measure is highly advantageous for object detec-

tion. DDIS incorporates similar ideas for template matching

leading to a significant improvement in template detection

accuracy in comparison to the state-of-the-art.

A benefit of DDIS with respect to BBS [4, 18] is re-

duced computational complexity. Both measures rely on

NN matches, however, BBS is formulated in a way that re-

quires heavier computations. DDIS is more efficient while

providing statistical properties similar to BBS.

To summarize, in this paper we introduce DDIS, a mea-

sure for template matching in the wild that relies on two ob-

servations: (i) The diversity of NN matches between tem-

plate points and target points is indicative of the similar-

ity between them. (ii) The deformation implied by the NN

field should be explicitly accounted for. DDIS is robust and

parameter free, it operates in unconstrained environments

and shows improved accuracy compared to previous meth-

ods on a real challenging data-set. Our code is available at

https://github.com/roimehrez/DDIS

2. Related Work

The similarity measure between the template and a sub-

window of the target image is the core part of template

matching. A good review is given in [19]. The commonly

used methods are pixel-wise, e.g., Sum of Squared dif-

ferences (SSD), Sum of Absolute Differences (SAD) and

Normalized Cross-Correlation (NCC), all of which assume

only translation between the template and target. They

could be combined with tone mapping to handle illumina-

tion changes [8] or with asymmetric correlation to handle

noise [6]. To increase robustness to noise pixel-wise mea-

sures such as M-estimators [2, 23] or Hamming-based dis-

tances [22, 20] have been proposed.

More general geometric transformation such as affine are

addressed by [27, 12]. In [13] parametric transformations

are handled by approximating the global optimum of the

parametric model. In [26] non-rigid transformations are ad-

dressed via parametric estimation of the distortion. All of

these methods work very well when their underlying geo-

metric assumptions hold, however, they fail in the presence

of complex deformations, occlusions and clutter.

A second group of methods consider a global proba-

bilistic property of the template. For example in [3, 21]

color Histogram Matching is used (for tracking). This does

not restrict the geometric transformation, however, in many

cases the color histogram is not a good representation, e.g.,

in the presence of background clutter and occlusions. Other

methods combine geometric cues with appearance cues.

For example, a probabilistic solution was suggested in [16],

where geometric and color cues are used to represent the

image in the location-intensity space. Oron et al. [17] ex-

tend this idea by measuring one-to-one distance in xyRGB
space. These methods all make various assumptions that do

not hold in complex scenarios.

A more robust approach, that can handle complex cases

has been recently suggested in [4, 18]. Their approach,

named the Best-Buddies-Similarity (BBS) is based on the

Bi-Directional Similarity (BDS) concept of [24]. They

compute the similarity between a template and a target win-

dow by considering matches between their patches. The

matches are computed in both directions providing robust-

ness to outliers. A similar idea was suggested in [5] by

replacing the max operator of the Hausdorff distance [10]

with a sum. The BBS of [4, 18] lead to a significant im-

provement in template matching accuracy over prior meth-

ods. In this paper we propose a different measure, that

shares with BBS its robustness properties, while yielding

even better detection results.

3. Diversity as a Similarity Measure

To measure similarity between a target window and a

template we first find for every target patch its Nearest

Neighbor (NN), in terms of appearance, in the template.

Our key idea is that the similarity between the target and

the template is captured by two properties of the implied

NN field. First, as shown in Figure 2d, when the target

and template correspond, most target patches have a unique

NN match in the template. This implies that the NN field

is highly diverse, pointing to many different patches in the

template. Conversely, as shown in Figure 2e, for arbitrary

targets most patches do NOT have a good match, and the

NNs converge to a small number of template points that

happen to be somewhat similar to the target patches. Sec-

ond, we note that arbitrary matches typically imply a large

deformation, indicated by long arrows in Figure 2e.

Next, we propose two ways for quantifying the amount

of diversity and deformation of the NN field. The first is

more intuitive and allows elegant statistical analysis. The

second is slightly more sophisticated and more robust.

3.1. Diversity Similarity (DIS)

Let points pi, qj ∈ R
d represent patches of the tem-

plate and target, respectively. Our goal is to measure the

similarity between two sets of points, the template points

P = {pi}Ni=1 and the target points Q = {qj}Mj=1. We

require finding the NN in P for every point q∈Q, s.t.,

NN(q, P ) = argminp∈P d(q, p) for some given distance

function d(q, p). The first property our measures are based

on is the diversity of points p∈P that were found as NNs.

An intuitive way to measure diversity is to count the

number of unique NNs. We define the Diversity Similar-

ity (DIS) as:

DIS
Q→P

= c |{pi∈P : ∃ qj ∈Q, NN(qj , P )= pi}| (1)

where c=1/min {M,N} is a normalization factor and |{·}|
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(a) (b)

(c) (d) (e)

Figure 2: Deformable Diversity: A face template (c),

marked in green (a), is searched in a target image (b). The

face undergoes a complex transformation: background clut-

ter, out of plain rotation, and non-rigid deformation. We

zoom on a bad target window (e) and on the best target win-

dow (d), both are also marked by color in (b). The blue

arrows are samples of the NN field: their start point marks

a target patch while the end point marks the position of its

NN in the template. The bad target (e), shows low diversity

of NN patches with large deformation (long arrows). Con-

versely, the best target (d) shows high diversity and small

deformation (short arrows). Best viewed on screen.

denotes group size.

To provide further intuition as to why DIS captures the

similarity between two sets of points we provide an illustra-

tion in 2D in Figure 5. Figure 5a demonstrates that when the

distributions of points in P and Q are similar, most of the

points q∈Q have a unique NN p∈P implying a high DIS

value. Conversely, when P and Q are distributed differ-

ently, as illustrated in Figure 5b, DIS is low. This is since

in areas where Q is sparse while P is dense most of the

points in P are not NN of any q. In addition, in areas where

Q is dense while P is sparse most of the points in Q share

the same NNs. In both cases, since the number of points is

finite, the overall contribution to DIS is low.

3.2. Deformable Diversity Similarity (DDIS)

While capturing well diversity, DIS does not explicitly

consider the deformation field. Accounting for the amount

of deformation is important since while non-rigid transfor-

mations should be allowed, they should also be restricted to

give preference to plausible deformations of real objects.

In order to integrate a penalty on large deformations we

make two modifications to the way we measure diversity.

First, to obtain an explicit representation of the deformation

field we distinguish between the appearance and the posi-

tion of each patch and treat them separately. Second, we

propose a different way to measure diversity, that enables

considering the deformation amount.

Let pa denote the appearance and pl the location of

patch p (and similarly for q). We find the appearance

based NN pi for every point qj s.t. pi = NNa(qj , P ) =
argminp∈P d(qaj , p

a) for some given distance d(qa, pa).
The location distance between a point qj and its NNa is de-

noted by rj=d(qlj , p
l
i). To quantify the amount of diversity

as a function of the NN field we define κ(pi) as the number

of patches q∈Q whose NNa is pi:

κ(pi) = |{q ∈ Q : NNa(q, P ) = pi}| (2)

Finally, we define the Deformable Diversity Similarity

(DDIS) by aiming for high diversity and small deformation:

DDIS
Q→P

= c
∑

qj∈Q

1

rj+1
· exp

(

1− κ(NNa(qj , P ))

)

(3)

where c = 1/min {M,N} is a normalization factor.

This definition can be viewed as a sum of contributions

over the points qj . When a point qj has a unique NN, then

κ(NNa(qj , P )) = 1 and the exponent reaches its maximum

value of 1. Conversely, when the NN of qj is shared by

many other points, then κ(NNa(qj , P )) is large, the expo-

nent value is low and the overall contribution of qj to the

similarity is low. In addition, the contribution of every point

is inversely weighted by the length rj of its implied defor-

mation vector.

DDIS possesses several properties that make it attractive:

(1) it relies mostly on a subset of matches, i.e., points that

have distinct NNs. Points that share NNs will have less in-

fluence on the score. (2) DDIS does not require any prior

knowledge on the data or its underlying deformation. (3)

DDIS analyses the NN field, rather than using the actual

distance values. These properties allow DDIS to overcome

challenges such as background clutter, occlusions, and non-

rigid deformations.

3.3. DIS as simplified DDIS

DIS and DDIS capture diversity in two different ways.

DIS simply counts unique matches in P , while DDIS mea-

sures exponentially the distinctiveness of each NN match

of patches in Q. Nonetheless, we next show that DIS and

DDIS are highly related.

We start by ignoring the deformations by setting rj = 0
in (3) and simplifying (without loss of generality) by assum-

ing M =N . We denote by 1/k the fraction of points p∈P
that are NNs of at least one point in Q. Both DIS and DDIS

reach their maximum value of 1 when k = 1, i.e., when

κ(pi)=1 ∀pi∈P . When k=N , i.e., all q∈Q share a single

NN, both scores reach their minimum value, DIS=1/N and

DDIS=exp(1−N).
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Figure 3: DIS as simplified DDIS: Plots of DIS and DDIS

(with rj =0, M =N ) as a function of k, where N/k points

in P are NNs of some q, and for all of them κ(pi) = k.

Both DIS and DDIS are maximal at k = 1 and decrease

monotonically, reaching their minimal value when k = N .

Further intuition can be derived from the case of uniform

distribution of NN matches, i.e., when only N/k points

in P are NNs of some q, and for all of them κ(pi) = k.

In this case DIS = (N/k)/N = 1/k, and DDIS =
1/N

∑

qj∈Q exp(1−k)=exp(1−k). Both measures share

extrema points between which they drop monotonically as

a function of k, with DDIS decreasing faster due to its ex-

ponential nature. This is illustrated in Figure 3.

3.4. Statistical Analysis

To further cement our assertions that diversity captures

the similarity between two distributions, we provide statis-

tical analysis, similar to that presented in [4, 18]. Our goal

is to show that the expectation of DIS and DDIS is maximal

when the points in both sets are drawn from the same dis-

tribution, and drops sharply as the distance between the two

distributions increases. We do that via a simple 1D mathe-

matical model, in which an image window is modeled as a

set of points drawn from a general distribution.

Appendix A presents derivations of E[DIS] (Expected

value of DIS) when the points are drawn from two given

distributions. The expression for E[DIS] does not have a

closed form solution, but it can be solved numerically for

selected underlying distributions. Therefore, we adopt the

same setup as [4] where P and Q are assumed to be Gaus-

sian distributions, which are often used as simple statistical

models of image patches. We then use Monte-Carlo inte-

gration to approximate the Expectation for discrete choices

of parameters µQ and σQ. For BBS and SSD we adopt the

derivations in [4], where E[BBS] was also approximated

via Monte-Carlo integration and E[SSD] is normalized.

Figure 4 presents the resulting approximated expected

values. It can be seen that DIS is likely to be maximized

when the distributions are the same, and falls rapidly when

the distributions differ from each other. In addition it is

evident that DIS and BBS present highly similar behaviors.

Finally, similar to [4], one can show that this holds also for

the multi-dimensional case.

For DDIS we cannot derive nice expressions for its Ex-

pectation E[DDIS]. Instead, we use simulations to approx-

imate it. The simulation needs to consider also locations

(a) E[SSD] (b) E[BBS] (c) E[DIS]

(d) E[DDIS]

small deformation

(e) E[DDIS]

large deformation

(f) E[DDIS]

ignore deformation

Figure 4: Expected behavior in the 1D Gaussian case:

Following [4] two point sets, P and Q, are generated

by sampling N = M = 100 points from N(0; 1), and

N(µQ;σQ), respectively, with [µQ, σQ]∈[0, 10]. (Top) The

approximated expectation of SSD (a), BBS (b) and DIS (c)

as a function of µQ and σQ suggest that BBS and DIS be-

have similarly and drop much more rapidly than SSD as

the distributions move apart. (Bottom) The approximated

expectation of DDIS when the mean deformation is small

(d), large (e), and ignored (f) ((d) and (e) are color scaled

jointly). It can be seen that small deformation fields corre-

spond to a sharper peak in the expectation, while for large

deformations the similarity is always low.

to quantify the amount of deformation, rj , in (3). When

rj = 0 the expectation is similar to that of BBS and DIS.

For rj 6= 0 we simulate two cases: (i) Small deformation:

We sort the points in each set based on their appearance co-

ordinate, and take as position their index in the sorted list.

When the distributions are different the diversity is very low

anyhow. But when the distributions are similar, the sorting

results in points and their NN having a similar index, which

corresponds to small deformation. (ii) Large deformation:

We sort the points of one set in descending order and the

other set in ascending order, again taking as position their

index in the sorted list. When the distributions are similar,

the sorting results in points and their NN having a different

index, which corresponds to large deformation. Figure 4

shows that for small deformation E[DDIS] drops sharply

as the distributions become more different. For large defor-

mations it is always low, as desired, since even when the ap-

pearances are similar, if the geometric deformation is large

the overall similarity between the point sets is low.

4. Comparison to BBS

Our measures bare resemblance to BBS – all rely on NN

matches between two sets of points. There are, however,

178



(a) similar distributions (b) different distributions

Figure 5: Intuition for DIS and BBS: For each point q∈Q
we draw a red arrow pointing at its NN p ∈ P . If q and p are

also best-buddies-pair (BBP, see section 4.1), we change

the red arrow to a green line. DIS counts blue triangles

that are pointed to by either a red arrow or a green line.

BBS counts green lines. (a) P and Q are similarly dis-

tributed, hence, many p’s are NN of some q and there are

many BBPs. Here DIS = BBS = 8. (b) P and Q have

different distributions. A single q among dense p’s or a sin-

gle p among dense q’s contribute 1 to both DIS and BBS.

Occasionally, there is a unique NN match between Q and

P that is not a BBP. Since the distributions of P and Q are

different both DIS and BBS are relatively low, DIS=3 and

BBS=2.

two key differences: (i) the way in which similarity between

the two sets is measured, and, (ii) the penalty on the amount

of spatial deformation. We next analyze the implications of

these differences.

4.1. You Only Need One Direction

The key idea behind the bi-directional similarity ap-

proaches of [4, 18, 24] is that robust matching requires bi-

directional feature correspondences. Our unilateral mea-

sures contradict this claim. In fact, an observation we make

is that, Diversity provides a good approximation to BBS.

The analysis we present is for DIS, since it is simpler than

DDIS and does not incorporate deformation, making the

comparison to BBS more fair and direct.

Recall that BBS counts the number of bi-directional NN

matches between the target and template. A pair of points

pi∈P and qj∈Q are considered a best-buddies-pair (BBP)

if pi is the NN of qj , and qj is the NN of pi. BBS counts the

number of BBPs as a measure of similarity between P and

Q. Clearly, the bilateral nature of BBS is wasteful in terms

of computations, compared to the unilateral DDIS and DIS.

DIS and BBS are defined differently, however, since the

number of patches in both target and template is finite, DIS

provides a good approximation to BBS. As illustrated in

Figure 5a when the distributions of points in P and Q are

similar, many of the NN relations are bi-directional. This

implies that the values of BBS and DIS are very similar. In

the extreme case when the template and target are identical,

every point q has a unique NN p= q and they form a BBP.

In this case DIS=BBS exactly.

DIS and BBS behave similarly also when the distribu-

tions are different, as illustrated in Figure 5b. In areas where

P is sparse and Q is dense we get multiple points q∈Q that

share the same NN p∈P . At most one of them forms a BBP

and their joint contribution to both DIS and BBS is 1. Since

the number of points in P and Q is finite, this implies that

there are other areas where P is dense and Q is sparse. In

these areas there are many points in P that are not NN of

any q∈Q, and have zero contribution to both DIS and BBS.

Our observations are in line with the Expectation anal-

ysis of Figure 4. In addition, our experiments (Sec-

tion 7) show that DIS and BBS achieve comparable tem-

plate matching accuracy.

4.2. Explicit vs. Implicit Deformation Modeling

The need to penalize large deformations was noted

in [4, 18]. This was done implicitly by adding the xy coor-

dinates to the feature vectors when searching for NNs. The

distance between a pair of points is taken as a weighted lin-

ear combination of their appearance and position difference.

This is different from DDIS that considers only appearance

for NN matching and explicitly penalizes the deformation

in the obtained NN field. Our approach has two benefits: (i)

improved runtime, and (ii) higher detection accuracy.

Using only appearance for NN matching significantly re-

duces runtime since while every image patch is shared by

many sub-windows, its xy coordinates are different in each

of them. This implies that the NN field needs to be com-

puted for each image sub-window separately. Conversely,

working in appearance space allows us to perform a single

NN search per image patch. In Section 6 we analyze the

benefits in terms of computational complexity.

Separating between appearance and position also leads

to more accurate template localization. Overlapping target

windows with very similar appearance could lead to very

similar similarity scores. DDIS chooses the window imply-

ing less deformations. Our experiments indicated that this

is important and improves the localization accuracy.

5. Implementation

To utilize DDIS for template matching in images, we fol-

low the traditional raster scan approach. Our algorithm gets

as input a target image S and a template T . Its output is a

frame placing T within S. We denote the width of T by Tw

and its height Th, similarly for S. Each template sized sub-

window W∈S is compared to T . We extract from T and

W feature vectors, as described below, yielding sets P and

Q respectively. We use the Euclidean distance (L2) to com-

pare appearance features pa and qa. The deformation length

rj is the Euclidean distance between the xy coordinates pl

and ql. Our implementation consists of 4 phases:

0. Feature extraction: We experimented with two forms

of appearance feature, color and deep-features. As color

features we set pa and qa as vectorized RGB pixel values

of 3×3 overlapping patches. To obtain deep-features we
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used the popular VGG-Deep-Net [25]. More specifically,

we take feature maps from layers conv1 2, conv3 4 and

conv4 4 (akin to the suggestion in [14] for object tracking).

We forsake the higher layers since we found the low spatial

resolution inaccurate. The features maps were normalized

to zero mean and unit standard deviation, and then upscaled,

via bi-linear interpolation, to reach the original image size.

1. NN search: We find for each feature vector in S, its

approximate NN in the template T . We use TreeCANN [15]

with PCA dimensionality reduction to 9 dimensions, kd-tree

approximation parameter ǫ = 2, dense search (gS = gT =
1), and window parameter wS = 3, wT = 5.

2. Similarity map calculation: For each target image

pixel (ignoring boundary pixels) we compute the similarity

between its surrounding sub-window W and the template

T . For each W , we first compute κ(pi), ∀pi∈P as defined

in (2). Since subsequent windows have many overlaps, the

computation of κ needs only update the removed and added

features with respect to the previous sub-window. We then

calculate DDIS as defined in (3).

3. Target localization: Finally, the template location is

that with maximum score. Before taking the maximum, we

smooth the similarity map with a uniform kernel of size
Tw

3 ×Th

3 , to remove spurious isolated peaks.

6. Complexity

The sets P and Q consist of features from all locations in

T and W , receptively. This implies |P |= |Q|= Tw ·Th , l.
The number of possible sub-windows1 is Sw·Sh , L. Re-

call that d denotes the feature vectors length. For color

features d equals the size of the patch ×3 while for deep-

features it is determined by the feature map dimension.

Next, we analyze the complexity of steps (1-3).

1. NN search: TreeCANN consists of two stages. In

the first, the dimension of all template points is reduced

from d to d′ in O(dl) and a k-d tree is built in O(d′llogl).
The second stage performs the queries. Each query con-

sists of dimensionality reduction O(d), a search in the k-d

tree O(logl) (on average), and a propagation phase which

leverages spatial coherency O(d). The overall complexity

for finding the Approximate NN for all the features in the

target image S is O(d′llogl+L(d+ logl)) on average. The

memory consumption is O(l).
2. Similarity map calculation: Assuming for simplicity

that Tw = Th =
√
l, the update of κ(p) takes O(

√
l) op-

erations, for any W except for the first one. Next, DDIS

is calculated with O(l) operations. Given that the over-

all number of sub-windows is L this step’s complexity is

O
(

L(l+
√
l)
)

≡O
(

Ll
)

. The memory consumption for this

stage is O(l) which is the size of a table holding κ(p).

1In practice, we exclude patches that are not fully inside the template

or the sub-window, but these are negligible for our complexity analysis.

3. Target localization: Averaging the similarity map is

done efficiently using an integral image in O(L). To find the

maxima location another swipe over the image is needed,

which takes O(L).
Putting it all together, we get that the overall complexity

of Template Matching with DDIS is O(d′llogl+Ll) where

we omitted O(L(d+ logl)) since d and l are expected to be

of the same order for small T and d≪l for large T .

Comparison to BBS One of the benefits of DDIS with

respect to BBS is that it requires only unilateral matches.

The benefit in terms of complexity can now be made clear.

According to [18], the BBS complexity using deep features

is O(Ll4d) and for color features it is O(Ll2d) on aver-

age. The latter case uses heavy caching which consumes

O(l2
√
L) memory (assuming Sw = Sh =

√
L).

7. Empirical Evaluation

Our experimental setup follows that of [18] that created

a benchmark by sampling frames from video sequences an-

notated with bounding-boxes for object tracking [28]. The

videos present a variety of challenges: complex deforma-

tions, luminance changes, scale differences, out-of-plane

rotations, occlusion and more. The benchmark consists

of three data-sets, generated by sampling {270, 270, 254}
pairs of frames with a constant frame (time) difference

dFrame={25, 50, 100}, producing increasingly challeng-

ing data-sets, and overall, a challenging benchmark for tem-

plate matching.

For each pair of frames, one is used to define the template

as the annotated ground-truth box, while the second is used

as a target image. As commonly done in object tracking, the

overlap between the detection result and the ground-truth

annotation of the target is taken as a measure of accuracy:

Accuracy = |Rest∩Rtruth|
|Rest∪Rtruth|

where |·| counts the number of

pixels in a region and Rtruth and Rest are the ground truth

and estimated rectangles, locating T in S.

Quantitative Evaluation: We compare DDIS and DIS

to BBS, BDS, SSD, SAD and NCC with both color and

deep features. For BBS and DIS we use the exact same

setup as in [18], that is, 3×3 non-overlapping patches rep-

resented in xyHSV space. In Figure 6 we plot for each

data-set and method a success rate curve. It can be seen

from the Area-Under-Curve (AUC) scores in Table 6d that

DDIS is significantly more successful than all previous

methods. Furthermore, DDIS with our simplistic color

features outperforms all other methods with either color

or deep features. When using Deep features, DDIS im-

proves over BBS with margins of ≈ 11%, 15%, 8% for the

three data-sets. When using color features the margins are

≈ 10%, 16%, 21%.

Qualitative Evaluation: Figure 8 displays several de-

tection results on challenging examples, taken from the
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(a) dFrame = 25 (b) dFrame = 50 (c) dFrame = 100

Method
Dataset

Mean
25 50 100

DDIS - D 0.679 0.583 0.571 0.611

DDIS - C 0.650 0.590 0.540 0.593

DIS - D 0.630 0.549 0.518 0.566

BBS - D 0.598 0.514 0.532 0.548

SSD - D 0.584 0.512 0.519 0.538

SAD - D 0.582 0.507 0.513 0.534

NCC - D 0.581 0.509 0.491 0.527

BBS - C 0.590 0.505 0.445 0.513

DIS - C 0.561 0.501 0.446 0.503

BDS - C 0.564 0.471 0.425 0.486

BDS - D 0.513 0.447 0.401 0.454

SAD - C 0.516 0.412 0.365 0.431

NCC - C 0.483 0.398 0.359 0.413

SSD - C 0.427 0.363 0.308 0.366

D=deep features
C=color space

(d) AUC results

Figure 6: Template matching accuracy: Evaluation on the benchmark of [18]: 270 template-image pairs with dFrame ∈
{25, 50, 100}. DDIS outperforms competing methods as can be seen in the ROC curves (a)-(c) showing the fraction of

image-pairs with Accuracy > Threshold∈[0, 1]. The corresponding Area-under-curve (AUC) scores are presented in the

table in (d). For all methods D stands for deep features while C stands for color. DDIS with deep features provides the best

results. DDIS with color features comes in second, outperforming other methods even when they use deep-features.

web, that include occlusions, significant deformations,

background clutter and blur. We compare DDIS and DIS

to BBS – the current state-of-the-art. It is evident from the

detection likelihood maps that DIS and BBS share a similar

behavior, supporting our suggestion that unilateral match-

ing suffices to capture similarity. DDIS, on the other hand,

accounts also for deformations, hence, it presents cleaner

maps, with fewer distractors.

Runtime: Our implementation is in MATLAB/c++ and

all experiments were performed on a 32GB RAM, Intel i7

quad-core machine. The average(std) runtime for an image-

pair in the benchmark, using color features is 0.86s(0.59),
depending on the template size. For comparison, the av-

erage(std) time for BBS is orders of magnitude longer:

35.47s(80.36). The max and min runtimes of DDIS are

3.44s and 0.06s, respectively, and for BBS are 493s and

0.14s, respectively. Detailed results for dFrame = 25 are

presented in Figure 7. This matches our complexity analy-

sis that showed that DDIS is less affected by the template

Figure 7: Runtime: Each point in the scatter plot marks

the runtime for one of the 270 image-pairs in the dataset

(dFrame = 25). For DDIS the runtime is always small

while for BBS it becomes very long as the template and

image size increase.

size, while BBS dependence on l is polynomial.

8. Conclusions

We introduced a new approach for template matching in

the wild, based on properties of the NN field of matches

between target and template features. Our method suggests

not only improvement in terms of detection accuracy, but

also in terms of computational complexity. A drawback of

our algorithm is not dealing with significant scale change

of the object. This could possibly be addressed, by com-

puting the likelihood maps over multiple scales. A future

research direction is to explore consideration of more than

the first NN for each patch. This could be beneficial to han-

dle repetitive textures.

An important observation, our analysis makes, is that one

does not necessarily need bi-directional matches to compute

similarity. This raises questions regarding the celebrated bi-

directional-similarity approach, which provided excellent

results, but was heavy to compute.
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A. Appendix: DIS Expectation Term

In this appendix we develop mathematical expressions

for the expectation of DIS in R
1. We start by rewriting DIS

in a form convenient for our derivations:

DIS
Q→P

=
1

N
·

N
∑

i=1

disi(Q,P )

disi(Q,P ) = I [{qj ∈Q : NN(qj , P )= pi} 6= ∅]
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Figure 8: Qualitative assessment: The template marked in green (a), is detected in the target image (b) using three Template

Matching methods: BBS, DIS and DDIS (all using the RGB features). (c-e) The corresponding detection likelihood maps

show that DDIS yields more peaked maps that more robustly identify the template. Going over the rows from top to bottom:

(1) BBS prefers a target location where the background matches the template over the location where the motorcycle is at.

This happens because the motorcycle deforms and hence there are few bi-directional correspondences between its template

appearance and target appearance. DIS and DDIS use more information – they consider all the one-directional correspon-

dences. Therefore, they locate the motorcycle correctly. (2) The trophy won by the band One Direction is fully seen in the

template, but occluded in the target. Nonetheless, DDIS finds it (as Section 4.1 said, we only need one direction...). (3)

Complex deformations together with occlusion confuse both DIS and BBS, but not DDIS.

where I is an indicator function and disi(Q,P ) indicates

whether pi is chosen as a NN match at least once.

We proceed with the expectation:

E

[

DIS
Q→P

]

=
1

N

N
∑

i=1

E [disi(Q,P )] = E [disk(Q,P )]

(4)

where the last step is since samples Q and P are drawn in-

dependently, so all indexes behave alike and we can choose

some arbitrary index k. Continuing with the expectation of

the indicator function, we have:

E [disk(Q,P )] = Pr {disk(Q,P ) = 1}
= 1− Pr {disk(Q,P )=0} (5)

Claim:

Pr {disi(Q,P )=0} = (6)

=

∫

p1

· · ·
∫

pN

(FQ(p
−
i ) + 1− FQ(p

+
i ))

N ·
N
∏

k=1

fP (pk)dpk

where FQ(x) = Pr {q ≤ x} and FP (x) = Pr {p ≤ x} are

the CDF’s of Q and P, respectively. p+i , p
−
i are defined by:

p+i = pi + min
pk∈P∪{+∞}

pk>pi

|pk − pi|/2

p−i = pi − min
pk∈P∪{−∞}

pk<pi

|pk − pi|/2 (7)

Proof: Given a known set of samples P, the probability that

the NN match for a sampled q∼Q is NOT pi is:

Pr {NN(q, P ) 6=pi|P} =

∫ ∞

−∞

I [NN(q, P ) 6=pi] fQ(q)dq

=

∫ p
−

i

−∞

fQ(q)dq +

∫ ∞

p
+

i

fQ(q)dq

= FQ(p
−
i ) + 1− FQ(p

+
i ) (8)

where we split R into two ranges where the indicator is not

zero. Since Q consists of N independently sampled points,

the probability that pi is not a NN match for any q∈Q when

Q is sampled and P is known, is:

Pr {disi(Q,P ) = 0|P} =
[

Pr {NN(q, P ) 6=pi|P}
]N

(9)

Finally, since all of the points are sampled independently,

we have:

Pr {disi(Q,P )=0} = (10)

=

∫

p1

· · ·
∫

pN

Pr {disi(Q,P ) = 0|P} ·
N
∏

k=1

fP (pk)dpk

Substituting equations (8) and (9) in (10) results in (6). �
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