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From just two Nexus N5 cellphone photos exhibiting tiny defocus blur and significant inter-frame motion we jointlyFigure 1: From just two Nexus N5 cellphone photos exhibiting tiny defocus blur and significant inter-frame motion we jointly estimate

likelihood functions for local depth and 2D flow. These likelihoods are computed independently from very small, 9× 9-pixel patches (see

inset and zoom far into the electronic copy for actual size). Of these, only a sparse subset is associated with high-confidence depths and

flows (shown color-coded in the middle). We use these very sparse local estimates to infer dense depth and flow in a way that yields sharp

boundaries and respects depth-order relations (rightmost images). Note the sharp boundaries and thin structures preserved in the flower’s

dense depth map; the spatially-varying leaf deformations captured in its flow map; the depth and flow recovered from a pair of selfies with

little texture; and the flow around the subject’s jaw, caused by a slight change in facial expression.

Abstract

We consider the problem of two-frame depth from defocus

in conditions unsuitable for existing methods yet typical of

everyday photography: a non-stationary scene, a handheld

cellphone camera, a small aperture, and sparse scene tex-

ture. The key idea of our approach is to combine local

estimation of depth and flow in very small patches with a

global analysis of image content—3D surfaces, deforma-

tions, figure-ground relations, textures. To enable local esti-

mation we (1) derive novel defocus-equalization filters that

induce brightness constancy across frames and (2) impose

a tight upper bound on defocus blur—just three pixels in

radius—by appropriately refocusing the camera for the sec-

ond input frame. For global analysis we use a novel spline-

based scene representation that can propagate depth and

flow across large irregularly-shaped regions. Our experi-

ments show that this combination preserves sharp bound-

aries and yields good depth and flow maps in the face of

significant noise, non-rigidity, and data sparsity.

1. Introduction

The technique of depth from defocus—recovering a depth
map from two differently-focused images of a scene—has
been studied extensively in computer vision for almost three
decades [1, 9, 19, 22, 31, 36]. Although the basic the-
ory behind this technique is well known, depth from de-
focus (DFD) has found limited use in practice because it is
broadly understood to require static scenes, dense surface
texture, and images with significant defocus blur. These

assumptions rarely hold “in the wild,” where cameras are
handheld and often on a cellphone; lens apertures are small;
surfaces in the scene may move or deform; and scene tex-
ture is generally unconstrained.

In this paper we show how to compute DFD under such
challenging conditions from minimal input: two cell-
phone photos of an unrestricted scene, having visually-
imperceptible defocus blur and captured in rapid succes-
sion (Figure 1). This approach stands in sharp contrast to
recent passive depth estimation techniques for mobile cam-
eras (e.g., depth from focal stacks [24, 26] and structure
from motion [8, 35]) which require dozens of photos and
prolonged movement to capture a reliable depth map, and
cannot handle non-rigid scene deformation.

More specifically, we tackle the following challenges:
– tiny blur: cellphone cameras have small apertures that

produce very little defocus blur relative to the image size;
– scene deformation: since motion between a pair of shots

is often unavoidable, 2D flow estimation and DFD are
tightly coupled and cannot be solved independently;

– sparse defocus: defocus blur is only observable in the
neighborhood of strong textures and brightness edges,
both of which may be sparse in a general scene;

– depth discontinuities: thin structures and depth discon-
tinuities occur often and must be handled robustly;

– figure-ground ambiguities: even when defocus can be
measured at an isolated brightness edge, it may not fully
constrain local scene geometry (e.g., surface markings
and depth discontinuities are indistinguishable).
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scene camera ISO depth range motion type flow magnitude

keyboard Samsung N/A 1cm-2m rigid < 5 pixels

balls Samsung N/A 1cm-2m rigid < 5 pixels

fruit Samsung N/A 5cm-3m rigid < 5 pixels

spike Nexus5 100 8cm-30cm non-rigid < 80 pixels

face Nexus5 180 20cm-1 non-rigid < 70 pixels

bagels Nexus5 222 10cm-30cm rigid < 80pixels

flower Nexus5 100 10cm-30cm piecewise rigid < 80 pixels

bell Nexus5 143 15cm-80cm piecewise rigid < 60pixels

potrait Nexus5 180 20cm-1 non-rigid < 150 pixels

patio Canon7D 100 6m-1 piecewise rigid < 50 pixels

stairs Canon7D 100 2m-1 non-rigid < 70 pixels

Table 1: Scenes, cameras and imaging conditions (Figures 1,9,10).

We rely on three novel contributions to achieve this goal.
First, and foremost, we observe that rather than being a hin-
drance, tiny blur can be turned to an advantage because it
enables extremely local processing, preserves high spatial
frequencies and offers near-optimal depth discrimination.
We exploit this observation by controlling camera focus to
enforce the tiny blur condition: the radius of the defocus
blur kernel is at most three pixels for the scene points we
wish to reconstruct. This upper bound on defocus cov-
ers a wide range of near-field and far-field imaging con-
ditions (Table 1) and is only slightly higher than the opti-
mal blur kernels implied by Schechner and Kiriyati’s early
work [23]. This makes it possible to perform local DFD and
flow estimation by analyzing tiny patches: just 9× 9 pixels
in size in our megapixel-sized input images.

Second, we derive a novel quadratic likelihood function
over depth and 2D flow that correctly accounts for dif-
ferences in defocus and illumination for each input patch.
Computationally, the key step involves applying depth-

specific defocus equalization filters to the input images to
ensure that (1) the two filtered images have exactly the same
blur if a depth hypothesis is correct and (2) the likelihood
function is not biased toward depths with large blur kernels.
This leads to a “local DFD” procedure that can be viewed
as a form of patch-based translational flow estimation [4]
with a hidden depth variable. Our local DFD method is in
contrast to prior work that requires large textured regions to
estimate 3D flow reliably [1], assumes the motion is purely
due to parallax [16, 29] or estimates coarse 2D flow from
focal stacks without accounting for defocus [24, 26]. Our
method needs far fewer images; does not require inferring
a sharp image; does not impose a global motion model; and
allows us to keep track of spatially-varying uncertainty in
depth and flow (i.e., due to variations in frequency content
from patch to patch). For static scenes and static illumina-
tion our local DFD likelihood function reduces to that of
Zhou and Nayar’s [36], with a flat prior over frequencies.

Third, we conduct a global analysis of image content—
textures, 3D surfaces, surface deformations, surface bound-
aries, figure-ground relations—to turn locally-computed
likelihoods into dense flow and depth maps. This approach
has been used before for depth cues other than defocus [5–
7, 15, 30, 33, 34]. However, the noise, sparsity and am-
biguities inherent in DFD require fusion over far greater
image distances and irregularly-shaped regions, and require
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Figure 2: Basic components of our method. Arrows indicate the

quantities contributing to each likelihood function. See Figure 7

for the definition of the scene segmentation and spline parameters.

explicit reasoning about figure-ground relations. We intro-
duce a spline-based piecewise-continuous prior for this pur-
pose and use discrete-continuous energy minimization to
compute maximum-likelihood dense depth and flow. This
formulation can be viewed as an extension of semi-dense
methods [30, 33, 34] that handles far sparser depth/flow
data, accounts for spatially-varying data uncertainty, and
does not rely on square-shaped regions for fusion [7]. More-
over, unlike variational DFD methods [10, 18, 21] it enables
reasoning about which pixels “share the same surface” [9].

2. Overview

Our method uses two input images taken under controlled
focus. The focus setting of the first image is chosen freely;
the focus of the second is chosen to satisfy the tiny blur
condition (Section 3.1). This functionality is supported by
many cellphone and single-reflex (SLR) cameras.1

We infer the depth map of the scene and the optical flow
field between the two images by optimizing over a set of
variables organized in four layers of abstraction (Figure 2).
At the lowest level, we represent the depth and flow at every
9 × 9 patch in the first input image. This defines a patch-
based depth map d and flow field v. The depth and flow
of each patch is connected to the input images via a local
likelihood term Q discussed in Section 3. At the next level
of abstraction we represent the depth and flow of pixels in-
dividually. This defines a second, pixel-based depth map
d0 and flow field v0 that are linked probabilistically to the
patch-based depth and flow via a local prior term L. Upon
convergence, d0 and v0 are the output of our method.

The pixel-based depth and flow are obtained by evaluating a
piecewise continuous scene model M on the discrete pixel
grid. This model is discussed in Section 4. Each continuous
segment in M corresponds to a smooth surface in the scene,
and is expressed as two splines: one for describing depth as
a mixture of planes with bounded spatial support, and one
for describing flow as a mixture of affine flow fields. The
top layer Z represents the global scene segmentation and
consists of (1) a pixel ownership map s that maps pixels to
the segment they belong to; (2) a plane ownership map t

1 We use the Canon EDSDK (kEdsCameraCommand DriveLensEvf) and

the Android camera2 API (CaptureRequest.LENS FOCUS DISTANCE).
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(a) (c) (e)

(b) (d) (f)

Figure 3: Comparison to alternative local methods (please zoom

in). Input images are as in Figure 1 (top row). (a) Depth from the

DFD method of [36]. (b) Flow from the method of [3]. (c),(d) Lo-

cal depth and flow obtained with the same optimization and input

parameters as Figure 1 except that filters g1, g2 are replaced with

those of [25]. (e),(f) Local DFD produces far better results.

that maps planes in the spline model to the segment they
belong to; and (3) a matrix O that describes the occlusion
relationship between pairs of segments.

The four levels are coupled probabilistically via two like-
lihood functions, EDFD and Eprior, that capture bottom-up
and top-down constraints, respectively. This leads to the
following general optimization problem:

min
P,M,Z

[ EDFD(P,S(M),Z) + Eprior(M,Z) ] . (1)

We discuss these likelihood functions in the next two
sections. Full details on optimizing Eq. (1) are in [27]. Our
code and data can be found in [28].

3. Depth and Flow by Local DFD

No existing method can solve DFD when the scene deforms.
In such cases it is not possible to estimate 2D flow without
analyzing defocus (brightness constancy violated) and it
is not possible to analyze defocus without estimating flow
(pixelwise correspondence violated). See Figure 3(a) and (b).

We begin with the problem of estimating the joint likelihood
of a depth and flow hypothesis (d,v) in a small patch Ω(p)
centered at pixel p of the first input image. In the following
we use homogeneous 2D coordinates to represent p and ex-
press its depth in units of diopters, i.e., units of reciprocal
distance from the lens aperture.

Thin-lens model As with most work on DFD, we as-
sume defocus blur is governed by the thin-lens model (Fig-
ure 4(a)). This model has four main parameters: the focal
length F of the lens; the radius of its circular aperture; and
the focus settings f1 and f2 of the two input images, ex-
pressed as distances from the aperture to each sensor plane.
Under this model, an isolated scene point at depth d will
appear as a disk in each input image whose radius is pro-
portional to both d and the image’s focus setting. This disk
defines the point’s blur kernel in each image, which we de-
note by kd1 and kd2, respectively. We assume that the thin-
lens parameters are known from camera calibration and that
the kernels kd1, k

d
2 can be computed for any depth d. See [27]

for their analytical expressions and calibration procedure.
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Figure 4: (a) Geometry of the thin-lens model. A scene point at

depth d is in focus at distance fd behind the lens. Its blur kernel

in the input images has radius r1 and r2, respectively. (b) Defocus

kernels and their associated defocus-equalization filters. These fil-

ters contain negative values and thus do not merely blur the input.

The blur kernels shown have radius 0.6 and 1.4 pixels, respec-

tively, and are inside the 9× 9-pixel patch we use for local DFD.

Image formation We consider the input images i1 and i2
to be proportional to sensor irradiance and to be corrupted
by additive i.i.d. Gaussian noise of known variance σ2

i .

Unbiased defocus-equalization filters A major barrier
to motion estimation across a pair of differently-focused
images is that the appearance of scene points will differ
across them. This violates the brightness constancy as-
sumption [1]. To overcome it, we derive two novel filters

gd1 and gd2 that yield a well-founded likelihood function for
depth and flow. In particular, we prove the following:

Proposition 1 If i1 and i2 are fronto-parallel image patches

related by a 2D translation v and an intensity scaling α that is

sufficiently close to one, the image error

(i1 ∗ g
d
1)(p)− α · (i2 ∗ g

d
2)(p+ v) (2)

follows the same distribution as the noise in i1 and i2. The defocus-

equalization filters gd1 and gd2 are defined as

gd1 =F−1⇥ F [kd
2]

/

q

F [kd
1]

2 + F [kd
2]

2
⇤

gd2 =F−1⇥ F [kd
1]

/

q

F [kd
1]

2 + F [kd
2]

2
⇤

(3)

where F [],F−1
⇥⇤

denote the Fourier transform and its inverse.

See [27] for a proof. Intuitively, the numerators F [kd2] and
F [kd1] in Eq. (3) ensure brightness constancy by convolving
each image with the blur kernel of the other. This is simi-
lar to previous blur equalization techniques [16, 20, 25, 32].
The novelty here is in the denominators in Eq. (3). These
guarantee that the difference of two defocus-equalized im-
ages has the same variance as the distribution of image
noise. This avoids frequency-based biases typical of exist-
ing methods (see Figures 3(c) and (d)).

Local likelihood term Q Proposition 1 leads directly to a
likelihood function for depth d and flow v that is just a sum
of squared differences:

− log Pr(i1, i2 | dp = d,vp = v) =

min
α

X

q2Ω(p)

[(i1 ∗ g
d
1)(q)− α · (i2 ∗ g

d
2)(q+ v)]2

2σ2
i

,
(4)

where dp and vp denote the value of the depth map d and
flow field v at pixel p. The unknown scalar α accounts for
illumination change. For any hypothesis (d,v), we compute
α analytically since the sum in Eq. (4) is quadratic in α.
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Figure 5: (a) Predicting depth uncertainty for three 9 × 9-pixel patches taken from the flower photo in Figure 1 (outlined in color on the

left). For each patch, we calculate the standard deviation of the defocus kernel’s maximum likelihood (ML) estimate as a function of the

ground-truth kernel. This amounts to computing the second derivative of Eq. (4) at the ML depth. The plots confirm our intuition that

defocus estimation should be much more precise near an edge (green patch) than on patches with weak (blue) or no (red) texture. (b)

Taking the Nexus N5’s lens parameters into account, it is possible to convert the plot in (a) into a prediction of actual distance errors to

expect from DFD on those patches. (c) Enforcing the tiny blur condition. We first focus at the desired distance (point on the x axis) and

then set the second focus to maximize the condition’s working range (see [27] for the analytic expression). The plots show the working

ranges of Schechner and Kiryati’s optimality condition (red) and of ours (red and pink).

Although evaluating the likelihood of any given hypothesis
(d,v) is straightforward, the likelihood in Eq. (4) is not an
analytical function of d and v. This makes global optimiza-
tion of Eq. (1) hard. To enable efficient inference, we evalu-
ate the likelihood function at 32 depth samples and 49 flow
samples around the maximum-likelihood estimates d⇤p and

v⇤
p of each patch, and fit the following quadratic function:

Qp(d,v) = σ
−2
p (d− d⇤

p)
2 + (v − v

⇤
p)

T
Σ

−1
p (v − v

⇤
p) + qp (5)

See [27] for details of the fitting algorithm. The advantage
of this approximation is that it gives an estimate of the depth
and flow uncertainty of each individual patch in the image:
for each pixel p, we obtain the depth variance σ2

p for patch

Ω(p), the covariance matrix Σp of its flow, and the likeli-
hood qp. An example is shown in Figures 5(a) and (b).

Local prior term L Each pixel p in the image belongs
to many overlapping patches, not just the one centered at
p. These patches may provide conflicting or mutually-
reinforcing estimates of depth and flow, may have differ-
ent variances and covariances (Eq. (5)), and some may even
span a depth discontinuity. These interactions must be taken
into account when assigning depths and flows to individual
pixels. We do this with a local smoothness prior between
pixels q inside a patch Ω(p):

Lqp(d,v, d
0,v0,Z) =

(

(d−d0)2

2σ2

d

+ |v−v
0|2

2σ2
v

if q ∈ Ωf (p)

τo otherwise
(6)

where d,v are the depth and flow of patch Ω(p); d0,v0 are
those of pixel q; Ωf (p) is the set of pixels in Ω(p) that lie
on the front-most surface according to the segmentation Z;
and τo is a constant that penalizes significant occlusions.

The bottom-up likelihood EDFD Together, the local like-
lihood term (Eq. (5)) and local prior term (Eq. (6)) yield the
likelihood of the pixel-based depth and flow map:

EDFD(P,S,Z) =
X

p

min(Qp(dp,vp), τi)
| {z }

local likelihood term

+
X

p

X

q2Ω(p)

Lqp(dp,vp, d0p,v
0
p
,Z)

| {z }
local prior term

, (7)

where the outer summations are over all image pixels.

Here τi is a constant that reduces the influence of “outlier
patches,” i.e., patches that contain pixels with very different
depth or flow estimates.

3.1. The Tiny Blur Condition

Our bottom-up likelihood function makes no assumptions
about the size of the blur kernel or the size of image patches.
DFD accuracy, however, does depend on them being very
small. To enforce this condition, we actively control the
camera’s focus setting (Figure 5(c)).

This is justified on both theoretical and empirical grounds.
On the theory side, Schechner and Kiryati [23] have shown
that optimal depth discrimination for two-frame DFD is
achieved for defocus kernels kd1, k

d
2 that (1) differ by exactly

one pixel and (2) have an absolute size of less than two pix-
els. Therefore, refocusing to meet this condition produces
more accurate depths. On the practical side, small blurs
permit small patches for local DFD. This reduces the co-
occurrence of patches and depth discontinuities and allows
simple local priors, like that of Eq. (6), to handle them.

While elegant mathematically, Schechner and Kiryati’s con-
dition is too restrictive for everyday imaging. This is be-
cause it restricts the camera’s working range to a fairly nar-
row range of depths (Figure 5(c), red region). Thus, rather
than enforce it exactly, we relax it by choosing focus set-
tings that permit slightly larger kernels (up to three pixels

in radius) and induce a larger blur difference between them
(exactly two pixels). This extends the working range con-
siderably (Figure 5(c), red and pink region) without a big
impact on error. Figure 6 shows an example.

DFD accuracy degrades gracefully for points outside the
range of the tiny blur assumption. Points far outside it will
have a large estimated variance (σ2

p in Eq. (5)) and, as a
result, will not affect global DFD computations.

Choice of patch size We choose patch size to be 9×9, i.e.,
three times the maximum blur radius. This is large enough
to ensure validity of defocus-equalization filtering and small
enough to make within-patch depth discontinuities rare.
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input image ∆r = 0.5 ∆r = 1 ∆r = 2 ∆r = 3

Figure 6: Experimental validation of the tiny blur condition. We capture several DFD image pairs with the Nexus5 camera for a scene in

the range [30cm, 80cm], one of which is shown on the left. Depth maps on the right show the results of applying Local DFD to pairs of

focus settings that induce very similar (∆r ≤ 1) to fairly different (∆r = 3) blur kernels. The black pixels in the results of Local DFD

mark patches with low confidence, i.e., where the depth variance σ2
p is above a threshold. The number of confident patches is highest when

the tiny blur condition is met (∆r = 2) and degrades gracefully when the blur kernels deviate from it.
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Figure 7: Our spline-based scene representation. (a) Initial control points are shown as yellow dots in the image. (b) Each smooth segment

in the scene (black curves) owns a disjoint subset of these control points. Each control point Cn has an associated depth plane with

parameters Dn. The depth at a pixel is expressed as a weighted combination of the depths predicted by these planes. For any given pixel,

the weights are non-zero only for control points belonging to the pixel’s segment. (c) Spline and segmentation parameters are estimated

from the input images. The subscript n denotes the n-th row of a matrix or column vector. (d) Comparison of the flatness prior Eflat and the

segment-specific smoothing prior Esmo. In this example, the term Eflat does not enforce smoothness between planes D1 and D2 because

of the brightness edge between them. Strong smoothness is enforced in textureless areas, e.g., between planes D2 and D3. The term Esmo

enforces smoothness purely based on the segment labels, regardless of the distribution of pixel weights over different planes.

Effect on optical flow estimation Since any defocus in-
curs frequency loss, flow estimation is optimal when no
aliasing occurs and when both blur radii r1=r2=0. But
DFD is not possible then. Theoretical analysis of the opti-
mal r1, r2 thus requires trading off loss in depth accuracy
against loss in flow accuracy. Ultimately, the optimal trade-
off will be application specific. In principle, both flow and
depth can be estimated well when r1, r2 are small, since
DFD reliability depends on high frequencies too [23].

4. Global DFD

We now turn to the problem of representing depth and flow
in a way that allows propagation of noisy likelihoods over
large and irregularly-shaped regions.

Spline-based scene representation We represent the
scene using four geometric quantities: (1) a set of N control
points distributed over the image plane (Figure 7(a)); (2) a
3D plane associated with each control point that assigns a
unique depth to every pixel; (3) a 2D affine transformation
associated with each control point that assigns a unique flow
vector to every pixel; and (4) an N -dimensional weight vec-
tor associated with every pixel p that describes the weight
that individual control points have on the depth and flow at
p. Specifically, the depth d0p and flow v0

p at pixel p is a

weighted combination of the depths and flows assigned by
each control point:

d0
p = wp

T
Dp, v

0
p =

h

wp

T
Up, wp

T
Vp

i

(8)

where matrices D,U and V collect the 3D plane parame-
ters and the affine flow parameters of the N control points.
This representation models the scene as a collection of non-
overlapping smooth segments whose spatial extent is deter-
mined by the weight vectors. The weight vectors allow for a
very flexible scene model in which depth and flow disconti-
nuities at segment boundaries are possible by ensuring that
no two segments have pixels with non-zero weight for the
same control point.

Constraints on weight vectors The weight vector wp of
each pixel is subject to two hard constraints. The first con-
straint enforces the convexity of weighted sums by requir-
ing that a pixel’s weights are non-negative and sum to one.
The second constraint enforces consistency between spline
parameters and the scene segmentation by requiring that
control points and pixels belonging to different segments
do not influence each other. Specifically, wpn is non-zero
only if pixel p and the n-th control point belong to the same
segment according to the segmentation Z of the scene.

Control points The N control points depend on image
appearance and are computed in a pre-processing stage.
Briefly, like many appearance-based segmentation tech-
niques [14, 17], we associate a high-dimensional “feature
vector” fp to every pixel p. Its 35 dimensions include 2D
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image location, color in Lab space, and Laplacian eigenvec-
tors [2]. The initial control points are computed by applying
k-means clustering to these vectors and setting the number
of clusters to N . The first two columns of C hold the image
coordinates of the control points whereas the other columns
can be thought of as describing image appearance in the
control points’ neighborhood. See [27] for full details.

The top-down likelihood Eprior We define the top-down
likelihood to be a sum of energy terms that generalize Yam-
aguchi et al.’s objective function [33]. A key novelty here
is the inclusion of two spline-specific terms that are essen-
tial for handling very sparse data, and for obtaining stable
inferences from a scene model as flexible as a spline. In
particular, we combine five energy terms, two of which are
novel (Eent,Eflat) and three of which have been used before
(Esmo,Ebnd,Eimg):

Eprior(M,Z) = Eent(w) + λfEflat(D,U,V,w)

+ λsEsmo(D,U,V,w, t) + λiEimg(C,w) + λbEbnd(s) .
(9)

The negative entropy prior Eent encourages uniformity in
the weights of individual pixels:

Eent(w) =
X

p

X

n

wpn logwpn . (10)

The inner sum of Eq. (10) can be thought of as measuring
the negative entropy of pixel p’s weight vector. As such, it
reaches its minimum value of − log(N ) when the weights
in wp are distributed evenly among the N control points.
Note that since the weights of each pixel are computed de-
terministically, this term does not measure uncertainty.

The flatness prior Eflat encourages smoothness in image
regions with slowly-varying weight vectors:

Eflat(D,U,V,w) =
X

p

X

m,n

wpm wpn ψpmn(D,U,V) (11)

where the function ψpmn(D,U,V) measures the disagree-
ment between planes Dm and Dn at pixel p:

ψpmn(D,U,V) =

|Dmp−Dnp|2

2σ2
d

+
|Ump−Unp|2

2σ2
v

+
|Vmp−Vnp|2

2σ2
v

.
(12)

Intuitively, Eflat penalizes weight vectors wp that assign
non-zero weights to control points whose depth and flow
predictions are inconsistent at p. As such, it prevents
smoothing across image boundaries. This behavior sug-
gests a relation to the consistency term of the hierarchical
consensus framework [7]. That optimization architecture,
however, is very different from ours, as it handles discon-
tinuities only at the patch level and does not infer a global
segmentation model.

Previously-proposed terms: Esmo,Eimg and Ebnd These
already appear in the literature [33]. The segment-specific
smoothing term Esmo is similar to the smoothing energy of
the piecewise-planar model in [33]. It is defined as

Esmo(D,U,V,w, t) =
X

p

X

m,n

[wpm+wpn]·[ψpmn(D,U,V)δmn+(1−δmn)τs] (13)

Algorithm 1: Global DFD

input : initial control points C, feature map f , patch likelihoods Q
output: patch-based depth and flow P = (d,v), spline parameters

M = (C,D,U,V,w), scene segmentation Z = (s, t,O),
pixel-based depth and flow S(M) = (d0,v0)

1 initialize S = (0,0),D = U = V = 0, t = 0

2 repeat

3 update s and w jointly by solving MRF

4 update O by thresholding

5 update P , D,U,V and t jointly by solving IRLS

6 update Cn =
P

p
(wpnfp)/

P

p
wpn

7 until convergence

8 compute S(M) from spline parameters M using Eq. (8).

depth flow

Figure 8: Global depth and flow when Eflat is disabled (i.e., λf =0
in the energy function of Eq. (9)). Compare these results to the far

superior results in Figure 1 (columns 5,6).

where the binary variable δmn is one if and only if (1) con-
trol points m and n belong to the same segment (i.e., tm=
tn) and (2) they are not too far apart (i.e., less than 10% of
the image diagonal). τs penalizes over-segmentation.

The remaining two terms encourage image coherence and
penalize discontinuities:

Eimg(C,w) =
P

p

P

n
wpn|fp −Cn|

2 (14)

Ebnd(s) =
P

p,q2N8
(1− δ(sp − sq)) (15)

where δ( ) is Dirac’s Delta function. In particular, Eimg acts
as a soft segmentation constraint that forces the weights in
wp to be non-zero only for control points whose feature
vector is similar to p’s. See [33] for a detailed discussion.

Optimization We solve the optimization problem in
Eq. (1) using a standard block-coordinate descent scheme
(Algorithm 1). Notice that both step 3 and step 5 involve
global optimization. This allows our method to propagate
local information potentially across the entire image. We

always use a trivial initialization: all our results were ob-
tained by setting all variables to zero in step 1. See [27] for
more details on the algorithm.

Ablation study The local prior L in Eq. (6) couples the
patch-based and pixel-based depth maps and flow fields.
Disabling this term causes the optimization to trivially re-
turn the patch-based depth map and flow field. This is be-
cause the pixel-based variables are not subject to any data
constraints. Disabling both terms Eent and Eflat in Eq. (9)
makes our prior identical to the SPS prior [33, 34]. As we
show in Section 5, enabling both terms outperforms the SPS
prior. Disabling only term Eent produces results identical to
SPS. This is because Eent is the only term encouraging pix-
els to be owned by different control points. Disabling only
term Eflat produces over-smoothed results (Figure 8).
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input image 1 LDFD GDFD DFF [26] HCF [7] SPS [34]

Figure 9: Qualitative comparison with related work on the Sam-

sung images. Our method performs much better than the DFF

method in [26] which requires 30 frames. It also outperforms two

semi-dense methods that are applied to the results of LDFD. (See

[27] for flow results and additional scenes.)

5. Results

We have tested our approach on a variety scenes and imag-
ing conditions that are very challenging for DFD. Ta-
ble 1 summarizes the experimental conditions for the results
shown in the paper. They include scenes with significant de-
formation, large depth variations, and a fairly diverse set of
surface textures (or lack thereof). More results can be found
in [27, 28].

Parameters Our results for all cameras and all scenes were
obtained with exactly the same parameters—except for the
noise level which was set according to camera ISO. We used
τi = 30, τo = 0.01, τs = 0.01, λf = 2, λs = 0.00001,
λi = 1000 and λb = 5.

Description of datasets Our SLR camera (a Canon 7D
with 50mm f1.2L lens) and one of the cellphone cam-
eras (the Nexus5 with F2.4 lens) output high-resolution
RAW images. These had dimensions 5184 × 3456 and
2464 × 3280, respectively, and were captured by us under
active focus control. Data for the second cellphone cam-
era (Samsung S3) were provided by the authors of [26] and
used here for comparison purposes. Unlike the other two,
they consist of JPEG focal stacks with 23 to 33 JPEG im-
ages of size 360× 640. We use just two images from these
stacks for DFD, in accordance with the tiny blur condition.
The exact same tiny blur condition was used for all datasets
despite their differences in image resolution.

Organization of results We show two sets of results per
dataset: (1) the depth and flow maps computed by Local
DFD (LDFD) and (2) the maps computed by Global DFD
(GDFD). The former are the maximum-likelihood values,
d⇤p and v⇤

p, in Eq. (5); the latter are obtained by optimiz-
ing Eq. (1). This optimization turns the sparse and noisier
LDFD results into high-quality dense maps.

Qualitative results on real scenes Figure 10 shows results
on several complex scenes. Some of these scenes exhibit
very significant deformation, as can be seen from the flow
estimates in the last column. Despite this—and with just
two frames to work with—LDFD already produces results
of high quality. GDFD inpaints and regularizes the LDFD
data while preserving sharp boundaries. Moreover, the seg-
ments it recovers can be curved rather than fronto-parallel.

Comparison to Depth from Focus (DFF) [26] Figure 9
compares the results of our two-image method to the results
of a recent DFF method that uses all 23 to 41 images in the
focal stack. Observe that both our LDFD and GDFD results
are more detailed and have fewer outliers than [26].

GDFD versus semi-dense methods [7, 34] Figure 9 also
compares two approaches: (1) applying GDFD to the Sam-
sung dataset and (2) applying two recent semi-dense meth-
ods to the sparse LDFD results on that dataset in order to
compute dense depth and flow. This comparison shows that
GDFD is more robust, produces sharper boundaries and ad-
heres more closely to scene appearance.

Quantitative results on synthetic data We simulate syn-
thetic data from the Middlebury stereo 2006 dataset (full-
size version) [13]. Since occluded pixels have no disparity
in this dataset’s disparity maps, we first inpaint the missing
disparities using a recent depth-inpainting technique [11].
We then convert the disparity map to a map of blur ker-
nels by linearly mapping the disparity range [0, 255] to the
range [−4, 2] for the blur kernel radius r1. We obtain the
first input image via a spatially-varying convolution of the
dataset’s left image and this blur kernel map. To simulate a
differently-blurred second input image, we repeat the pro-
cess after setting r2 = r1 + 2 at the corresponding pixel
in the blur kernel map. Finally, we add Gaussian noise of
variance 10−4 to both images.

As shown in Table 2, LDFD yields low error for all scenes.
The proportion of confident patches depends on scene con-
tent: when confident patches are sparse, GDFD estimates
a dense depth and flow map whereas the semi-dense meth-
ods perform worse due to the sparsity of the LDFD results.
When confident patches are more dense, all methods work
well but GDFD produces the smallest depth error overall.

Running time We run Matlab code on a server with
128GB of RAM and two 8 core 2.6Ghz Xeon proces-
sors. On the Nexus images, LDFD takes about fifteen min-
utes, control point initialization takes five, and GDFD takes
fourty minutes to one hour.

6. Concluding Remarks

In this work we have shown that despite the problem’s ap-
parent hardness, two-frame DFD offers a promising way to
recover depth and flow from minimal visual input in ev-
eryday settings. As with other “minimal” methods [12],
we believe that the technique’s parsimony is its greatest
strength—it opens the door to generalizations that involve
richer visual input (e.g., video streams, focal stacks, aper-
ture stacks) and new types of 3D analysis (e.g., combining
two-frame DFD with structure from motion and/or stereo).
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avg Aloe Baby1 Cloth1 Flowerpots Rock1 Wood1

depth flow depth flow depth flow depth flow depth flow depth flow depth flow

LDFD density (ours) 46.1% 61.8% 36.2% 83.6% 13.2% 71.9% 46.1%

LDFD error (ours) 0.18 0.66 0.12 0.53 0.18 0.69 0.13 0.31 0.36 1.63 0.23 0.96 0.25 0.74

LDFD+GDFD errors (ours) 0.19 2.22 0.17 3.70 0.19 1.65 0.11 1.25 0.23 2.24 0.21 1.62 0.21 2.87

LDFD+SPS [34] errors 0.34 3.75 0.27 4.20 0.29 2.79 0.17 0.98 0.64 8.18 0.26 1.60 0.38 4.75

LDFD+HCF[7] errors 0.36 7.62 0.24 4.47 0.41 2.18 0.29 7.73 0.53 17.09 0.37 8.26 0.31 6.03

Table 2: Quantitative evaluation on synthetic data with groundtruth. We evaluate the LDFD results by measuring the proportion of locally

confident patches (LDFD density) and mean end-point errors in the depth map and flow field. The error in depth is measured as the error

in defocus blur radius of the first image. The sparse LDFD results are used as input to both our Global DFD method as well as two recent

semi-dense methods (SPS [34] and HCF [7]). We compare the error of GDFD results for each scene in depth and flow, and show the

smallest error in bold. Global DFD performs well in all cases.

input image 1 input image 2 LDFD (depth) GDFD (depth) LDFD (flow) GDFD (flow)

(a
)

k
ey

b
o
ar

d
(b

)
b
al

ls
(c

)
b
ag

el
s

(d
)

b
el

l
(e

)
fl

o
w

er
(f

)
p
o
tr

ai
t

(g
)

p
at

io
(h

)
st

ai
rs

Figure 10: LDFD and GDFD results on eight scenes captured by three cameras. See Table 1 for a summary of the scenes, cameras and

image conditions. Zoom in to appreciate the fine structures in the depth and flow maps our method computes.
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L. Van Gool. Convolutional oriented boundaries. In

Proc. ECCV, 2016.
[18] M. Moeller, M. Benning, C. Schonlieb, and D. Cre-

mers. Variational Depth From Focus Reconstruction.

IEEE TIP, 24(12):5369–5378, 2015.
[19] A. P. Pentland. A New Sense for Depth of Field. IEEE

T-PAMI, (4):523–531, 1987.
[20] T. Portz, L. Zhang, and H. Jiang. Optical flow in the

presence of spatially-varying motion blur. In Proc.

IEEE CVPR, 2012.
[21] A. N. Rajagopalan and S. Chaudhuri. A variational

approach to recovering depth from defocused images.

IEEE T-PAMI, 19(10):1158–1164, Oct. 1997.
[22] A. N. Rajagopalan and S. Chaudhuri. Optimal selec-

tion of camera parameters for recovery of depth from

defocused images. In Proc. IEEE CVPR, 1997.
[23] Y. Schechner and N. Kiryati. The optimal axial inter-

val in estimating depth from defocus. In Proc. IEEE

CVPR, 1999.
[24] N. Shroff, A. Veeraraghavan, Y. Taguchi, O. Tuzel,

A. Agrawal, and R. Chellappa. Variable focus video:

Reconstructing depth and video for dynamic scenes.

In Proc. IEEE ICCV, 2012.
[25] F. Sroubek and P. Milanfar. Robust multichannel blind

deconvolution via fast alternating minimization. IEEE

Trans. Image Processing, 21(4):1687–1700, 2012.
[26] S. Suwajanakorn, C. Hernández, and S. M. Seitz.

Depth from focus with your mobile phone. In Proc.

IEEE CVPR, pages 3497–3506, 2015.
[27] H. Tang, S. Cohen, B. Price, S. Schiller, and K. N.

Kutulakos. Depth from defocus in the wild: sup-

plementary material. [Online] (2017). Available at

http://www.dgp.toronto.edu/WildDFD/supp.pdf.
[28] Depth from defocus in the wild: Project

webpage. [Online] (2017). Available at

http://www.dgp.toronto.edu/WildDFD.
[29] How does the L16 work? [Online] (2017). Available

at https://light.co/technology.
[30] C. Vogel, K. Schindler, and S. Roth. Piecewise Rigid

Scene Flow. In Proc. IEEE ICCV, pages 1377–1384,

2013.
[31] M. Watanabe and S. K. Nayar. Rational filters for

passive depth from defocus. Int. J. Computer Vision,

27(3):203–225, 1998.
[32] T. Xian and M. Subbarao. Depth-from-defocus: blur

equalization technique. Proc. SPIE, 6382:1–10, 2006.
[33] K. Yamaguchi, D. McAllester, and R. Urtasun. Effi-

cient Joint Segmentation, Occlusion Labeling, Stereo

and Flow Estimation. In Proc. ECCV, pages 756–771,

2014.
[34] J. Yao, M. Boben, S. Fidler, and R. Urtasun. Real-

Time Coarse-to-fine Topologically Preserving Seg-

mentation. In Proc. IEEE CVPR, 2015.
[35] F. Yu and D. Gallup. 3D Reconstruction from Acci-

dental Motion. In Proc. IEEE CVPR, 2014.
[36] C. Zhou, S. Lin, and S. K. Nayar. Coded Aperture

Pairs for Depth from Defocus and Defocus Deblur-

ring. Int. J. Computer Vision, 93(1):53–72, Dec. 2010.

2748


