
Fast Multi-frame Stereo Scene Flow with Motion Segmentation

Tatsunori Taniai∗

RIKEN AIP

Sudipta N. Sinha

Microsoft Research

Yoichi Sato

The University of Tokyo

Abstract

We propose a new multi-frame method for efficiently

computing scene flow (dense depth and optical flow) and

camera ego-motion for a dynamic scene observed from a

moving stereo camera rig. Our technique also segments out

moving objects from the rigid scene. In our method, we first

estimate the disparity map and the 6-DOF camera motion

using stereo matching and visual odometry. We then iden-

tify regions inconsistent with the estimated camera motion

and compute per-pixel optical flow only at these regions.

This flow proposal is fused with the camera motion-based

flow proposal using fusion moves to obtain the final opti-

cal flow and motion segmentation. This unified framework

benefits all four tasks – stereo, optical flow, visual odome-

try and motion segmentation leading to overall higher ac-

curacy and efficiency. Our method is currently ranked third

on the KITTI 2015 scene flow benchmark. Furthermore, our

CPU implementation runs in 2-3 seconds per frame which

is 1-3 orders of magnitude faster than the top six methods.

We also report a thorough evaluation on challenging Sintel

sequences with fast camera and object motion, where our

method consistently outperforms OSF [30], which is cur-

rently ranked second on the KITTI benchmark.

1. Introduction

Scene flow refers to 3D flow or equivalently the dense

3D motion field of a scene [38]. It can be estimated from

video acquired with synchronized cameras from multiple

viewpoints [28, 29, 30, 43] or with RGB-D sensors [18, 20,

15, 33] and has applications in video analysis and editing,

3D mapping, autonomous driving [30] and mobile robotics.

Scene flow estimation builds upon two tasks central to

computer vision – stereo matching and optical flow estima-

tion. Even though many existing methods can already solve

these two tasks independently [24, 16, 35, 27, 17, 46, 9],

a naive combination of stereo and optical flow methods for

computing scene flow is unable to exploit inherent redun-

dancies in the two tasks or leverage additional scene in-
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(a) Left input frame (reference) (b) Zoom-in on stereo frames

(c) Ground truth disparity (d) Estimated disparity D

(e) Ground truth flow (f) Estimated flow F

(g) Ground truth segmentation (h) Estimated segmentation S

Figure 1. Our method estimates dense disparity and optical flow

from stereo pairs, which is equivalent to stereoscopic scene flow

estimation. The camera motion is simultaneously recovered and

allows moving objects to be explicitly segmented in our approach.

formation which may be available. Specifically, it is well

known that the optical flow between consecutive image

pairs for stationary (rigid) 3D points are constrained by their

depths and the associated 6-DOF motion of the camera rig.

However, this idea has not been fully exploited by existing

scene flow methods. Perhaps, this is due to the additional

complexity involved in simultaneously estimating camera

motion and detecting moving objects in the scene.

Recent renewed interest in stereoscopic scene flow esti-

mation has led to improved accuracy on challenging bench-

marks, which stems from better representations, priors, op-

timization objectives as well as the use of better optimiza-

tion methods [19, 45, 8, 30, 43, 28]. However, those state of

the art methods are computationally expensive which limits

their practical usage. In addition, other than a few excep-

tions [40], most existing scene flow methods process ev-
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Figure 2. Overview of the proposed method. In the first three steps, we estimate the disparity D and camera motion P using stereo matching

and visual odometry techniques. We then detect moving object regions by using the rigid flow Frig computed from D and P. Optical flow is

performed only for the detected regions, and the resulting non-rigid flow Fnon is fused with Frig to obtain final flow F and segmentation S.

ery two consecutive frames independently and cannot effi-

ciently propagate information across long sequences.

In this paper, we propose a new technique to estimate

scene flow from a multi-frame sequence acquired by a cal-

ibrated stereo camera on a moving rig. We simultaneously

compute dense disparity and optical flow maps on every

frame. In addition, the 6-DOF relative camera pose be-

tween consecutive frames is estimated along with a per-

pixel binary mask that indicates which pixels correspond

to either rigid or non-rigid independently moving objects

(see Fig. 1). Our sequential algorithm uses information only

from the past and present, thus useful for real-time systems.

We exploit the fact that even in dynamic scenes, many

observed pixels often correspond to static rigid surfaces.

Given disparity maps estimated from stereo images, we

robustly compute the 6-DOF camera motion using visual

odometry robust to outliers (moving objects in the scene).

Given the ego-motion estimate, we improve the depth es-

timates at occluded pixels via epipolar stereo matching.

Then, we identify image regions inconsistent with the cam-

era motion and compute an explicit optical flow proposal

for these regions. Finally, this flow proposal is fused with

the camera motion-based flow proposal using fusion moves

to obtain the final flow map and motion segmentation.

While these four tasks – stereo, optical flow, visual

odometry and motion segmentation have been extensively

studied, most of the existing methods solve these tasks in-

dependently. As our primary contribution, we present a

single unified framework where the solution to one task

benefits the other tasks. In contrast to some joint meth-

ods [43, 30, 28, 42] that try to optimize single complex

objective functions, we decompose the problem into sim-

pler optimization problems leading to increased computa-

tional efficiency. Our method is significantly faster than

top six methods on KITTI taking about 2–3 seconds per

frame (on the CPU), whereas state-of-the-art methods take

1–50 minutes per-frame [43, 30, 28, 42]. Not only is our

method faster but it also explicitly recovers the camera mo-

tion and motion segmentation. We now discuss how our

unified framework benefits each of the four individual tasks.

Optical Flow. Given known depth and camera motion,

the 2D flow for rigid 3D points which we refer to as rigid

flow in the paper, can be recovered more efficiently and

accurately compared to generic non-rigid flow. We still

need to compute non-rigid flow but only at pixels associated

with moving objects. This reduces redundant computation.

Furthermore, this representation is effective for occlusion.

Even when corresponding points are invisible in consecu-

tive frames, the rigid flow can be correctly computed as long

as the depth and camera motion estimates are correct.

Stereo. For rigid surfaces in the scene, our method

can recover more accurate disparities at pixels with left-

right stereo occlusions. This is because computing camera

motions over consecutive frames makes it possible to use

multi-view stereo matching on temporally adjacent stereo

frames in addition to the current frame pair.

Visual Odometry. Explicit motion segmentation makes

camera motion recovery more robust. In our method, the bi-

nary mask from the previous frame is used to predict which

pixels in the current frame are likely to be outliers and must

be downweighted during visual odometry estimation.

Motion Segmentation. This task is essentially solved

for free in our method. Since the final optimization per-

formed on each frame fuses rigid and non-rigid optical flow

proposals (using MRF fusion moves) the resulting binary

labeling indicates which pixels belong to non-rigid objects.

2. Related Work

Starting with the seminal work by Vedula et al. [38, 39],

the task of estimating scene flow from multiview image se-

quences has often been formulated as a variational prob-

lem [32, 31, 3, 45]. These problems were solved using dif-

ferent optimization methods – Pons et al. [32, 31] proposed

a solution based on level-sets for volumetric representations

whereas Basha et al. [3] proposed view-centric representa-

tions suiltable for occlusion reasoning and large motions.

Previously, Zhang et al. [47] studied how image segmenta-

tion cues can help recover accurate motion and depth dis-

continuities in multi-view scene flow.
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Subsequently, the problem was studied in the binocular

stereo setting [26, 19, 45]. Huguet and Devernay [19] pro-

posed a variational method suitable for the two-view case

and Li and Sclaroff [26] proposed a multiscale approach

that incorporated uncertainty during coarse to fine process-

ing. Wedel et al. [45] proposed an efficient variational

method suitable for GPUs where scene flow recovery was

decoupled into two subtasks – disparity and optical flow es-

timation. Valgaerts et al. [36] proposed a variational method

that dealt with stereo cameras with unknown extrinsics.

Earlier works on scene flow were evaluated on sequences

from static cameras or cameras moving in relatively simple

scenes (see [30] for a detailed discussion). Cech et al. pro-

posed a seed-growing method for sterescopic scene flow [8]

which could handle realistic scenes with many moving ob-

jects captured by a moving stereo camera. The advent of the

KITTI benchmark led to further improvements in this field.

Vogel et al. [41, 42, 40, 43] recently explored a type of 3D

regularization – they proposed a model of dense depth and

3D motion vector fields in [41] and later proposed a piece-

wise rigid scene model (PRSM) in two [42] and multi-frame

settings [40, 43] that treats scenes as a collection of planar

segments undergoing rigid motions. While PRSM [43] is

the current top method on KITTI, its joint estimation of 3D

geometries, rigid motions and superpixel segmentation us-

ing discrete-continuous optimization is fairly complex and

computationally expensive. Lv et al. [28] recently proposed

a simplified approach to PRSM using continuous optimiza-

tion and fixed superpixels (named CSF), which is faster than

[43] but is still too slow for practical use.

As a closely related approach to ours, object scene flow

(OSF) [30] segments scenes into multiple rigidly-moving

objects based on fixed superpixels, where each object is

modeled as a set of planar segments. This model is more

rigidly regularized than PRSM. The inference by max-

product particle belief propagation is also very computa-

tionally expensive taking 50 minutes per frame. A faster

setting of their code takes 2 minutes but has lower accuracy.

A different line of work explored scene flow estimation

from RGB-D sequences [15, 33, 18, 20, 21, 44]. Mean-

while, deep convolutional neural network (CNN) based su-

pervised learning methods have shown promise [29].

3. Notations and Preliminaries

Before describing our method in details, we define nota-

tions and review basic concepts used in the paper.

We denote relative camera motion between two images

using matrices P = [R|t] ∈ R
3×4, which transform homo-

geneous 3D points x̂ = (x, y, z, 1)T in camera coordinates

of the source image to 3D points x′ = Px̂ in camera coor-

dinates of the target image. For simplicity, we assume a rec-

tified calibrated stereo system. Therefore, the two cameras

have the same known camera intrinsics matrix K ∈ R
3×3

and the left-to-right camera pose P01 = [I| − Bex] is also

known. Here, I is the identity rotation, ex = (1, 0, 0)T , and

B is the baseline between the left and right cameras.

We assume the input stereo image pairs have the same

size of image domains Ω ∈ Z
2 where p = (u, v)T ∈ Ω is

a pixel coordinate. Disparity D, flow F and segmentation

S are defined as mappings on the image domain Ω, e.g.,

D(p) : Ω → R
+, F(p) : Ω → R

2 and S(p) : Ω → {0, 1}.

Given relative camera motion P and a disparity map D
of the source image, pixels p of stationary surfaces in the

source image are warped to points p′ = w(p;D,P) in the

target image by the rigid transformation [14] as

w(p;D,P) = π

(

KP

[

K−1 0

0T (fB)−1

] [

p̂

D(p)

])

. (1)

Here, p̂ = (u, v, 1)T is the 2D homogeneous coordinate

of p, the function π(u, v, w) = (u/w, v/w)T returns 2D

non-homogeneous coordinates, and f is the focal length of

the cameras. This warping is also used to find which pixels

p in the source image are visible in the target image using

z-buffering based visibility test and whether p′ ∈ Ω.

4. Proposed Method

Let I0t and I1t , t ∈ {1, 2, · · · , N + 1} be the input im-

age sequences captured by the left and right cameras of a

calibrated stereo system, respectively. We sequentially pro-

cess the first to N -th frames and estimate their disparity

maps Dt, flow maps Ft, camera motions Pt and motion

segmentation masks St for the left (reference) images. We

call moving and stationary objects as foreground and back-

ground, respectively. Below we focus on processing the t-th
frame and omit the subscript t when it is not needed.

At a high level, our method is designed to implicitly min-

imize image residuals

E(Θ) =
∑

p

‖I0t (p)− I0t+1(w(p;Θ))‖ (2)

by estimating the parameters Θ of the warping function w

Θ = {D,P,S,Fnon}. (3)

The warping function is defined, in the form of the flow map

w(p;Θ) = p+ F(p), using the binary segmentation S on

the reference image I0t as follows.

F(p) =

{

Frig(p) if S(p) = background

Fnon(p) if S(p) = foreground
(4)

Here, Frig(p) is the rigid flow computed from the disparity

map D and the camera motion P using Eq. (1), and Fnon(p)
is the non-rigid flow defined non-parametrically. Directly

estimating this full model is computationally expensive. In-

stead, we start with a simpler rigid motion model computed
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(a) Initial disparity map D̃ (b) Uncertainty map U [12]

(c) Occlusion map O (d) Final disparity map D

Figure 3. Binocular and epipolar stereo. (a) Initial disparity map.

(c) Uncertainity map [12] (darker pixels are more confident).

(b) Occlusion map (black pixels are invisible in the right image).

(d) Final disparity estimate by epipolar stereo.

from the reduced model parameters Θ = {D,P} (Eq. (1)),

and then increase the complexity of the motion model by

adding non-rigid motion regions S and their flow Fnon. In-

stead of directly comparing pixel intensities, at various steps

of our method, we robustly evaluate the image residuals

‖I(p)− I ′(p′))‖ by truncated normalized cross-correlation

TNCCτ (p,p
′) = min{1− NCC(p,p′), τ}. (5)

Here, NCC is normalized cross-correlation computed for

5× 5 grayscale image patches centered at I(p) and I ′(p′),
respectively. The thresholding value τ is set to 1.

In the following sections, we describe the proposed

pipeline of our method. We first estimate an initial disparity

map D̃ (Sec. 4.1). The disparity map D̃ is then used to esti-

mate the camera motion P using visual odometry recovery

(Sec. 4.2). This motion estimate P is used in the epipolar

stereo matching stage, where we improve the initial dispar-

ity to get the final disparity map D (Sec. 4.3). The D and

P estimates are used to compute a rigid flow proposal Frig

and recover an initial segmentation S̃ (Sec. 4.4). We then

estimate non-rigid flow proposal Fnon for only the moving

object regions of S̃ (Sec. 4.5). Finally we fuse the rigid and

non-rigid flow proposals {Frig,Fnon} and obtain the final

flow map F and segmentation S (Sec. 4.6). All the steps of

the proposed method are summarized in Fig. 2.

4.1. Binocular Stereo

Given left and right images I0 and I1, we first estimate

an initial disparity map D̃ of the left image and also its oc-

clusion map O and uncertainty map U [12]. We visualize

example estimates in Figs. 3 (a)–(c).

As a defacto standard method, we estimate disparity

maps by using semi-global matching (SGM) [16] with a

fixed disparity range of [0, 1, · · · , Dmax]. Our implemen-

tation of SGM uses 8 cardinal directions and NCC-based

matching costs of Eq. (5) for the data term. The occlusion

map O is obtained by left-right consistency check. The un-

certainty map U is computed during SGM as described in

[12] without any computational overhead. We also define a

fixed confidence threshold τu for U , i.e., D̃(p) is considered

unreliable if U(p) > τu. More details are provided in the

supplementary material.

4.2. Stereo Visual Odometry

Given the current and next image I0t and I0t+1 and the ini-

tial disparity map D̃t of I0t , we estimate the relative camera

motion P between the current and next frame. Our method

extends an existing stereo visual odometry method [1]. This

is a direct method, i.e., it estimates the 6-DOF camera mo-

tion P by directly minimizing image intensity residuals

Evo(P) =
∑

p∈T

ωvo
p ρ

(

|I0t (p)− I0t+1(w(p; D̃t,P))|
)

(6)

for some target pixels p ∈ T , using the rigid warping w
of Eq. (1). To achieve robustness to outliers (e.g., by mov-

ing objects, occlusion, incorrect disparity), the residuals are

scored using the Tukey’s bi-weight [4] function denoted by

ρ. The energy Evo is minimized by iteratively re-weighted

least squares in the inverse compositional framework [2].

We have modified this method as follows. First, to ex-

ploit motion segmentation available in our method, we ad-

just the weights ωvo
p differently. They are set to either 0 or 1

based on the occlusion map O(p) but later downweighted

by 1/8, if p is predicted as a moving object point by the

previous mask St−1 and flow Ft−1. Second, to reduce sen-

sitivity of direct methods to initialization, we generate mul-

tiple diverse initializations for the optimizer and obtain mul-

tiple candidate solutions. We then choose the final estimate

P such that best minimizes weighted NCC-based residuals

E =
∑

p∈Ω ωvo
p TNCCτ (p, w(p; D̃t,P)). For diverse ini-

tializations, we use (a) the identity motion, (b) the previous

motion Pt−1, (c) a motion estimate by feature-based corre-

spondences using [25], and (d) various forward translation

motions (about 16 candidates, used only for driving scenes).

4.3. Epipolar Stereo Refinement

As shown in Fig. 3 (a), the initial disparity map D̃ com-

puted from the current stereo pair {I0t , I
1
t } can have errors

at pixels occluded in right image. To address this issue, we

use the multi-view epipolar stereo technique on temporar-

ily adjacent six images {I0t−1, I
1
t−1, I

0
t , I

1
t , I

0
t+1, I

1
t+1} and

obtain the final disparity map D shown in Fig. 1 (d).

From the binocular stereo stage, we already have com-

puted a matching cost volume of I0t for I1t , which we de-

note as Cp(d), with some disparity range d ∈ [0, Dmax].

The goal here is to get a better cost volume Cepi
p (d) as in-

put to SGM, by blending Cp(d) with matching costs for

each of the four target images I ′ ∈ {I0t−1, I
1
t−1, I

0
t+1, I

1
t+1}.
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Since the relative camera poses of the current to next frame

Pt and previous to current frame Pt−1 are already es-

timated by the visual odometry in Sec. 4.2, the relative

poses from I0t to each target image can be estimated as

P′ ∈ {P−1
t−1,P

01P−1
t−1,Pt,P

01Pt}, respectively. Recall

P01 is the known left-to-right camera pose. Then, for each

target image I ′, we compute matching costs C ′
p(d) by pro-

jecting points (p, d)T in I0t to its corresponding points in I ′

using the pose P′ and the rigid transformation of Eq. (1).

Since C ′
p(d) may be unreliable due to moving objects, we

here lower the thresholding value τ of NCC in Eq. (5) to 1/4
for higher robustness. The four cost volumes are averaged

to obtain Cavr
p (d). We also truncate the left-right matching

costs Cp(d) at τ = 1/4 at occluded pixels known by O(p).

Finally, we compute the improved cost volume Cepi
p (d)

by linearly blending Cp(d) with Cavr
p (d) as

Cepi
p (d) = (1− αp)Cp(d) + αpC

avr
p (d), (7)

and run SGM with Cepi
p (d) to get the final disparity map D.

The blending weights αp ∈ [0, 1] are computed from the

uncertainty map U(p) (from Sec. 4.1) normalized as up =
min{U(p)/τu, 1} and then converted as follows.

αp(up) = max{up − τc, 0}/(1− τc). (8)

Here, τc is a confidence threshold. If up ≤ τc, we get

αp = 0 and thus Cepi
p = Cp. When up increases from

τc to 1, αp linearly increases from 0 to 1. Therefore, we

only need to compute Cavr
p (d) at p where up > τc, which

saves computation. We use τc = 0.1.

4.4. Initial Segmentation

During the initial segmentation step, the goal is to find

a binary segmentation S̃ in the reference image I0t , which

shows where the rigid flow proposal Frig is inaccurate and

hence optical flow must be recomputed. Recall that Frig

is obtained from the estimated disparity map D and cam-

era motion P using Eq. (1). An example of S̃ is shown in

Fig. 4 (f). We now present the details.

First, we define binary variables sp ∈ {0, 1} as proxy

of S̃(p) where 1 and 0 correspond to foreground (moving

objects) and background, respectively. Our segmentation

energy Eseg(s) is defined as

Eseg =
∑

p∈Ω

[

Cncc
p +Cflo

p +Ccol
p +Cpri

p

]

s̄p +Epotts(s). (9)

Here, s̄p = 1− sp. The bracketed terms [ · ] are data terms

that encode the likelihoods for mask S̃ , i.e., positive values

bias sp toward 1 (moving foreground). Epotts is the pairwise

smoothness term. We explain each term below.

Appearance term Cncc
p : This term finds moving objects

by checking image residuals of rigidly aligned images. We

(a) NCC-based residual map (b) Patch-intensity variance wvar
p

(c) Prior flow Fpri [13] (d) Depth edge map w
dep
pq

(e) Image edge map wstr
pq

[11] (f) Initial segmentation S̃

Figure 4. Initial segmentation. We detect moving object re-

gions using clues from (a) image residuals weighted by (b) patch-

intensity variance and (c) prior flow. We also use (d) depth edge

and (e) image edge information to obtain (f) initial segmentation.

compute NCC-based matching costs between I = I0t and

I ′ = I0t+1 as

C ′ncc

p (I, I ′) = TNCCτ (p,p
′; I, I ′)− τncc (10)

where p′ = p + Frig(p) and τncc ∈ (0, τ) is a thresh-

old. However, TNCC values are unreliable at texture-less

regions (see the high-residual tarp in Fig. 4 (a)). Further-

more, if p′ is out of field-of-view, C ′ncc
p is not determined

(yellow pixels in Fig. 4 (a)). Thus, similarly to epipolar

stereo, we match I0t with I ′ ∈ {I0t−1, I
1
t−1, I

0
t+1, I

1
t+1} and

compute the average of valid matching costs

Cncc
p = λnccw

var
p AverageI′

[

C ′ncc

p (I, I ′)
]

. (11)

Matching with many images increases the recall for detect-

ing moving objects. To improve matching reliability, Cncc
p is

weighted by wvar
p = min(StdDev(I), τw)/τw, the truncated

standard deviation of the 5× 5 patch centered at I(p). The

weight map wvar
p is visualized in Fig. 4 (b). We also trun-

cate C ′ncc
p (I, I ′) at 0, if p′ is expected to be occluded in I ′

by visibility test. We use (λncc, τncc, τw) = (4, 0.5, 0.005).

Flow term Cflo
p : This term evaluates flow residuals rp =

‖Frig(p) − Fpri(p)‖ between the rigid flow F and (non-

rigid) prior flow Fpri computed by [13] (see Fig. 4 (c)). Us-

ing a threshold τflo
p and the patch-variance weight wvar

p , we

define Cflo
p as

Cflo
p = λflow

var
p

[

min(rp, 2τ
flo
p )− τflo

p

]

/τflo
p . (12)

The part after wvar
p normalizes (rp − τflo

p ) to lie within

[−1, 1]. The threshold τflo
p is computed at each pixel p by

τflo
p = max(τflo, γ‖Frig(p)‖). (13)
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This way the threshold is relaxed if the rigid motion Frig(p)
is large. If prior flow Fpri(p) is invalidated by bi-directional

consistency check (black holes in Fig. 4 (c)), Cflo
p is set to

0. We use (λflo, τ
flo, γ) = (4, 0.75, 0.3).

Prior term C
pri
p : This term encodes segmentation priors

based on results from previous frames or on scene context

via ground plane detection. Sec. 4.7 for the details.

Color term Ccol
p : This is a standard color-likelihood

term [6] for RGB color vectors Ip of pixels in the reference

image I0t (p):

Ccol
p = λcol

[

log θ1(Ip)− log θ0(Ip)
]

. (14)

We use λcol = 0.5 and 643 bins of histograms for the color

models {θ0, θ1}.

Smoothness term Epotts: This term is based on the Potts

model defined for all pairs of neighboring pixels (p,q) ∈
N on the 8-connected pixel grid.

Epotts(s) = λpotts

∑

(p,q)∈N

(ωcol
pq + ωdep

pq + ωstr
pq)|sp − sq|. (15)

We use three types of edge weights. The color-based

weight ωcol
pq is computed as ωcol

pq = e−‖Ip−Iq‖
2

2
/κ1 where

κ1 is estimated as the expected value of 2‖Ip − Iq‖
2
2 over

(p,q) ∈ N [34]. The depth-based weight ωdep
pq is computed

as ωdep
pq = e−|Lp+Lq|/κ2 where Lp = |∆D(p)| is the abso-

lute Laplacian of the disparity map D. The κ2 is estimated

similarly to κ1. The edge-based weight ωstr
pq uses an edge

map ep ∈ [0, 1] obtained by a fast edge detector [11] and is

computed as ωstr
pq = e−|ep+eq|/κ3 . Edge maps of ωdep

pq and

ωstr
pq (in the form of 1 − wpq) are visualized in Figs. 4 (d)

and (e). We use (λpotts, κ3) = (10, 0.2).
The minimization of Eseg(s) is similar to the Grab-

Cut [34] algorithm, i.e., we alternate between minimizing

Eseg(s) using graph cuts [5] and updating the color models

{θ1, θ0} of Ccol
p from segmentation s. We run up to five

iterations until convergence using dynamic max-flow [22].

4.5. Optical Flow

Next, we estimate the non-rigid flow proposal Fnon for

the moving foreground regions estimated as the initial seg-

mentation S̃ . Similar to Full Flow [9], we pose optical flow

as a discrete labeling problem where the labels represent 2D

translational shifts with in a 2D search range (see Sec. 4.7

for range estimation). Instead of TRW-S [23] as used in [9],

we apply the SGM algorithm as a discrete optimizer. After

obtaining a flow map from SGM as shown in Fig. 5 (a), we

filter it further by 1) doing bi-directional consistency check

(see Fig. 5 (b)), and 2) filing holes by weighted median fil-

tering to get the non-rigid flow proposal Fnon. The flow

consistency map Oflo(p) is passed to the next stage. Our

extension of SGM is straightforward and is detailed in our

supplementary material as well as the refinement scheme.

(a) Non-rigid flow by SGM flow (b) Consistency check

(c) Non-rigid flow proposal Fnon (d) Rigid flow proposal Frig

(e) Final flow map F (f) Final segmentation mask S

Figure 5. Optical flow and flow fusion. We obtain non-rigid flow

proposal by (a) performing SGM followed by (b) consistency fil-

tering and (c) hole filing by weighted median filtering. This flow

proposal is fused with (d) the rigid flow proposal to obtain (e) the

final flow estimate and (f) motion segmentation.

4.6. Flow Fusion and Final Segmentation

Given the rigid and non-rigid flow proposals Frig and

Fnon, we fuse them to obtain the final flow estimate F . This

fusion step also produces the final segmentation S . These

inputs and outputs are illustrated in Figs. 5 (c)–(f).

The fusion process is similar to the initial segmentation.

The binary variables sp ∈ {0, 1} indicating the final seg-

mentation S , now also indicate which of the two flow pro-

posals {Frig(p),Fnon(p)} is selected as the final flow esti-

mate F(p). To this end, the energy Eseg of Eq. (9) is modi-

fied as follows. First, Cncc
p is replaced by

Cncc
p =λnccw

var
p [TNCCτ (p,p

′
rig)−TNCCτ (p,p

′
non)], (16)

where p′
rig = p + Frig(p) and p′

non = p + Fnon(p). Sec-

ond, the prior flow Fpri(p) in Cflo
p is replaced by Fnon(p).

When p′
rig is out of view or Fnon(p) is invalidated by the

flow occlusion map Oflo(p), we set Cncc
p and Cflo

p to 0.

The fusion step only infers sp for pixels labeled fore-

ground in the initial segmentation S̃ , since the background

labels are fixed. The graph cut optimization for fusion is

typically very efficient, since the pixels labeled foreground

in S̃ is often a small fraction of all the pixels.

4.7. Implementation Details

Disparity range reduction. For improving the efficiency

of epipolar stereo, the disparity range [0, Dmax] is reduced

by estimating Dmax from the initially estimated D̃(p). We

compute Dmax robustly by making histograms of non-

occluded disparities of D̃(p) and ignoring bins whose fre-

quency is less than 0.5%. Dmax is then chosen as the max
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bin from remaining valid non-zero bins.

Flow range estimation. The 2D search range R =
([umin, umax] × [vmin, vmax]) for SGM flow is estimated as

follows. For the target region S̃ , we compute three such

ranges from feature-based sparse correspondences, the prior

flow and rigid flow. For the latter two, we robustly compute

ranges by making 2D histograms of flow vectors and ignor-

ing bins whose frequency is less than one-tenth of the max

frequency. Then, the final range R is the range that covers

all three. To make R more compact, we repeat the range

estimation and subsequent SGM for individual connected

components in S̃ .

Cost-map smoothing. Since NCC and flow-based cost

maps Cncc
p and Cflo

p used in the segmentation and fusion

steps are noisy, we smooth them by averaging the values

within superpixels. We use superpixelization of approxi-

mately 850 segments produced by [37] in OpenCV.

Segmentation priors. We define Cpri
p of Eq. (9) as Cpri

p =

λmaskC
mask
p +Cpcol

p . Here, Cmask
p ∈ [−0.1, 1] is a signed soft

mask predicted by previous mask St−1 and flow Ft−1. Neg-

ative background regions are downweighted by 0.1 for bet-

ter detection of new emerging objects. We use λmask = 2.

Cpcol
p is a color term similar to Eq. (14) with the same λcol

but uses color models updated online as the average of past

color models. For road scenes, we additionally use the

ground prior such as shown in Fig. 6 as a cue for the back-

ground. It is derived by the ground plane detected using

RANSAC. See the supplementary material for more details.

Figure 6. Segmentation ground prior. For road scenes (left), we

compute the ground prior (middle) from the disparity map (right).

Others. We run our algorithm on images downscaled by

a factor of 0.4 for optical flow and 0.65 for the other steps

(each image in KITTI is 1242 × 375 pixels). We do a sub-

pixel refinement of the SGM disparity and flow maps via

standard local quadratic curve fitting [16].

5. Experiments

We evaluate our method on the KITTI 2015 scene flow

benchmark [30] and further extensively evaluate on the

challenging Sintel (stereo) datasets [7]. On Sintel we com-

pare with the top two state of the art methods – PRSM [43]

and OSF [30]. PRSM is a multi-frame method like ours. Al-

though OSF does not explicitly distinguish moving objects

from static background in segmentation, the dominant rigid

motion bodies are assigned the first object index, which we

regarded as background in evaluations. Our method was

implemented in C++ and running times were measured on

a computer with a quadcore 3.5GHz CPU. All parameter

settings were determined using KITTI training data for val-

idation. Only two parameters were re-tuned for Sintel.

5.1. KITTI 2015 Scene Flow Benchmark

We show a selected ranking of KITTI benchmark results

in Table 1, where our method is ranked third. Our method is

much faster than all the top methods and more accurate than

the fast methods [10, 8]. See Fig. 8 for the per-stage running

times. The timings for most stages of our method are small

and constant, while for optical flow they vary depending on

the size of the moving objects. Motion segmentation results

are visually quite accurate (see Fig. 7). As shown in Table 2,

epipolar stereo refinement using temporarily adjacent stereo

frames improves disparity accuracy even for non-occluded

pixels. By visual inspection of successive images aligned

via the camera motion and depth, we verified that there was

never any failure in ego-motion estimation.

5.2. Evaluation on Sintel Dataset

Unlike previous scene flow methods, we also evaluated

our method on Sintel and compared it with OSF [30] and

PRSM [43] (see Table 3 – best viewed in color). Recall,

PRSM does not perform motion segmentation. Although

OSF and PRSM are more accurate on KITTI, our method

outperforms OSF on Sintel on all metrics. Also, unlike

OSF, our method is multi-frame. Sintel scenes have fast, un-

predictable camera motion, drastic non-rigid object motion

and deformation unlike KITTI where vehicles are the only

type of moving objects. While OSF and PRSM need strong

rigid regularization, we employ per-pixel inference with-

out requiring piecewise planar assumption. Therefore, our

method generalizes more easily to Sintel. Only two parame-

ters had to be modified as follows. (λcol, τncc) = (1.5, 0.25).

Limitations. The visual odometry step may fail when the

scene is far away (see mountain 1 in Fig. 9) due to subtle

disparity. It may also fail when the moving objects domi-

nate the field of view. Our motion segmentation results are

often accurate but in the future we will improve temporal

consistency to produce more coherent motion segmentation.

6. Conclusions

We proposed an efficient scene flow method that uni-

fies dense stereo, optical flow, visual odometry, and motion

segmentation estimation. Even though simple optimization

methods were used in our technique, the unified framework

led to higher overall accuracy and efficiency. Our method is

currently ranked third on the KITTI 2015 scene flow bench-

mark after PRSM [43] and OSF [30] but is 1–3 orders of

magnitude faster than the top six methods. On challenging

Sintel sequences, our method outperforms OSF [30] and

is close to PRSM [43] in terms of accuracy. Our efficient

method could be used to initialize PRSM [43] to improve

its convergence speed. We hope it will enable new, practi-

cal applications of scene flow.
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Table 1. KITTI 2015 scene flow benchmark results [30]. We show the error rates (%) for the disparity on the reference frame (D1) and

second frame (D2), the optical flow (Fl) and the scene flow (SF) at background (bg), foreground (fg) and all pixels. Disparity or flow is

considered correctly estimated if the end-point error is < 3px or < 5%. Scene flow is considered correct if D1, D2 and Fl are correct.

Rank Method D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all Time

1 PRSM [43] 3.02 10.52 4.27 5.13 15.11 6.79 5.33 17.02 7.28 6.61 23.60 9.44 300 s

2 OSF [30] 4.54 12.03 5.79 5.45 19.41 7.77 5.62 22.17 8.37 7.01 28.76 10.63 50 min

3 FSF+MS (ours) 5.72 11.84 6.74 7.57 21.28 9.85 8.48 29.62 12.00 11.17 37.40 15.54 2.7 s

4 CSF [28] 4.57 13.04 5.98 7.92 20.76 10.06 10.40 30.33 13.71 12.21 36.97 16.33 80 s

5 PR-Sceneflow [42] 4.74 13.74 6.24 11.14 20.47 12.69 11.73 27.73 14.39 13.49 33.72 16.85 150 s

8 PCOF + ACTF [10] 6.31 19.24 8.46 19.15 36.27 22.00 14.89 62.42 22.80 25.77 69.35 33.02 0.08 s (GPU)

12 GCSF [8] 11.64 27.11 14.21 32.94 35.77 33.41 47.38 45.08 47.00 52.92 59.11 53.95 2.4 s

(a) Reference image (b) Motion segmentation S (c) Disparity map D (d) Disparity error map (e) Flow map F (f) Flow error map

Figure 7. Our results on KITTI testing sequences 002 and 006. Black pixels in error heat maps indicate missing ground truth.

Table 2. Disparity improvements by epipolar stereo.
all pixels non-occluded pixels

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

Binocular (D̃) 7.96 12.61 8.68 7.09 10.57 7.61

Epipolar (D) 5.82 10.34 6.51 5.57 8.84 6.06
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Figure 8. Running times on 200 sequences from KITTI. The av-

erage running time per-frame was 2.7 sec. Initialization includes

edge extraction [11], superpixelization [37] and feature tracking.

Table 3. Sintel evaluation [7]: We show error rates (%) for disparity

(D1), flow (Fl), scene flow (SF) and motion segmentation (MS) averaged

over the frames. Cell colors in OSF [30] and PRSM [43] columns show

performances relative to ours; blue shows where our method is better,

red shows where it is worse. We outperform OSF most of the time.

Ours OSF PRSM Ours OSF PRSM Ours OSF PRSM Ours OSF

alley_1 5.92 5.28 7.43 2.11 7.33 1.58 6.91 10.04 7.90 5.40 17.45

alley_2 2.08 1.31 0.79 1.20 1.44 1.08 2.99 2.49 1.63 1.94 1.31

ambush_2 36.93 55.13 41.77 72.68 87.37 51.33 80.33 90.96 61.92 1.72 32.76

ambush_4 23.30 24.05 24.09 45.23 49.16 41.99 49.81 53.25 46.14 20.98 19.82

ambush_5 18.54 19.54 17.72 24.82 44.70 25.23 35.15 52.26 34.12 2.50 19.39

ambush_6 30.33 26.18 29.41 44.05 54.75 41.98 49.93 58.46 47.08 53.95 24.98

ambush_7 23.47 71.58 35.07 27.87 22.47 3.35 44.51 77.94 36.92 26.77 36.08

bamboo_1 9.67 9.71 7.34 4.11 4.04 2.41 11.05 10.81 8.35 4.43 4.17

bamboo_2 19.27 18.08 17.06 3.65 4.86 3.58 21.39 21.24 19.23 4.08 4.54

bandage_1 20.93 19.37 21.22 4.00 18.40 3.30 23.72 36.57 23.37 33.32 46.66

bandage_2 22.69 23.53 22.44 4.76 13.12 4.06 24.19 32.33 23.62 16.37 41.14

cave_4 6.22 5.86 4.27 14.62 33.94 16.32 17.53 36.04 17.71 16.13 16.92

market_2 6.81 6.61 5.27 5.17 10.08 4.77 10.38 14.52 8.54 8.97 13.90

market_5 13.25 13.67 15.38 26.31 29.58 28.38 29.93 31.60 32.00 15.26 15.33

market_6 10.63 10.29 8.99 13.13 16.39 10.72 18.07 20.18 15.09 3.59 37.63

mountain_1 0.23 0.78 0.42 17.05 88.60 3.71 17.05 88.61 3.85 31.63 0.00

shaman_2 24.77 28.27 25.49 0.56 1.67 0.46 25.07 29.43 25.75 30.98 27.04

shaman_3 27.09 52.22 33.92 1.31 11.45 1.75 27.61 55.51 34.43 3.81 29.64

sleeping_2 3.52 2.97 1.74 0.02 0.01 0.00 3.52 2.97 1.74 0.00 0.54

temple_2 5.96 5.54 4.92 9.66 10.52 9.51 9.82 10.55 9.87 1.32 4.13

temple_3 10.65 16.62 11.04 62.34 81.39 32.10 63.56 81.86 34.60 4.20 25.42

AVERAGE 15.35 19.84 15.99 18.32 28.16 13.70 27.26 38.93 23.52 13.68 19.95

D1-all Fl-all SF-all MS-all

ambush 5 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

cave 4 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

mountain 1 Ours GT Ours GT Ours

GT OSF PRSM OSF PRSM OSF

Reference images / motion segmentation Disparity maps Flow maps

Figure 9. Comparisons on ambush 5, cave 4 and mountain 1 from Sintel: [LEFT] Motion segmentation results – ours, OSF and ground

truth. [MIDDLE] Disparity and [RIGHT] Flow maps estimated by our method, PRSM and OSF and the ground truth versions.
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