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Abstract

This paper revisits visual saliency prediction by evalu-

ating the recent advancements in this field such as crowd-

sourced mouse tracking-based databases and contextual

annotations. We pursue a critical and quantitative ap-

proach towards some of the new challenges including the

quality of mouse tracking versus eye tracking for model

training and evaluation. We extend quantitative evaluation

of models in order to incorporate contextual information

by proposing an evaluation methodology that allows ac-

counting for contextual factors such as text, faces, and ob-

ject attributes. The proposed contextual evaluation scheme

facilitates detailed analysis of models and helps identify

their pros and cons. Through several experiments, we find

that (1) mouse tracking data has lower inter-participant vi-

sual congruency and higher dispersion, compared to the

eye tracking data, (2) mouse tracking data does not totally

agree with eye tracking in general and in terms of different

contextual regions in specific, and (3) mouse tracking data

leads to acceptable results in training current existing mod-

els, and (4) mouse tracking data is less reliable for model

selection and evaluation. The contextual evaluation also

reveals that, among the studied models, there is no single

model that performs best on all the tested annotations.

1. Introduction

There has been a significant recent progress in the field

of visual saliency. Numerous models and datasets have been

introduced. The new databases have been expanded along

two dimensions: (1) increasing the number of images and

viewers, and (2) introducing richer contextual annotations

(e.g., image categories [2], and regional attributes [33],

etc.). To accomplish these objectives, researchers have been

relying on crowd sourcing schemes for recording eye move-

ments (e.g., using webcams [34]) or alternative signals such

as mouse movements and clicks (e.g. [14]), and annotations.

Along with these advances, however, new challenges have

surfaced that need to be addressed. For example, it remains

to be answered whether and to what degree different at-

Figure 1. Visual comparison of fixation maps using eye and mouse

tracking, overlaid on images. From left to right: image, eye track-

ing, mouse tracking using Amazon Mechanical Turk (AMT), and

mouse tracking in controlled laboratory (LAB) from [33]. The red

and green ellipses indicate over and under estimation, respectively.

tentional proxies agree with each other? Is it possible to

reach human level accuracy by utilizing large scale mouse

data? and how should these new types of data be used for

saliency model evaluation and construction? Fig. 1 visually

compares density maps from eye and mouse tracking. It de-

picts a noticeable difference between maps encouraging a

detailed quantitative study.

Our contributions. This paper presents 2 main contribu-

tions: (1) assessing the quality of crowd sourced mouse

tracking as an alternative to eye tracking and the effect of

such data on model training and evaluation, and (2) intro-

ducing a contextual evaluation scheme for evaluating mod-

els in a fine-grained manner. The contextual evaluation

is applicable to both model assessment and comparison of

mouse tracking with eye tracking. Further, this study will be

addressing some of the questions that have surfaced by in-

troduction of mouse tracking based databases and help bet-

ter understand saliency models’ performance.

Is this another benchmark? No. We are not carrying out

yet another benchmark. The literature is already replete

with benchmarks [3, 17, 4, 6], metric discussions [21, 26,

32, 7], review papers [28, 1], and analytical model compar-

isons [8]. Alternatively, we seek to answer some important

questions pertaining to mouse tracking as a substitute to eye
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movements. The answers will benefit both model construc-

tion and evaluation. We furthermore attempt to incorpo-

rate available contextual annotations into model evaluation

in order to facilitate automatic detailed analysis of models.

This will help us understand the strengths and weaknesses

of models better.

2. Related studies

Considering mouse tracking analysis for visual saliency

and fixation prediction, the most relevant work is [14]. It

proposes to use mouse tracking instead of eye tracking in

order to scale up data collection over stimuli of larger mag-

nitude (millions instead of hundreds or thousands). Jiang

et al. [14] analyzed some properties of mouse data such as

center-bias, evaluated mouse maps against fixation maps,

and compared saliency models using mouse tracking data.

There are, however, some aspects which are overlooked in

their work such as congruency among participants, the ef-

fect of mouse tracking on training a saliency model, model

evaluation and comparison using mouse versus eye track-

ing. Here, we revisit Jiang et al.’s work and conduct a

systematic investigation of mouse data with respect to eye

movements.

Considering contextual model analysis, the most rele-

vant to this paper is the recent study by Bylinskii et al. [8].

They chose several top-performing saliency models based

on deep learning architectures over the MIT300 dataset [6].

They then conducted a behavioral study by asking Amazon

Mechanical Turk workers to label (1 out of 15 labels) im-

age regions falling on > 95% of the fixation heatmap. An-

alyzing failure of models on those regions, they found that

about half the errors made by models are due to failures in

accurately detecting parts of people, faces, animals, and text

which means that models should try to improve on those ar-

eas. The main criticism to such a human-based evaluation

is that it is limited to the number of models, subjects, and

images making it expensive to conduct in large scale. To ad-

dress such shortcomings, we extend the existing evaluation

schemes and propose a systematic framework for contextual

model evaluation. We then employ the proposed technique

for detailed comparison of mouse tracking and eye tracking

whenever possible.

The benchmark and metric studies have some common-

alities with the current study in terms of methodology. For

example, Borji et al. [4] analyzed different parameters af-

fecting saliency evaluation (e.g., center-bias, class cate-

gories, etc) in order to benchmark models. Riche et al. [26]

employed statistical analysis in order to do metric selection

for saliency evaluation. They show a small number of met-

rics is enough for model evaluation as many metrics carry

similar information. This study is, however, addressing the

impact of mouse tracking as an alternative to eye tracking

for learning saliency.

Database
Tracking Technology

(O, I)
Contextual Annotation

ET wET MT OL IC OA FB

FIGRIM [5] × — — (15,630) × × — —

EFC [15] × — — (16,500) × — × —

KTH Koostra [19] × — — (31, 99) — × — —

NUSEF [25] × — — (25, 758) — × — —

CAT2000 [2] × — — (24, 4000) — × — —

salObj [22] × — — (12, 850) × — — —

iSUN [34] — × — (3, 8926) × × — —

SALICON [14] — — × (60, 10000) × — — —

OSIE [33] × — × (15, 700) × — × ×

Table 1. Comparison of databases in terms of augmented annota-

tions and eye tracking technology. (O, I) corresponds to the aver-

age number of observers and the number of images. The tracking

technologies are ET: commercial high-end eye tracking devices,

wET: webcam based eye tracking, MT: mouse tracking. Type of

contextual information are OL: object type and localization, IC:

image category and scene type, OA: object attributes, FB: fore-

ground/background property of objects.

3. Saliency databases & contextual annotation

There exists numerous databases for saliency evaluation.

As of this writing, 23 datasets are enumerated by [6]. These

databases are often compared with each other in terms of

stimuli and experimental setup (e.g., number of observers,

distance to image center, recording device, task, etc.). In-

stead of comparing datasets along these dimensions, we

study them in terms of augmentation with extra informa-

tion. There are different levels of augmentation including,

image class categories, object localization, and object at-

tribute annotations.

Table 1 summarizes the information of some of the

most notable augmented databases. As depicted, most of

the databases have object category annotations in terms

of object bounding boxes, object masks or object bound-

aries. There are, however, only two databases with con-

textual object attribute annotations: Eye Fixation in Crowd

(EFC) [15] and Object and Semantic Images and Eye-

tracking (OSIE) [33]. The EFC database is collected for

analyzing saliency in crowds. It contains face bounding box

localizations and their attributes such as if a face is frontal,

profile, back or occluded.

The OSIE database has the widest range of contextual

annotations consisting of twelve boolean attributes convey-

ing semantic meaning of objects. These attributes include:

Text, Face (includes: back, profile, and frontal faces), Emo-

tion (if a face conveys emotion), Sound (objects producing

sound), Smell (objects with a scent), Taste (anything that

can be tasted), Touch (anything with tactile feeling), Motion

(moving/flying object), Operability (natural or man-made

tools used by holding with hands), Watchable (man-made

objects designed to be watched), Touched (an object be-

ing touched), and Gazed (if an object is gazed by some-

one in the image). Besides rich contextual annotations,

OSIE defines the foreground/background property of ob-

jects, which is desirable to validate how well a model dis-

criminates background and foreground regions.
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The OSIE dataset provides an invaluable opportunity for

comparing mouse and eye tracking. It consists of 700 im-

ages, 15 observers for eye tracking (OSIE EYE), approx-

imately 46 mouse tracking participants using a controlled

laboratory setup (OSIE LAB), and at least 86 mouse track-

ing participants using Amazon Mechanical Turk (OSIE

AMT). Thus, we base our study on OSIE dataset.

4. Metrics

Metrics of saliency evaluation. Numerous metrics for

saliency evaluation have been introduced in the past. Some

of them are: ROC-based metrics (e.g., AUC [30], AUC-

Judd [18], AUC-Borji [4], shuffled AUC (sAUC) [4, 36],

binned AUC [32]), similarity-based metrics (e.g., Corre-

lation Coefficient (CC) [16], Kullback-Leibler divergence

(KL) [21, 36, 13], Similarity score (SIM) [17], Earth

mover’s distance (EMD) [17], Information Gain (IG) [20]),

Normalized scanpath saliency (NSS) [24], and metrics

based on fixation sequence (e.g., Scanpath evaluation

score [4]). For brevity, we skip explaining them in details

and refer the readers to relevant publications [4, 7, 21, 26].

Minor variations in metrics can sometimes have signif-

icant consequences in the metric interpretation. For exam-

ple, [13] employ KL metric as a technique to measure the

similarity between the distribution of fixated and random

locations in a saliency map, while in [6, 26], the KL is

measured in terms of the similarity between fixation den-

sity maps and saliency maps. Consequently, in [13] a higher

KL value is better and in [6] a lower value is superior. It is

worth noting that we follow [6] in our experiments.

The appropriate metrics. Many of the saliency metrics

convey the same information making model performance

interpretation difficult. For easier interpretability of the re-

sults, we are motivated to select a subset of metrics. To this

end, mouse tracking data, OSIE AMT, is evaluated against

human eye fixation data, OSIE EYE. For the metrics, the

Spearman’s rank correlation coefficient (ρ) is computed be-

tween the score values of images. Classical multidimen-

sional scaling (MDS) is then employed for 2D visualization

of the correlation matrix. Results are summarized in Fig. 2,

indicating an overall high correlation between the metrics.

Considering the projection on the first eigenvalue (x-axis)

— it is the most contributing eigenvalue —, metrics can

be grouped into three clusters. The biggest cluster includes

metrics that encode fixation information, AUC-based met-

rics as well as NSS and IG. The other two clusters consist

of (1) CC and SIM, and (2) EMD and KL. We choose SIM,

KL, and sAUC for reporting the performance of models.

The sAUC is preferred over other AUC metrics and NSS

because (a) it has well-defined lower and upper bound val-

ues, (b) it has a defined chance-level value, and (c) it ac-

counts for center-bias in fixation distributions [4]. SIM and

KL metrics are selected as they act complementary to each

Algorithm 1 Computing metrics of contextual evaluation for a

saliency map: how to scale your preferred conventional metric for

exploiting contextual data. ⊙ is the element-wise product.

Input: Sal : a saliency map of size W ×H , a tensor of contextual masks

Cm of size W ×H×O, where O is the number of regions, the con-

textual attribute matrix Ca of size O×N , which reports existence of

an attribute, where N is the number of attributes, and human fixation

map Fix of size W ×H .

Output: A vector of contextual attributes’ evaluation Score of size N .

1: for all o regions in Cm do

2: Salo = Sal ⊙ Cm(:, :, o)
3: Fixo = Fix⊙ Cm(:, :, o)
4: s = compute metric(Salo, Fixo)

5: for all n attributes in Ca do

6: if Ca(o, n) is true then

7: update mean(Score(n), s)

8: end if

9: end for

10: end for

other, according to Fig. 2.

Contextual saliency evaluation. To perform contextual

evaluation, we use existing metrics with regard to contex-

tual annotations. That is, given an image, we employ the ex-

isting metrics within specified regions of images, which are

associated with contextual attributes. Algorithm 1 presents

how to compute the agreement between human eye fixations

and saliency maps inside annotated regions associated with

attributes such as gaze, face, and text.

In principle, all existing saliency evaluation metrics can

be employed for the purpose of contextual evaluation by the

proposed algorithm. The result of such a contextual evalua-

tion is a vector of scores that helps investigating the pros and

cons of a model capturing each property. While we recom-

mend using the contextual scores for a fine-grained analysis,

it is also possible to summarize the scores into one for the

purpose of model ranking. To achieve this, given the score

vector of a saliency map, Score, we define a weighted av-

erage score as CScore =
∑

N

n=1
wnScoren where N is the

number of contextual attributes and w is the weight vector

indicating the importance of each property.
∑

N

n=1
wn = 1,

where:

wn =
# of fixations on attribute n

# of fixations on images with attribute n
. (1)

To further summarize the scores over a database, the aver-

age over scores, mean CScore, is employed.

It is worth noting that all the attributes may not be present

in all the images when computing the average contextual

score. Thus, the average should be done with respect to the

number of images having an attribute, and not all images.

5. Analysis of mouse tracking data

Inter-participant visual congruency. “How is the inter-

participant visual congruency (IPVC) on mouse tracking
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Figure 2. Selecting the appropriate metric using multidimensional scaling (MDS) analysis. From left to right: metrics Spearman’s rank

correlation matrix, the normalized eigenvalues and the MDS visualization of metrics. The middle panel indicates that 2D visualization is

enough. The x-axis in the third panel corresponds to the first eigenvalue.

Data SIM KL sAUC

OSIE EYE 0.54±0.06 4.71±1.44 0.76±0.06

OSIE AMT 0.43±0.03 6.37±0.91 0.61±0.03

Table 2. The comparison of inter-participant visual congruency be-

tween eye tracking (EYE) and mouse tracking amazon mechani-

cal turk (AMT) data. Mean and standard deviation are reported.

The smoothing parameter for generating the maps is the optimized

value reported in [33, 14].

data compared to eye tracking?” The inter-participant1 vi-

sual congruency reflects the amount of consistency among

participants in viewing the same image. To compute the

amount of IPVC, we follow the one-versus-all scheme as

in [29]. That is, we take out one participant and compare it

against the fixation map of all other participants. This pro-

cess is repeated for all the observers and for all the images.

The results are summarized in Table 2, where ANOVA

analysis shows all the metrics are significantly different be-

tween groups (ρ < 0.001). As depicted, there is higher

visual congruency between the participants of the eye track-

ing experiments compared to the mouse tracking. In other

words, the mouse tracking data shows a higher dispersion

between participants. Since the stimuli is the same, this sug-

gests that mouse tracking data is not as accurate as expected

for substituting eye tracking.

We furthermore complement the IPVC by conducting

another analysis to measure the performance as a function

of the number of participants. The number of participants

are kept equal to the number of observers in OSIE EYE for

OSIE AMT, that is, 15 participants. Due to larger number

of participants in OSIE AMT, we make 10 disjoint folds,

covering all the mouse participants of OSIE AMT. For each

fold, we randomly select p participants from the participants

of a fold and evaluate them against all the participants of

that fold. The process is repeated 10 times. Similar proce-

dure is employed for OSIE EYE, except that there is only

1We use the term inter-participant instead of inter-observer to signify

the role of other recording mediums such as mouse.

one fold of participants here. It is worth noting that we

keep the smoothing factor to the optimum value reported

by [33, 14] that produces the maximum performance for the

case of all participants for efficiency reasons.

Fig. 3 summarizes the results. Akin to the IPVC exper-

iment, there exists a higher dispersion between the mouse

participants compared to the eye tracking participants. The

KL and SIM, however, converge to their upper bounds for

maximum participants since they are designed to produce 0

and 1 for exactly similar inputs, respectively. The sAUC al-

ways shows a significant gap between mouse and eye data.

Number of participants. “How many participants are re-

quired in order to replicate eye tracking by following mouse

movements?” To answer the question, we randomly choose

participants from the mouse tracking data of OISE AMT,

and build a mouse density map to predict the eye fixation

density maps. We evaluate different number of participants.

The evaluation process is repeated 10 times and the mean

performance is reported.

Fig. 4 depicts the results, indicating a significant gap be-

tween mouse tracking and eye tracking. Even 90 partici-

pants contributing mouse data can not achieve the eye track-

ing performance of 15 observers. In one hand, this shows

there is no need for more than 40 or 50 mouse participants

consistent with the number used in SALICON [14]. On the

other hand, the result is alarming as the influence of the ex-

isting large gap on saliency models is not well-investigated.

Contextual information and gaze allocation. “How is

gaze allocated to different regions and does mouse tracking

data capture the same contextual information as eye track-

ing does?” The gaze allocation on different image parts and

their contextual annotations is investigated by measuring

the average allocated gaze over all contextual annotations

and images. The results are summarized in Fig. 5. Aligned

with the numerous studies on attention guiding features, it

is not surprising that regions associated with face, motion,

and watchable property are more attended.

Fig. 5 also compares the gaze allocation to annotated re-

gions by eye tracking with gaze allocation by mouse track-

1777



0.40

0.46

0.52

0.58

0.64

0.70

0.76

0.82

0.88

0.94

1.00

151051

S
IM

Number of Participants

0.00

0.65

1.30

1.95

2.60

3.25

3.90

4.55

5.20

5.85

6.50

151051

K
L

Number of Participants

0.60

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

0.87

0.90
OSIE AMT

OSIE EYE

151051

sA
U

C

Number of Participants

Figure 3. Comparing p participants against all participants. EYE is evaluated by EYE as ground truth and AMT is evaluated using AMT.

The smoothing parameter for generating the maps is the optimized value reported in [33, 14].

0.40

0.46

0.52

0.58

0.64

0.70

0.76

0.82

0.88

0.94

1.00

90806050402015101

S
IM

Number of Participants

0.00

0.65

1.30

1.95

2.60

3.25

3.90

4.55

5.20

5.85

6.50

90806050402015101

K
L

Number of Participants

0.60

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

0.87

0.90
OSIE AMT

OSIE EYE

90806050402015101

sA
U

C

Number of Participants

Figure 4. The number of mouse participants to achieve eye tracking performance, i.e., both EYE and AMT are evaluated using EYE as

ground truth. The smoothing parameter for generating the maps is the optimized value reported in [33, 14].

0.00

0.05

0.10

0.15

0.20

0.25
OSIE LAB

OSIE AMT

OSIE EYE

gaze
d

to
uch

ed

w
atc

hable

opera
bili

ty

m
otio

n

to
uch

ta
st

e
sm

ell

so
und

em
otio

n

fa
ce

te
xt

P
ro

b

Figure 5. Average allocated gaze on all the contextual annotations

using eye tracking and mouse tracking data.

ing. The results indicate that on average mouse and eye

tracking show the same trend (ρ = 0.94 and ρ = 0.94 for

LAB and AMT, respectively). On a finer scale, however,

they have different characteristics. For example, eye track-

ing shows more gaze allocation to faces than motion, while

mouse tracking allocates more attention to motion than

faces. Furthermore, eye tracking associates more attention

to text, emotion, gazed and watchable regions while mouse

tracking affiliate more attention to smell, taste, touch, and

operability. Some properties are almost identical in grab-

bing attention by mouse and eye, e.g., sound and touched.

Contextual performance of mouse maps. “How well does

mouse tracking capture contextual information in compar-

ison to eye tracking?” To answer this question, we evalu-

ate mouse density maps against eye tracking ground truth.

The contextual evaluation of mouse maps against eye track-

ing for both OSIE AMT and OSIE LAB is summarized in

Fig. 6. Results show a gap between mouse tracking and eye

tracking. This gap becomes more significant for some prop-

erties, e.g., background regions are the mostly inconsistent

areas SIM < 0.6 and KL > 0.8. This can be an indica-

tor that mouse tracking may have a better agreement with

eye tracking as long as salient areas are foreground. This

finding also agrees with the existence of higher dispersion

in mouse tracking, shown by IPVC analysis in Table 2 and

experiment of Fig. 3.

Training on mouse data. “What is the effect of training a

model by mouse data on its performance?” We aim to an-

swer this question by training a model on mouse data and

evaluating it against eye tracking data in two experiments.

In the first experiment, training database is OSIE and the

test set is the MIT1003 [18]. We utilize the open source

implementation of SALICON model [12], a.k.a OpenSali-

con [27]. The training is done using the same initialization

and 3 epochs, feeding all the images 3 times using the same

random image order, for each ground truth type, including

eye tracking (EYE) and mouse tracking data using labora-

tory (LAB) and Amazon Mechanical Turk (AMT). Since

MIT1003 [18] does not have contextual annotation, we only

report the traditional scores for it.

Table 3 reports the result of training OpenSalicon using

mouse and eye tracking data. The statistical significance

test indicates that all the paris of trained OpenSalicon model

(by mouse or eye data) are significantly different than each

other in terms of the metrics for (p < 0.001), except for

the sAUC. This indicates that while training using mouse

data is similar to training using eye data in terms of sAUC,

the generated saliency maps are not necessarily similar to

ground truth. Fig. 7 depicts some examples, showing that
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Figure 6. Comparison of mouse density maps and fixation density maps against fixation ground truth (for eye tracking KL=0 and SIM=1).

Figure 7. Visual comparison of saliency maps from OpenSalicon,

trained by mouse and eye data. From left to right: ground truth,

maps from OpenSalicon trained by eye tracking and mouse track-

ing, respectively.

Model (Training GT) SIM KL sAUC

Human Performance 1 0 0.75

OpenSalicon (EYE) 0.390 1.198 0.715

OpenSalicon (AMT) 0.364 1.249 0.717

OpenSalicon (LAB) 0.365 1.257 0.722

Table 3. The effect of training ground truth source on model per-

formance: OpenSalicon performance on MIT1003. The training

is carried out on OSIE database using eye tracking (EYE), mouse

data from amazon mechanical turk (AMT), and laboratory (LAB)

as training ground truth (GT).

while the model trained on mouse data captures the salient

area, it is prone to over estimation.

The second experiment is carried out on OSIE dataset

using a 5 fold cross-validation scheme. That is, one-fifth

of the data is used for test and the rest for training. All the

images are used in disjoint folds. In each fold, the saliency

maps are predicted for the test set and contextually evalu-

ated. The evaluation is always performed using OSIE EYE

as ground truth, that is, even if a model is trained on OSIE

AMT or LAB, the evaluation of test fold is done using eye

tracking-based ground truth.

Figure 8 summarizes the results. Overall, training on eye

tracking data achieves a better performance (better mean

CScore). There are, however, some differences in terms

of contextual performance. For example, training Open-

Salicon on mouse tracking data produces better scores for

background, while training on eye tracking results in su-

perior scores for foreground. Smell is learned better on

mouse tracking AMT ground truth, while faces, emotion,

and sound are better captured by a model trained on eye

tracking data. To summarize, the findings suggest that the

mouse tracking can generally be an acceptable replacement

for training data, though the models trained on it can be

slightly inferior to the model’s trained on eye tracking.

Evaluation on mouse data. “How does evaluation on

mouse tracking data affect our understanding of a model’s

performance?” We have already observed that there are

some differences between mouse tracking and eye track-

ing in terms of contextual behavior and participant visual

congruency. While we could not find severe differences on

training a model using either eye tracking or mouse track-

ing, a crucial question is: will the same phenomenon be ob-

served for model selection and evaluation by mouse data?

To answer this question, we evaluate several models,

including, OpenSalicon [27], SalNet [23] (deep network),

BMS [35], AWS [10], GBVS [11], Judd [18], eDN [31],

CovSal [9] on two databases and ground truth data. The

models are chosen based on their performance report on

MIT300 [17] and code availability at the time of this writ-

ing. We train OpenSalicon on MIT1003 [18]. The pre-

trained models of SalNet, eDN, and Judd models, provided

by the authors, are used. GBVS, CovSal, AWS, and BMS

models do not need training.

The test databases are OSIE, eye tracking and mouse

tracking (AMT) ground truths and the MIT300 [17]. We

report the traditional sAUC, KL, and SIM scores for each

model and database for the sake of comparability between

databases. The average rank score of each model, RAS, is

computed by averaging over the rank of each score of the

model. The models are ranked based on the RAS value.

The results are summarized in Table 4. It shows there is

inconsistency between models’ ranks on different databases

and settings. To investigate the severity of this phe-

nomenon, we computed the Spearman’s rank correlation be-

tween the pairs of models’ ranks on databases. The result

reveals that the pair of OSIE eye tracking and MIT300 eye

tracking has ρ = 0.95 while the pair of OSIE eye track-

ing and OSIE mouse tracking has the ρ = 0.73. Similarly,

the pair of OSIE mouse tracking and MIT300 eye tracking

has ρ = 0.80. To conclude, evaluating models on the same

images with different ground truth produces much different

1779



0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

m
ean CScore

backgro
und

fo
regro

und

gazed

to
uched

watchable

operabilit
y

m
otio

n

to
uch

taste
sm

ell

sound

em
otio

n

face
te

xt

S
IM

0.0

0.3

0.6

0.9

1.2

1.5

m
ean CScore

backgro
und

fo
regro

und

gazed

to
uched

watchable

operabilit
y

m
otio

n

to
uch

taste
sm

ell

sound

em
otio

n

face
te

xt

K
L

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

0.82

0.86

0.90

OpenSalicon (LAB)

OpenSalicon (AMT)

OpenSalicon (EYE)

Human Eye

m
ean CScore

backgro
und

fo
regro

und

gazed

to
uched

watchable

operabilit
y

m
otio

n

to
uch

taste
sm

ell

sound

em
otio

n

face
te

xt

sA
U

C

Figure 8. The effect of training ground truth source on model performance. OpenSalicon is trained and tested on OSIE images using 5

fold cross-validation. OpenSalicon (EYE) is trained on eye fixations where OpenSalicon (AMT) and OpenSalicon (LAB) are trained on

mouse tracking from amazon mechanical turk and laboratory, respectively. The test ground truth is always eye tracking and the human

performance from eye tracking (Human Eye) is reported as the upper bound (for human KL=0 and SIM=1).

ranking compared to evaluating models on different images

using eye tracking based ground truth.

This finding adversely affects the reliability of mouse

tracking ground truth as an alternative to eye tracking for

model evaluation because the rank correlation of saliency

models on the same images using different ground truth

sources (eye tracking and mouse tracking) is significantly

lower than the rank correlation of models by different im-

ages and eye tracking ground truth.

6. Contextual model evaluation

Over still images, the previous research [8] has shown

that models are still consistently under-predicting seman-

tically important image regions (e.g. text, people, actions,

and etc.). Computing scores over the whole image and

averaging large image collections conceals such deficien-

cies. Thus, as models continue to improve, measuring more

precisely how they preform over contextually annotated re-

gions becomes a necessity. We, here, employ the proposed

contextual evaluation scheme for model assessment. Using

the models, OpenSalicon [27] (trained on MIT1003), Sal-

Net [23] (deep network), BMS [35], AWS [10], GBVS [11],

Judd [18], eDN [31], CovSal [9], we compute the saliency

maps for the OSIE EYE and contextually evaluate them.

Table 5 summarizes the results in terms of contextual

scores and the mean CScore. Considering the overall score,

the mean CScore is numerically different than the tradi-

tional scores. While OpenSalicon is the overall top per-

forming model, it is not the winner on all contextual prop-

erties. Different models tend to favor different properties.

This helps identify a model’s deficiency and choose an ap-

propriate model for a specific application. For example, the

AWS model is better capturing text areas, while it is not

the best model among the current models in terms of mean

CScore. Therefore, for a text processing application, AWS

may be a better model in order to curtail excess data. More

importantly, the proposed scheme allows one to identify the

weak points of a saliency model more easily and efficiently.

In terms of model ranking and benchmark, computing

the ranks as before, the ranks would be OpenSalicon>

SalNet> BMS> AWS> GBVS> eDN> Judd> CovSal.

The proposed approach is thus producing similar ranks to

the traditional metrics, where the correlation between the

model ranks by traditional metrics and mean CScore is

ρ = 0.98 on OSIE EYE and ρ = 0.91 in comparison with

the model ranks of MIT300.

7. Conclusions and future research

The results of this study show that the inter-participant

visual congruency is significantly lower for mouse track-

ing data in comparison to the eye tracking. We also learn

that even 90 mouse tracking participants can not be as ac-

curate as the maps from 15 eye tracking participants. This

signifies the inefficiency of the mouse tracking and the fact

that less accurate ground truth are obtained by employing

mouse tracking. On a fine-grained analysis, this is evident

in the disagreement between mouse and eye tracking on

background regions. Nonetheless, mouse tracking captures

an acceptable level of visual saliency as a low cost alterna-

tive to eye tracking.

Analyzing the effect of data type on training deep models

using OpenSalicon [27], the open source implementation

of [12], reveals that OpenSalicon trained on mouse tracking

achieves a sAUC score close to the same model trained on

eye tracking data. Further, it captures most salient regions,

though it may not produce similar maps to human fixation

maps according to SIM and KL scores. This motivates that

mouse tracking data can be useful for model training.

In terms of model evaluation, our results are not in fa-

vor of mouse tracking data. Mouse tracking seems a less

reliable ground truth for model evaluation and ranking. The

rank correlation of models are significantly smaller between

OSIE EYE and OSIE AMT (same images; different ground

truth source type), compared to OSIE EYE and MIT300

(different images; both with eye tracking ground truth), 0.73

vs. 0.95. Due to this, we do not recommended to compare

models solely based on mouse tracking data.
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OSIE database MIT300 database

Eye tracking Mouse tracking (AMT) Eye tracking

Model sAUC KL SIM RAS R sAUC KL SIM RAS R sAUC KL SIM RAS R

Human 0.89 0 1 – – 0.77 0 1 – – 0.81 0 1 – –

OpenSalicon [27] 0.80 0.79 0.52 1 1 0.68 0.55 0.67 3 4 0.72 0.83 0.50 2 2

SalNet [23] 0.78 0.86 0.50 2 2 0.69 0.44 0.73 1 1 0.69 0.81 0.52 1.33 1

BMS [35] 0.78 1.04 0.44 2.66 3 0.68 0.47 0.65 2.66 3 0.65 0.81 0.51 2.33 3

AWS [10] 0.76 1.10 0.43 4 4 0.68 0.47 0.64 3 4 0.68 1.07 0.43 4.33 5

GBVS [11] 0.68 1.10 0.43 4.33 5 0.60 0.44 0.66 2.33 2 0.63 0.87 0.48 4 4

Judd [18] 0.68 1.30 0.36 5 6 0.60 0.51 0.60 4 6 0.60 1.12 0.42 6.33 6

eDN [31] 0.68 1.31 0.36 5.33 7 0.59 0.52 0.59 5 7 0.62 1.14 0.41 6.66 7

CovSal [9] 0.59 2.26 0.40 6 8 0.53 2.82 0.49 6.3 8 0.57 2.68 0.47 6.66 7

Table 4. Comparing eye tracking and mouse tracking ground truth data for model evaluation. RAS is the average rank score over metrics

and R is the final rank.
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Human 0.71 0.79 0.84 0.84 0.83 0.81 0.77 0.84 0.80 0.76 0.78 0.78 0.85 0.86 0.80

OpenSalicon 0.59 0.65 0.73 0.69 0.64 0.65 0.61 0.74 0.60 0.63 0.64 0.63 0.74 0.71 0.66

SalNet 0.55 0.65 0.69 0.66 0.69 0.64 0.62 0.70 0.60 0.60 0.60 0.62 0.68 0.72 0.64

BMS 0.56 0.63 0.68 0.64 0.64 0.63 0.61 0.63 0.58 0.60 0.60 0.62 0.65 0.74 0.62

AWS 0.57 0.60 0.60 0.62 0.61 0.60 0.60 0.63 0.57 0.59 0.59 0.60 0.64 0.74 0.60

eDN 0.51 0.61 0.65 0.62 0.57 0.54 0.57 0.58 0.52 0.52 0.54 0.56 0.56 0.67 0.57

Judd 0.48 0.61 0.64 0.62 0.56 0.53 0.54 0.59 0.51 0.50 0.54 0.56 0.55 0.67 0.56

GBVS 0.49 0.60 0.61 0.58 0.55 0.54 0.56 0.56 0.52 0.50 0.55 0.56 0.54 0.66 0.55

CovSal 0.47 0.61 0.63 0.59 0.52 0.49 0.52 0.52 0.50 0.48 0.51 0.56 0.50 0.61 0.53

K
L

OpenSalicon 0.13 0.24 0.25 0.38 0.46 0.39 0.39 0.41 0.39 0.24 0.29 0.27 0.55 1.31 0.30

SalNet 0.30 0.23 0.29 0.37 0.32 0.32 0.37 0.46 0.33 0.33 0.28 0.30 0.60 1.24 0.32

BMS 0.13 0.24 0.33 0.44 0.43 0.39 0.39 0.62 0.38 0.23 0.32 0.27 0.74 1.41 0.35

GBVS 0.14 0.22 0.32 0.42 0.47 0.40 0.35 0.62 0.36 0.26 0.32 0.27 0.78 1.34 0.35

AWS 0.12 0.27 0.38 0.47 0.48 0.42 0.38 0.63 0.40 0.24 0.32 0.28 0.78 1.40 0.37

eDN 0.13 0.25 0.36 0.45 0.49 0.41 0.38 0.65 0.37 0.26 0.33 0.29 0.79 1.58 0.37

Judd 0.14 0.26 0.36 0.44 0.49 0.42 0.39 0.65 0.38 0.26 0.34 0.29 0.80 1.59 0.37

CovSal 2.17 1.16 0.46 0.85 1.11 1.78 2.33 1.34 1.58 2.23 0.88 1.29 1.82 3.32 1.45

S
IM

SalNet 0.83 0.78 0.72 0.69 0.70 0.71 0.72 0.65 0.72 0.78 0.75 0.76 0.58 0.42 0.74

OpenSalicon 0.82 0.77 0.75 0.68 0.64 0.68 0.68 0.67 0.68 0.76 0.74 0.75 0.60 0.39 0.73

BMS 0.82 0.76 0.70 0.65 0.65 0.67 0.68 0.58 0.68 0.76 0.72 0.74 0.54 0.35 0.71

GBVS 0.82 0.77 0.70 0.66 0.63 0.67 0.70 0.59 0.69 0.75 0.72 0.74 0.51 0.37 0.71

AWS 0.83 0.75 0.68 0.65 0.63 0.66 0.69 0.59 0.68 0.76 0.72 0.74 0.52 0.35 0.70

eDN 0.82 0.75 0.68 0.64 0.62 0.66 0.68 0.57 0.68 0.75 0.71 0.73 0.50 0.31 0.69

Judd 0.82 0.75 0.68 0.65 0.62 0.65 0.68 0.57 0.67 0.75 0.71 0.73 0.50 0.30 0.69

CovSal 0.71 0.75 0.72 0.66 0.58 0.59 0.62 0.55 0.63 0.66 0.68 0.70 0.44 0.38 0.66

Table 5. Contextual evaluation of models on OSIE with eye tracking as ground truth. The sAUC, KL, and SIM scores for each of the

contextual properties, background, foreground and mean CScore, i.e., mean gaze weighted contextual score, are reported. The human

performance for KL=0 and SIM=1. Models appear in descending performance order for each score.

Future directions. Our results show that mouse tracking

data in general offers a first order approximation to eye

tracking. The mouse tracking data is useful for model train-

ing. A fine-grained analysis, however, highlights the short-

comings of mouse tracking data, in particular the effect of

contextual cues such as gaze direction, action end point,

etc. (see Fig. 1.) Our results suggest that high performance

achieved by recent saliency models, based on deep learning,

might be merely due to high volume of training data. Mouse

data, although noisy, has been very helpful but that does not

necessarily mean that collecting even more mouse data will

eventually get us to human level accuracy over fixations.

We believe that future research should focus on fine-

grained analysis of ground truth data and models in order to

understand attentional mechanism better and improve exist-

ing saliency models. Our research showed that there is no

single model performing best on all the contextual annota-

tions. This indicates models may be complementary to each

other and motivates further research towards understanding

models’ behaviors on fine-grained details.
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