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Abstract

We propose a novel concept of asymmetric feature maps

(AFM), which allows to evaluate multiple kernels between a

query and database entries without increasing the memory

requirements. To demonstrate the advantages of the AFM

method, we derive a short vector image representation that,

due to asymmetric feature maps, supports efficient scale and

translation invariant sketch-based image retrieval. Unlike

most of the short-code based retrieval systems, the proposed

method provides the query localization in the retrieved im-

age. The efficiency of the search is boosted by approximat-

ing a 2D translation search via trigonometric polynomial

of scores by 1D projections. The projections are a special

case of AFM. An order of magnitude speed-up is achieved

compared to traditional trigonometric polynomials. The re-

sults are boosted by an image-based average query expan-

sion, exceeding significantly the state of the art on standard

benchmarks.

1. Introduction

Efficient match kernel [3] is a popular choice in applica-

tions evaluating complex similarity measures on large col-

lections of objects, where an object is a set of elements. This

includes local feature descriptors [3, 5] and image retrieval

with short descriptors [38]1.

In efficient match kernel, all elements of the sets are

mapped to a finite feature map [27, 39]. An inner product of

the feature maps approximates evaluation of a specific ker-

nel, defining similarity of the set elements. We propose an

extension to this concept. In the asymmetric feature map,

the query uses a different embedding than the database ob-

jects. The query embedding defines the kernel that is evalu-

ated between the query and the database entries. Thus, mul-

tiple kernels can be evaluated while the memory require-

ments for the database remains the same (up to a scalar per

kernel) as for a single kernel to be evaluated. The embed-

dings are obtained via joint kernel feature map optimization,

which significantly improves the quality of kernel approxi-

mation for a fixed dimensionality of the feature map.

1The authors were supported by the MSMT LL1303 ERC-CZ grant.

The application domain of AFM is wide, in particu-

lar any method using efficient match kernel benefits from

AFM. We evaluate the AFM on a sketch-based retrieval ap-

plication. Sketch-based retrieval has received less attention

than image retrieval and still remains challenging. Instead

of a real image, the query consists of an abstract binary

sketch. This allows the user to quickly outline an object,

e.g. by a finger on a tablet or smart phone, and search for

relevant images (see Figure 1). The progress in this area

has more or less followed the footsteps of traditional im-

age retrieval. The first systems employed global descrip-

tors [8]. Then, the Bag-of-Words paradigm with local de-

scriptors and feature quantization [17, 16, 30] was adopted.

Due to the absence of textural cues on the query side, the

image representations are shape based. Bridging the repre-

sentation gap between hand-drawn sketches and real images

is one of the challenges making the task difficult. Matching

based on shape information has been addressed previously.

For instance, in object recognition and detection [2, 17, 23],

a costly online matching is performed, which prevented the

methods to scale to large image collections. Recent meth-

ods manage to index million [7] to billion [36] images for

sketch-based retrieval, at the cost of sacrificed invariance to

geometric transformations.

To demonstrate the impact of the AFM, we propose a

short vector image representation allowing to index large

image collections for sketch-based search. Scale and trans-

lation invariant real-time search allows to process an or-

der of millions of images per one processor thread. The

AFM based method achieves state-of-the-art results on stan-

dard benchmarks. The method runs at speed comparable

to previously published approaches tailored to sketch-based

Figure 1. Scale and translation invariant query-by-sketch retrieval.

An example of sketch queries and top-retrieved images with the

sketch localization overlaid in green color.
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search. Compared with methods based on efficient match

kernel [38], the proposed method achieves order of mag-

nitude speed-up. Unlike most of the methods using low-

dimensional descriptors, the proposed method delivers lo-

calization of the object in both scale and space. The scale

invariance is achieved by evaluating multiple kernels with-

out the need to store multiple representations for database

images. The translation invariance and object localization

is provided by an efficient similarity evaluation on a 2D

grid of translations. Namely, the four main contributions

of this work are as follows. (1) Asymmetric explicit feature

maps allowing the use of multiple kernel functions without

constructing multiple representations for database items are

proposed. (2) A joint kernel approximation approach for

multiple kernels is derived, generalizing a recent approach

of low dimensional explicit feature maps (LDFM) [9]. (3)

The scoring through trigonometric polynomial introduced

in [38] is further extended and a significant speed-up of

its evaluation is proposed. (4) State-of-the-art sketch-based

image retrieval based on the AFM, which is further boosted

by query expansion which acts, not on the edge maps as

standard sketch matching, but on the original images.

The rest of paper is organized as follows. Related work

is discussed in Section 2 and the necessary background is

presented in Section 3. Sections 4 and 5 describe our contri-

butions on asymmetric explicit feature maps and on sketch

retrieval, respectively, while the retrieval procedure and the

experimental evaluation are analyzed in Section 6.

2. Related work

The most similar work to ours is the approach of Tolias et

al. [38], where the trigonometric polynomial scores were in-

troduced in the context of image retrieval (see Section 3.3

for technical details). Shape properties of local features,

such as dominant orientation or position, are jointly en-

coded with the SIFT descriptor. Despite initially assuming

aligned objects, their kernel descriptor comes with an effi-

cient way to compute similarity over multiple image trans-

formations. Compared to their method, asymmetric fea-

ture maps introduced in our paper: i) reduce the memory

requirements of multi-scale search by roughly a factor of

3, and ii) achieve an order of magnitude speed-up through

approximate translation search. The trigonometric polyno-

mials have been also used by Bursuc et al. [5] in the con-

text of rotation invariant feature descriptors. The descriptor

has recently shown competitive results with CNN based ap-

proaches [1].

Since we demonstrate the advantages of AFM on sketch

based retrieval, we provide a brief review of relevant lit-

erature on this topic. The line of research that focuses

on sketches includes recognition [14, 40] or retrieval [24]

of sketches. This paper addresses sketch-based image re-

trieval, which tries to match sketch queries to real images

from a large collection. Following successful examples of

traditional image retrieval, sketch-based methods employ

global image representation [8, 29] or local descriptors and

the Bag-of-Words model. In the latter case, representa-

tive methods employ local descriptors that are traditionally

used on images [16, 30] or proposed particularly for this

task [15, 28, 18, 6]. Some examples are HOG descriptors

which are adapted for sketch retrieval [18] and were re-

cently extended to capture color [4], symmetry-aware and

flip invariant descriptors [6], and descriptors based on lo-

cal contour fragments [28]. Generic approaches performing

learning of discriminative features have been shown effec-

tive for sketch retrieval too [33].

Chamfer matching appears to be a good similarity mea-

sure for object shapes [37]. Recent attempts focus on

Chamfer matching approximations in order to increase scal-

ability. Cao et al. [7] binarize the distance transform map

and manage to index two million images. However, their

approach completely lacks invariance. The same holds for

the work of Sun et al. [36] who increase the scale of the in-

dexed collection up to one billion. Despite the achievement

of scalability, rough approximations of Chamfer matching

sacrifice accuracy. Recently, Parui and Mittal [25] proposed

a similarity invariant approach able to index up to one mil-

lion images. Their solution is based on dynamic program-

ming to match chains of contour lines, while the main draw-

back is the costly off-line indexing.

3. Background

We briefly review the necessary background, which in-

cludes efficient match kernels [3], explicit feature maps [39]

and efficient trigonometric polynomial scores [38].

3.1. Efficient Match Kernels

In many situations, an object is described by a set of

measurements P = {p ∈ R
d}. Employing a mapping

Ψ : R
d → R

D to the elements of P , the set representa-

tion of efficient match kernels is defined as

V(P) =
∑

p∈P

Ψ(p). (1)

Then, a dot product between the set representation yields

the similarity between sets

S(P,Q) = V(P)⊤V(Q) =
∑

p∈P

∑

p∈Q

Ψ(p)⊤Ψ(q). (2)

Normalized similarity is computed by cosine similar-

ity [38], i.e., dot product of ℓ2 normalized vectors,

S̄(P,Q) =
V(P)⊤V(Q)

√

V(P)⊤V(P)
√

V(Q)⊤V(Q)
, (3)

while another choice is to normalize by the set cardinal-

ity [3]. Herein, the cosine similarity is adopted ensuring

self-similarity is normalized to one. A number of image

representations, such as BOW [35, 11], Fisher vectors [26],

or VLAD [20], can be interpreted as efficient match kernels.
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3.2. Explicit feature maps

Let K(p, q) be a one-dimensional (p is now scalar) pos-

itive definite stationary kernel [32] K : R × R → R. The

value of a stationary kernel by definition depends only on

the difference λ = p−q,

K(p, q) = K(p, p− λ) = k(λ), (4)

where k(λ) is a signature of kernel K(p, q). Due to

Bochner’s theorem, kernel signature k can be written as

k(λ) =

∫ ∞

0

α(ω) cos(ωλ) dω, (5)

where α(ω) : R+
0 → R

+
0 . The kernel signature is approxi-

mated by sum over a finite set Ω of frequencies

k̂(λ) ≈
∑

ω∈Ω

αω cos(ωλ), (6)

where αω ∈ R
+
0 . Applying the trigonometric identity

cos(p− q) = cos(p) cos(q) + sin(p) sin(q) (7)

gives rise to feature map (or feature embedding) Ψω : R →
R

2 defined as

Ψω(p) =
(√

αω cos(ωp),
√
αω sin(ωp)

)⊤
. (8)

The inner product of two such vectors reconstructs the terms

of equation (6) since Ψω(p)
⊤Ψω(q) = αω cos(ω(p − q)).

Let the feature map Ψ(p) : R → R
D be constructed as

a concatenation of Ψω(p) for all ω ∈ Ω. Now, the inner

product
Ψ(p)⊤Ψ(q) = k̂(p− q) ≈ K(p, q) (9)

evaluates the approximation of the kernel signature (6) and

hence approximates the original kernel K. The choice of

the number of frequencies |Ω| determines the quality of the

approximation and the dimensionality of the embedding.

The dimensionality is 2|Ω|, or 2|Ω| − 1 if 0 ∈ Ω2.

Feature map construction. We mention in detail (and

compare) two approaches to construct the explicit feature

maps. We do not consider random feature maps [27], which

approximate the integral in (5) using Monte-Carlo methods.

Such feature maps provide a poor approximation for low-

dimensional feature maps.

Vedaldi and Zisserman [39] propose the following ap-

proximation to a kernel signature k(λ) on an interval λ ∈
[−Λ,Λ]. First, a periodic function g with period 2Λ is con-

structed, so that g(λ) = k(λ) for λ ∈ [−Λ,Λ]. The feature

map is then efficiently obtained by approximating periodic

g using harmonic frequencies only. This approach has been

shown sub-optimal [9]. Further, the periodic function g is

not even guaranteed to be positive definite.

A convex optimization approach is proposed by

Chum [9]. The input domain of k̂(λ) is discretized to fi-

nite set Z ⊂ [0,Λ]. The quality of the approximation is

measured at points in Z as, for example, an ℓ∞ norm

2If 0 ∈ Ω, then α0 sin(0λ) = 0 for all λ can be dropped from the

explicit feature map.

C∞(k, k̂) = max
λ∈Z

|k(λ)− k̂(λ)|. (10)

The set of frequencies Ω ⊂ Ω̄ are selected from a pool of

frequencies Ω̄, and corresponding weights αω ≥ 0, ω ∈ Ω̄
jointly through a solution of a linear program

min
k

C(k, k̂) + γ
∑

ω∈Ω̄ αω , (11)

where γ ∈ R
+ is a weight on the l1 regularizer controlling

the trade-off between the quality of the approximation and

the sparsity of αω . This is the method we adopt and extend

in this work.

3.3. Alignment using trigonometric polynomials

Tolias et al. [38] propose an image representation de-

rived by efficient match kernels and explicit feature maps.

We focus on the case that all measurements of set P are

shifted by a constant value ∆p; note that measurements p

are now scalars. The similarity under such shift forms a

trigonometric polynomial

S(P∆p,Q) =
∑

ω∈Ω

(βω cos(ω∆p) + γω sin(ω∆p)) , (12)

with P∆p = {p − ∆p, p ∈ P}. Parameters βω and γω are

given by dot products of relevant sub-vectors of V(P) and

V(Q). Finally the similarity measure that is invariant under

such shifting is given by S1(P∆p,Q) = max∆p S(P∆p,Q).
We postpone further analysis of polynomials of scores

until the image representation is introduced in Section 5.

4. Asymmetric feature maps

In this section, we introduce the concept of asymmet-

ric feature maps. Unlike in classical explicit feature maps,

a different feature map Ψ̂ is used on the query side and a

different one Ψ̂′ is used on the database side. We show

that with asymmetric feature maps, a number of differ-

ent kernels can be efficiently evaluated between query and

database vectors while keeping the database storage of fixed

size. Compare the feature map in equation (8) to the fol-

lowing feature maps for the query and database side respec-

tively
Ψ̂ω(q) =

(

αω cos(ωq), αω sin(ωq)
)⊤

(13)

Ψ̂′
ω(p) =

(

cos(ωp), sin(ωp)
)⊤

. (14)

The inner products Ψ̂(q)⊤Ψ̂′(p) = Ψ(q)⊤Ψ(p) are pre-

served. The kernel function is fully defined by the weights

on the query side. No additional storage is required on the

database side to evaluate the kernel. The same holds for ef-

ficient match kernels, as (1) is a normalized sum of feature

maps. To evaluate the cosine similarity (3), only a single

scalar per kernel K(i) needs to be stored for each database

entry P – the ℓ2 norm
√

V(i)(P)⊤V(i)(P), which is com-

puted offline.
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Joint approximation of multiple kernels. In order to

evaluate a number of different kernels K(i)(p, q) using

the asymmetric feature maps, all respective explicit feature

maps Ψ(i) have to be based on the same set of frequen-

cies Ω. A naive approach would be to optimize the set

of frequencies for one of the kernels and keep it fixed for

other kernels. This approach, however, leads to poor ap-

proximation, as shown in Figure 2. We propose an exten-

sion to LDFM [9] to jointly approximate a set of kernels

K(i) represented by their respective kernel signatures k(i),

i ∈ {1 . . . n}. The quality of the approximation is measured

by the sum of individual qualities (10)

C∗
∞ =

n
∑

i=1

C∞(k(i), k̂(i))=

n
∑

i=1

max
λ∈Z

|k(i)(λ)− k̂(i)(λ)|.

The optimization is performed by executing a linear

program
min

α
(i)
ω | ω∈Ω

C∗
∞ + γ

∑

ω∈Ω

max
i

α(i)
ω , (15)

where γ is a weight of the sparsity regularizer that controls

the number of frequencies used, i.e. the dimensionality of

the feature map. Following the approach of Chum [9], to

ensure the required dimensionality of the feature map, a bi-

nary search for γ is performed.

Figure 2 presents the approximation of three different

kernels using the same set of frequencies. We compare the

approximation using only harmonic frequencies, the naive

approximation mentioned above, and our joint approxima-

tion. The latter has a significantly better fit.

5. Sketch-Based Retrieval

In this section we present our sketch descriptor em-

ploying explicit feature maps and elaborate on the efficient

trigonometric polynomial of scores to further approximate

it. Our methodology is presented for the symmetric feature

maps, while the asymmetric case is equivalent. We finally

present efficient ways to perform the initial ranking and re-

ranking for sketch-based image retrieval.

5.1. Sketch descriptor

Consider a binary sketch as a set of contour points, that

is a set of pixels P that lie on the contour. A contour pixel

p ∈ P is represented as p = (px, py, pφ, pw), where px and

py are 2D image coordinates, pφ is the gradient angle (or

orientation) of the contour at (px, py), and pw is a strength

of the gradient. For real images, the contour parameters are

obtained form an edge detector. For sketches, pw = 1 is set

for all contour pixels.

The similarity between contour pixels is computed using

a multiplicative kernel composed of three one-dimensional

kernels, spatial kernels over px, py , and an orienta-

tion kernel over pφ. The 1D stationary kernels are de-

noted Kx(px, qx) = kx(λx), Ky(py, qy) = ky(λy), and

Kφ(pφ, qφ) = kφ(λφ) respectively. The sketch descriptor

is a weighted sum of contour pixel feature maps3

V(P) =
∑

p∈P

pwΨ(px)⊗Ψ(py)⊗Ψ(pφ). (16)

It is easy to show that sketch similarity (2) becomes

S(P,Q) =
∑

p∈P

∑

q∈Q

pwqwkx(λx)ky(λy)kφ(λφ). (17)

The orientation and spatial kernels are implemented by

1D RBF kernels with parameters σφ and σx = σy , re-

spectively. The set of frequencies are denoted by Ωφ and

Ωx = Ωy , while the dimensionality of the corresponding

embeddings is Dx = 2|Ωx| − 1 and Dφ = 2|Ωφ| − 1, re-

spectively. Note that frequency ω = 0 is always included.

The sketch descriptor has dimensionality Dx
2Dφ.

The proposed representation constitutes a holistic repre-

sentation encoding the global sketch shape. We now de-

fine a representation encoding only one of the spatial co-

ordinates along with the orientation. It is equivalent to the

projection of contour pixels on the horizontal/vertical im-

age axis. The sketch descriptor derived by projection on the

horizontal axis is given by

Vx(P) =
∑

p∈P

pwΨ(px)⊗ 1⊗Ψ(pφ), (18)

where the ⊗1 can be omitted and is only used to show, that

the x-projection is a sub-vector of (16) and hence a special

case of the proposed asymmetric feature map. This stems

from the presence of the constant component of the feature

map for y, corresponding to 0 ∈ Ωy . An analogous deriva-

tion holds for Vy(P) and vertical projection.

5.2. Position alignment

The sketch descriptor encodes spatial coordinates and

orientation of contour pixels. Therefore, alignment of ob-

jects is assumed, i.e. centered and up-right objects. Such an

assumption does not hold in real image collections and in-

troduces significant limitations. We now detail the polyno-

mial of scores (mentioned in Section 3) proposed by Tolias

et al. [38]. We show that translation invariance is achieved

by polynomial of scores, and that its evaluation can be effi-

ciently approximated to speed up the search process.

One dimensional. Consider the x-projected sketch descrip-

tor Vx(P). Let P∆x be the shifted version sketch P where

all contour pixels are horizontally translated by ∆x. Ele-

mentary trigonometric identities allow us to show that

Ψc
ω(x−∆x)= Ψc

ω(x) cos(ω∆x) + Ψs
ω(x) sin(ω∆x)

Ψs
ω(x−∆x)= Ψs

ω(x) cos(ω∆x)−Ψc
ω(x) sin(ω∆x),

(19)

3We use Ψ to denote both the spatial and orientation feature map and

simplify the notation. In fact, Ψ(px) and Ψ(py) approximate the spa-

tial kernels kx and ky , respectively, which are identical, while Ψ(pφ) the

orientation kernel kφ.
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Figure 2. Approximation comparison of multiple 1D RBF kernels (with different σ) using the same set of frequencies. We show approx-

imation using harmonic frequencies only, a naive approach of optimizing the leftmost kernel and using the same frequencies for all, and

our joint approximation. Maximum value is normalized to one such that the errors are comparable. |Ω| = 7 for all approximations.

where Ψc
ω and Ψs

ω denote the first and second dimension of

Ψω (8), respectively. Let Vc
ω(P) be the sub-vector of V(P)

comprised all elements that contain term Ψc
ω(x), and simi-

larly for Vs
ω(P). It turns out that the descriptor of the trans-

lated sketch is constructed from that of the original sketch

V
c
ω(P∆x)=V

c
ω(P) cos(ω∆x) +V

s
ω(P) sin(ω∆x)

V
s
ω(P∆x)=V

s
ω(P) cos(ω∆x)−V

c
ω(P) sin(ω∆x). (20)

The sketch similarity between sketches P and Q under hor-

izontal translation ∆x is a trigonometric polynomial

S(P∆x,Q) =
∑

ω∈Ωx

(βω cos(ω∆x) + γω sin(ω∆x)) , (21)

with coefficients βω and γω

βω =V
c
ω(P)⊤Vc

ω(Q) +V
s
ω(P)⊤Vs

ω(Q)

γω =V
s
ω(P)⊤Vc

ω(Q)−V
c
ω(P)⊤Vs

ω(Q). (22)

The coefficients βω and γω of this polynomial are computed

by two products of sub-vectors with Dφ dimensions. In to-

tal there are N1 = Dx coefficients to be computed. Fi-

nally, similarity for any translation with (21) has cost equal

to N1 scalar multiplications. If the candidate translations

are fixed, then terms cos(ω∆x) and sin(ω∆x) can be pre-

computed. Normalized similarity comes at no extra cost

since the ℓ2 norm of sketch descriptor remains constant un-

der translations (kx is a stationary kernel):

V(P∆x)
⊤
V(P∆x) = V(P)⊤V(P). (23)

Similarity that is invariant to horizontal translation is com-

puted by maximizing (21) for all possible translations

Sx(P∆x,Q) = max
∆x

S(P∆x,Q). (24)

Note that this similarity is also invariant to vertical transla-

tion as y coordinate is not encoded at all. However, this

makes the representation less discriminative. The actual

sketch transformation aligning the two shapes is given by

x̂1 = argmax∆x S(P∆x,Q). Similarity based on the verti-

cal projection is defined in a similar way.

Two dimensional. Consider the full 2D translation

(∆x,∆y). Descriptor V(P) encoding both spatial coordi-

nates is used. The corresponding second order trigonomet-

ric polynomial [38] of scores S(P∆x,∆y, Q) is constructed

Figure 3. Sketch (left) and the edge map (middle) of a real image

(right). We depict the translations maximizing similarity based on

1D projections (magenta) and the full 2D case (green).

similarly to the first order one. The details are omitted

for the sake of brevity. It allows for an efficient evalua-

tion of similarity for multiple 2D translations in a sliding

window manner. The cost to compute one of its coeffi-

cients is 4Dφ. There are N2 = 4(|Ωx| − 1)2 + 4(|Ωx| −
1) + 1 non-zero coefficients in total. The similarity com-

putation for a single 2D translation has cost equal to N2

scalar multiplications. Translation invariant similarity is

given by Sxy(P∆x,∆y,Q) = max(∆x,∆y) S(P∆x,∆y,Q),
and the transformation aligning the two shapes is given by

(x̂2, ŷ2) = argmax(∆x,∆y) S(P∆x,∆y,Q).

In Figures 3 and 4 we present an alignment example be-

tween a sketch and a real image. Similarity is computed

based on the horizontal and vertical projections, while also

for the 2D case. Maximum similarity is met at translations

that align the two silhouettes.

5.3. Efficient retrieval and query expansion

Herein, we propose three methods how to avoid exhaus-

tive evaluation of S(P∆x,∆y,Q). First method efficiently

selects a shortlist of images on which the score S̄xy is com-

puted. The other two methods are designed to limit the

number of possible translations over which S(P∆x,∆y,Q)
is evaluated to obtain a good approximation of S̄xy .

Shortlist by projections. The similarities S̄x and S̄y com-

puted over the projections (22) provide an estimate of the

S̄xy . We propose to use this estimate for initial ranking

and to compute the slow similarity S̄xy only on a short-

list of top S images. Experiments show that initial ranking

by S̄x + S̄y outperforms ranking that uses only one pro-

jection. To further speed-up the evaluation for large-scale

collections, we propose discriminative projection first ap-

proach. In this method, one projection is computed over the

whole dataset, creating a pre-shortlist of 3S images with
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Figure 4. Alignment results for the example in Figure 3. Similarity as a function of translation (in pixels): independent 1D projections

(left), the full 2D translation (middle), and the 2D binarized polynomial (right). At zero translation the centers of the sketch and the image

are aligned. The detection in magenta color (Figure 3) is based on the similarity shown at the left, while the one in green is based on that

shown in the middle.

the highest score. The second projection is only evaluated

on this pre-shortlist. Now, the shortlist based on the value of

S̄x+ S̄y is a sub-set of the pre-shortlist. The first projection

used is query dependent, the one with higher variance in the

relevant coordinate in the sketch query is used. Discrimina-

tive projection first is denoted as S̄>
+→S̄<.

Re-ranking by local refinement. The 1D alignment pro-

vides, besides the scores, the scale and 1D translations

(x̂1, ŷ1) maximizing the 1D projection scores, which of-

ten is a rough approximation of the full 2D alignment

(see Figure 3 and 4). In this approach, the full similarity

S(P∆x,∆y,Q) is only evaluated evaluated for a small neigh-

borhood of (x̂1, ŷ1) on a fixed 2D grid. Sketch similarity

computed by this method is denoted by Sx/y .

Re-ranking by binary polynomial. We efficiently ap-

proximate the second order polynomial by a correspond-

ing one that has binary coefficients and variables (i.e.

cos(ωx∆x) cos(ωy∆y) is binarized). We simply binarize

both by a sign function. The similarity approximation for

2D translation is given by dot product between binary vec-

tors which is faster to compute. Translation maximizing the

binary approximation is found, and S(P∆x,∆y,Q) is only

computed on a small neighborhood, as in the local refine-

ment. Figure 4 shows an example where the position of the

maximum on the 2D map of similarities for the binarized

case remains close to that of the real valued one. Experi-

ments show that the binary polynomials provide very good

estimate of the translation. We denote this method by Sxy⋆.

Query expansion. Query Expansion (QE) is a standard ap-

proach to improve retrieval results by a new query that ex-

ploits the top-ranked results [10, 12, 21]. Unlike the original

query, the QE is performed on image descriptors, the sketch

descriptors are only used for localization. A global CNN

image descriptor is used for QE, in particular off-the-shelf

CroW [22] with VGG16 network [34]. The 512D image

descriptor extracted per database image is compressed us-

ing product quantization [19] into 64 bytes. A basic version

of an Average Query Expansion (AQE) [10] is used. CroW

descriptors of the top results are averaged and a query is

issued.

6. Experiments

We briefly summarize the design choices of the indexing

and search procedure of our sketch-based retrieval. Then,

we evaluate our method and compare to the state of the art.

Indexing (offline stage). All database images are down-

sampled to have the longer side equal to 400 pixels. The

edges are detected by off-the-shelf detector of Dollár and

Zitnick [13]. The output edge strength is used as pw, while

all edges with strengths lower than 0.2 are completely dis-

carded. A single sketch descriptor per database image is

computed with AFM (14). Three kernels are used to search

at three scales. Finally, the corresponding ℓ2 norms for nor-

malizing similarity (3) are computed and stored.

Query (online stage). The sketch query is cropped with

a tight bounding box and resized similarly to database im-

ages. Two additional scales are given by down-sampling to

80% and 60%. Different query scales need to be matched

with different kernels; smaller scale is matched with nar-

rower kernel. The kernels shown in Figure 2 are used ac-

cordingly. The orientation kernel has σφ = 0.8. One query

descriptor per kernel is constructed (13). Additionally, each

query is also horizontally mirrored.

The translations to be evaluated are fixed in a uniform

way. Maximum translation is set to 80 pixels towards both

directions and the step is 20. These are used for the max-

imum query size, while for different scales the maximum

translation (step) is increased (decreased) linearly accord-

ing to the relative query scale. That means, the localization

is finer for smaller scales. Similarity is computed per scale

independently and maximum similarity is kept.

The descriptor dimensionality is given by the number of

frequencies |Ωx| and |Ωφ|. For instance, a compact setting

of |Ωx| = 5 and |Ωφ| = 2 lead to a 243D descriptor, while

a high-performance settings of |Ωx| = 6 and |Ωφ| = 3 lead

to a 605D descriptor. In all cases, 9 additional scalars per

image are stored (normalization of the 2D descriptor, nor-

malizations of the 1D projections, all for 3 different scales).

Method identification. The following notation is used to

identify the method, ranking method → re-ranking method

(number of re-ranked images). Usage of average query ex-

pansion using n top images is denoted by QEn.
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Method P@20 Method P@20

EI [7] 27.9 S̄xy (5, 2) 57.9

Riemenschneider [28] 58.0 S̄xy (6, 3) 61.4

SYM-FISH [6] 34.0 S̄xy (5, 2) + QE3 77.9

CS+GC [25] 49.3 S̄xy (6, 3) + QE3 79.3

Table 1. Performance comparison on the ETHZ extended shape

dataset. Average precision at top 20 results is reported. We have

not performed query mirroring for these results. The number of

frequencies (|Ωx|, |Ωφ|) used is reported next to our methods.

Method mAP Method mAP

GF-HOG [18] 12.2 S̄x + S̄y → S̄xy (1k) 26.7

SHELO [29] 12.3 S̄x + S̄y → S̄xy (5k) 29.2

LKS [30] 24.5 S̄xy 30.4

GF-HOG [4] 18.2 S̄xy + QE3 57.9

Table 2. Performance comparison via mean Average Precision on

the Flickr15k dataset.

6.1. Datasets and evaluation protocol

Constructing large scale ground-truth for sketch-based

retrieval systems is not as easy as for traditional retrieval.

One reason is the inherent abstraction of sketches. More-

over, positive images should not only comprised images of

the same object/category, but also images depicting shapes

similar to that of the query. Ground-truth at large scale

should be on per query basis and this is not easy to achieve.

We initially evaluate our method on two image collec-

tions that are accompanied with ground-truth. These are

the ETHZ extended shape dataset [31] and the Flickr15k

dataset [18]. They consist of 285 images with 7 queries and

15K images with 330 queries (30 categories), respectively.

We further perform experiments on the large-scale

dataset by Parui and Mittal [25] comprised 1.2M images

and 175 queries, which has no available annotation. Exter-

nal annotators have manually evaluated the top results.

6.2. Evaluation and comparisons

Performance versus dimensionality. We construct the

proposed sketch descriptor using our LDFM-based multiple

kernel approximation and using the Fourier-based one. We

compare performance for varying number of frequencies

and present results in Figure 5 (left). The two methods have

roughly the same performance for large number of frequen-

cies where the kernel approximation is relatively good for

both cases. The Fourier-based method significantly harms

the performance for low number of frequencies due to its

bad approximation. The orientation kernel is well approx-

imated with few frequencies due to its wide shape (larger

σ). We finally set |Ωx| = 5 and |Ωφ| = 2 for the rest of our

experiments, except if otherwise stated. Sketch descriptor

V(P) has 243 dimensions, while Vx(P) only 27.

Ranking method. We compare ranking of the database

with S̄xy and the projection-based approaches S̄x and S̄y .

In the latter case, only the top-ranked images are re-ranked

by S̄xy to evaluate the performance loss. Results are shown

Method Dim Time DB P@5 @10 @25 @50

S̄xy (1.2M)✘✘AFM [38] (8,3) 55.4 15.3 43.2 40.9 37.2 33.8

S̄xy (1.2M)✘✘AFM [38] (5,2) 20.2 3.3 25.8 24.7 22.5 20.2

S̄xy (1.2M) (8,3) 55.4 5.1 50.1 46.7 42.0 37.2

S̄xy (1.2M) (5,2) 20.2 1.1 45.8 44.1 38.5 35.4

S̄x+S̄y→S̄xy⋆ (50k) (6,3) 3.5 2.8 49.7 47.4 41.3 36.8

S̄>
+
→S̄<→S̄xy⋆ (50k) (6,3) 2.5 2.8 49.6 47.3 41.0 36.6

S̄>
+
→S̄<→S̄xy⋆ (50k)† (6,3) 2.5 0.7 50.3 47.3 41.5 36.7

S̄x+S̄y→S̄xy⋆ (50k) (5,2) 2.5 1.1 45.8 44.2 38.4 35.3

S̄>
+
→S̄<→S̄xy⋆ (50k) (5,2) 1.7 1.1 45.7 44.2 38.3 35.1

S̄>
+
→S̄<→S̄xy⋆ (50k)† (5,2) 1.7 0.3 45.6 43.5 38.0 35.0

S̄>
+
→S̄<→S̄xy⋆ (50k)†+QE3 (6,3) 2.7 0.8 55.2 57.4 57.4 57.5

S̄>
+
→S̄<→S̄xy⋆ (50k)†+QE10 (6,3) 2.7 0.8 63.0 63.4 64.8 65.2

S̄>
+
→S̄<→S̄xy⋆ (50k)†+QE3 (5,2) 1.9 0.4 50.9 52.2 52.5 52.4

S̄>
+
→S̄<→S̄xy⋆ (50k)†+QE10 (5,2) 1.9 0.4 56.4 56.8 57.3 57.8

Table 3. Performance, query time (in seconds) and database (DB)

memory (in GB) requirements comparison on the 1.2M image

dataset [25]. We report precision at n top ranked images (P@n).

The number of frequencies (|Ωx|, |Ωφ|) is reported, which defines

the final dimensionality (Dim = 1125, 605 or 243). ✘✘✘AFM: Asym-

metric feature maps are not used. †: Vector components uniformly

quantized into 1 byte.

in Figure 5 (middle). Ranking with sum of S̄y and S̄x ap-

pears significantly better than their individual use, while re-

ranking one third of the database already recovers the per-

formance loss. Speeding-up the ranking by S̄>
+→S̄<, while

in the end we re-rank 1k images, achieves mAP equal to

26.8. The drop is insignificant compared to the 26.9 in Fig-

ure 5 when re-ranking 1k images. Always ranking first with

x or y projection, instead of our query dependent approach,

gives 25.8 and 26.0 respectively.

Approximations. We perform re-ranking based on S̄xy and

its two approximations. We use approximation S̄xy⋆ to ef-

ficiently search over all translations and scales, while we

finally refine the translation of maximum similarity. On the

other hand, S̄x/y is used to refine (x̂1, ŷ1) and acts only

on the best scale found by the ranking method. In some

cases the ranking method misses the correct scale and this

is the main reason for the performance difference between

the two. Results are shown in Figure 5 (right).

Comparisons to other methods. Comparison of our

method to other methods is reported in Table 1 for the

ETHZ extended shape dataset and in Table 2 for the

Flickr15k dataset. The scores achieved without the QE are

the highest reported on both benchmarks. The QE gives ad-

ditional significant boost in the performance. On Flickr15k

we remarkably outperform the previous state of the art by

24 points of mAP.

Large scale evaluation. We evaluate our method at large

scale with the 1.2M dataset [25]. For each query, only top-

ranked images are annotated as either negative, positive or

similar. Images marked as similar are images of similar

shape but different category than the query. Retrieval ex-

amples are shown in Figure 6 and performance comparison

is presented in Table 3. We measure precision at top-ranked

images per query and report average precision on top ranked
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Figure 5. Performance comparison by measuring mean Average Precision (mAP) on the Flickr15k dataset. Left: Performance for increas-

ing number of frequencies. Comparison between the Fourier-based approach [39] that uses harmonic frequencies and our joint optimization

of the 3 kernel functions. Ranking is performed with S̄xy . Middle: Comparison between the proposed methods for ranking the whole

dataset. Re-ranking is additionally performed with S̄xy in all cases. We show mAP versus the number of re-ranked images. S = 0 signifies

no re-ranking. Right: Performance of approximate re-ranking methods for increasing size of local refinement neighborhood. We show

mAP versus the neighborhood size, while re-ranking 5k images.

Figure 6. Examples of top-ranked retrieval images on the 1.2M dataset using our method. Localization of the sketch is shown in green

color. Image borders denote positive (green), negative (red) and similar (yellow) image.

images over all queries.

We additionally evaluate performance when applying the

trigonometric polynomial of Tolias et al. [38] to rank all

database images. The proposed method by construction

requires less memory and is significantly faster. It is also

shown to perform better. The memory footprint is signifi-

cantly decreased due to the asymmetry of our representation

and due to good performance achieved with few frequen-

cies. Encoding each vector component with 1 byte instead

of single precision does not harm the performance.

Note that the discriminative-projection-first method only

slightly decreases the performance, while it decreases the

initial ranking time by 40%. Moreover, re-ranking only top

50k images performs with insignificant losses compared to

ranking all images with the 2D polynomial. Finally, query

expansion significantly improves the results. CNN descrip-

tors are encoded with product quantization [19]4.

Query timings. The execution time was measured on the

1.2M image dataset using a single threaded MATLAB/Mex

implementation on a 3.5GHz desktop machine. The results

are summarized in Table 3. For |Ωx| = 5 and |Ωφ| = 2,

a query takes on average 1.81s for the initial ranking with

S̄x + S̄y and 0.72s for the top 50k re-ranking with S̄xy⋆

(with 3x3 neighborhood), giving a total time of 2.5s. Us-

ing S̄>
+→S̄<, and computing the second projection only on

3 · 50k top-ranked images, ranking time drops to 1.05s. The

values are independent of query complexity. The re-ranking

using binary S̄xy⋆ is 17% faster compared to full S̄xy . Ap-

plying the trigonometric polynomial scoring for ranking all

4After evaluation we discovered that the dataset contains a small

amount of training ImageNet images, which can potentially affect with QE

by CNN descriptors. Preliminary tests show that it affects insignificantly.

images with the method of Tolias et al. [38] takes 20s, one

order of magnitude slower than ours, for a low performance

setup, while 55s with higher dimensionality and better per-

formance which is still lower than ours.

The performance comparison to the work of Parui and

Mittal [25] is not possible on the 1.2M dataset, as they use

their own category-level ground truth, which is not publicly

available. The comparison in terms of memory footprint

(6.5GB is reported[25] ) and execution time (1-5 sec per

query is reported[25]) is favorable for the proposed method.

7. Conclusions

We have introduced a novel concept of asymmetric (ex-

plicit) feature maps. AFM allow to evaluate multiple ker-

nels between a query and database entries with no additional

memory requirements. The feature maps are optimally con-

structed by a joint kernel approximation, which turns out to

be crucial for the accuracy. We have introduced a method

of efficient approximation of scoring by trigonometric poly-

nomials through 1D projections, which are a special case of

asymmetric feature maps.

We have demonstrated the benefits of AFM on sketch-

based image retrieval with short codes. We achieve state-of-

the-art performance on a number of standard benchmarks.

Compared with previous approaches using trigonometric

polynomials [38], the proposed method achieves an order

of magnitude speed-up, multiple-fold reduction in data stor-

age, while improving the retrieval accuracy at the same

time. The performance is further boosted by image-based

average query expansion combined with AFM for object

outline localization.
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