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Abstract

Stereo matching is a well researched area using visible-

band color cameras. Thermal images are typically lower

resolution, have less texture, and are noisier compared

to their visible-band counterparts and are more challeng-

ing for stereo matching algorithms. Previous benchmarks

for stereo matching either focus entirely on visible-band

cameras or contain only a single thermal camera. We

present the Color And Thermal Stereo (CATS) benchmark,

a dataset consisting of stereo thermal, stereo color, and

cross-modality image pairs with high accuracy ground truth

(< 2mm) generated from a LiDAR. We scanned 100 clut-

tered indoor and 80 outdoor scenes featuring challenging

environments and conditions. CATS contains approximately

1400 images of pedestrians, vehicles, electronics, and other

thermally interesting objects in different environmental con-

ditions, including nighttime, daytime, and foggy scenes.

Ground truth was projected to each of the four cameras to

generate color-color, thermal-thermal, and cross-modality

disparity maps. A semi-automatic LiDAR to camera align-

ment procedure was developed that does not require a cal-

ibration target. We compare state-of-the-art algorithms to

baseline the dataset and show that in the thermal and cross

modalities there is still much room for improvement. We

expect our dataset to provide researchers with a more di-

verse set of imaged locations, objects, and modalities than

previous benchmarks for stereo matching.

1. Introduction

Recent works in robotic vision [4, 40], material classi-

fication [27], fault line detection [16], and pedestrian de-

tection [33, 17, 8, 22] show that using multiple modalities
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Figure 1. Sample CATS data consisting of optical stereo images

(top), thermal stereo images (center) and the ground truth LiDAR

point cloud

can improve results and capabilities over single sensor sys-

tems. Moreover, as thermal sensors become cheaper and

more accessible (e.g. the FLIR One thermal smartphone at-
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tachment), cross-modality and thermal-only stereo match-

ing can be a way to generate night-time or fog-penetrating

3D reconstructions. This is applicable for self-driving cars,

fire and emergency response, security, and military opera-

tions.

[31] show that a duel-stereo setup can help overcome

some typical stereo reconstruction failure cases such as re-

flections – one modality can experience reflections while

the other modality does not. However, stereo matching be-

tween color-thermal or thermal-thermal imagery is still a

difficult problem due to the relative lack of texture in ther-

mal imagery and the differences between the modalities.

Work with stereo thermal algorithms has already begun

with stereo matching [13], odometry [26], stereo vision in a

fire emergency [32], and face recognition [39]. A challeng-

ing benchmark of multimodal stereo pairs will aid in the

development and validation of stereo matching algorithms.

In this work we present a new stereo benchmark which

features images captured by a camera rig with multiple

modalities of imaging. The system consists of two opti-

cal band machine vision cameras, two Long Wave Infrared

(LWIR) thermal cameras, and a LiDAR for ground truth.

The system is calibrated allowing for both intra-modality

and inter-modality stereo matching. The LiDAR is used

to measure the depth of points in the scene, allowing us

to project ground truth points onto each image. The Color

And Thermal Stereo (CATS) Dataset was collected using

this system and will be made publicly available, along with

metadata about the scenes, and the code for LiDAR to cam-

era calibration1.

An example scene capture is shown in Figure 1. Our pro-

cessing takes the 4 images and 3D point cloud and outputs

rectified color-color, thermal-thermal, and cross-modality

pairs along with a corresponding disparity map.

The dataset includes a variety of scenes and environ-

ments that contain a diverse set of challenges for existing

matching algorithms including: occlusion, lack of texture,

varying lighting conditions, fog, and modality-biased ob-

jects. This represents the first attempt to comprehensively

compare stereo matching methods within thermal, visible,

and cross modalities. We utilize the new CATS dataset to

compare a number of existing techniques including tradi-

tional approaches such as semi-global block matching [14]

and recent approaches such as consensus based [7] and deep

learning based methods [36] for stereo matching.

Our contributions are as follows:

1. Collection of a quad-camera, multimodal dataset of a

size similar to state-of-the-art color-only datasets.

2. Development of a semi-automatic method for LiDAR

to Camera alignment based on fuzzy correspondences

1Code and data available at bigdatavision.org/CATS or

https://www.eecis.udel.edu/wiki/vims/

without the use of a calibration target.

3. Comparison of state-of-the-art methods for visible

band, thermal, and inter-modality stereo matching.

The rest of the paper is organized as follows. In Section

2 we describe our benchmark including the sensors, data

collection, and ground truthing process, as well as a com-

parison against other benchmarks and datasets. In Section

3 we discuss state-of-the-art stereo matching algorithms.

In Section 4, we evaluate the performance of multiple al-

gorithms on our benchmark, and compare performance in

color-color, thermal-thermal, and cross-modalities. Finally,

we summarize the paper and give future directions.

2. The Color and Thermal Stereo Benchmark

In this section we will introduce our hardware and sen-

sor platform, describe the data collection process, describe

our calibration and ground truth projection algorithms, and

compare properties of our dataset against other datasets.

2.1. Sensor Platform

The sensor platform used in this paper consists of 4 cam-

eras, two visible-band (color), two long wave infrared (ther-

mal) cameras, as well as a LiDAR as shown in Figure 2. The

system consists of two Point Grey Flea2 cameras captur-

ing at 1280 x 960 resolution, two Xenics Gobi-640-GigEs

long wave infrared cameras capturing at 640 x 480 reso-

lution at 50 mK thermal sensitivity, and a Trimble GX Ad-

vanced TLS LiDAR. The cameras are synchronized by soft-

ware trigger, and are mounted on a common baseline. All

thermal images displayed in this paper are colormapped for

visibility (blue = cold, yellow = hot).

The LiDAR is a Trimble GX Advanced TLS, capable of

capturing 5000 points per second with < 2mm error up to

50m depth. It is high-accuracy, but low speed. The com-

mon camera baseline was mounted facing the same direc-

tion very close to the LiDAR allowing us to scan the view-

ing volume by scanning an area of the scene with a similar

angular extent. Each scan took around 8 minutes, resulting

in a point cloud with an average of approximately 300,000

3D points per scene with an accuracy of less than 2mm be-

tween points. Since this capture time greatly exceeds the

exposure time of the cameras, we scan static scenes. We do,

however, collect posed scenes with pedestrians and vehicles

that remain still for the duration of the scan to reflect more

natural scenes.

2.2. Data Collection

The dataset is split into two main groups: indoor and

outdoor scenery.

The indoor scenery comprises of tabletop scenes and

rooms with objects from 10 different categories: electron-

ics, plants, books, statues, toys, tools, materials, spooky
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Figure 2. The sensor platform used to capture the dataset. The op-

tical and thermal stereo cameras are mounted to capture the same

field of view as the LiDAR.

decorations, miscellaneous objects, and objects in a storage

room. For each object category, 10 scans were taken for

10 different arrangements of the objects. For most arrange-

ments, three different lighting conditions were recorded for

the cameras: low light, dark, and normal lighting. Some

scenes include fog to simulate fire or weather conditions

that offer challenges in the visible modality, but may not

affect thermal imaging.

The outdoor scenery comprises of scenes from 10 differ-

ent locations: a backyard, a courtyard, a parking garage, a

forest, a garden, a house, a toolshed, and a university cam-

pus building. For each location, 10 scans were taken with

10 different arrangements of location-appropriate objects

and pedestrians. Pedestrians and objects were rearranged

to form complex occlusions in different poses. For each

new imaging location, the camera system was re-calibrated

to the LiDAR using the methods described in section 2.3.1.

2.3. Calibration

In this section we will outline our approach to calibrate

the sensor platform. This consists of camera calibration as

well as LiDAR to camera calibration.

To calibrate the camera system we used the method de-

scribed in [28]. A planar calibration target with a checker-

board pattern was printed and attached to a ceramic tile. The

tile was heated and the prescribed pre-processing step was

used to enhance the contrast in the thermal imagery. Then

an implementation of the traditional calibration procedure

found in [37] was used to obtain both the camera intrinsic

matrix and extrinsic parameters between cameras. This pro-

cedure was repeated for color-color, thermal-thermal, and

cross-modality pairs.

2.3.1 LiDAR to Camera Alignment

To calibrate the LiDAR to the camera system, we developed

a semi-automatic procedure that does not require a calibra-

tion target. Calibration between the LiDAR and the camera

system is strictly a matter of extrinsic parameter estimation.

In general, the operation to project a 3D point X to camera

i is

x = KiRL,i(X − TL,i), (1)

where RL,i and TL,i are the rotation and translation from

the LiDAR to the ith camera, and Ki is the ith camera’s in-

trinsic matrix obtained with traditional calibration. To find

the rotation and translation, we need correspondences X ′

and x′ between the LiDAR and image.

Our procedure requires ”fuzzy correspondences” – un-

ordered, noisy sets of 2d image points and 3d LiDAR points

which have some overlap. These points are not required to

be 1-1 correspondences. To obtain these fuzzy correspon-

dences, we use one of two methods. The first method is

fully automatic, but can fail in highly textured scenes which

contain many image edges. The LiDAR point cloud X is

projected to an image space with x̂ = KiX . A new image

IL,i is formed by centering the origin at min(x̂), with the

color intensity of the new image set to the depth component

of X . Missing pixel values are interpolated with inpainting.

The fully automatic method uses Canny edge detection

[5] on both IL,i and Ii to give a fuzzy set of correspon-

dences. On the more textured color images, bilateral fil-

tering is applied to help remove texture edges. In the im-

age space these edges represent object boundaries or tex-

ture boundaries within an object. In the depth image IL,i

the edges represent depth discontinuities which occur at ob-

ject boundaries. Thus the 3D points that project to the edge

map in IL,i and the 2D edges in Ii have an overlapping set

of correspondences which can be used for registration. This

technique works well in scenes with little texture, where

edges predominately form at object boundaries, and for this

reason the technique is particularly effective in the ther-

mal modality, which is unaffected by shadows, lighting and

color texture.

In scenes with strong shadows or complex occlusions

which create many non-depth edges, we use a semi-

automatic approach in which we draw rough corresponding

shapes in both the depth IL,i and image space Ii. The 3D

points that project to the highlighted region in IL,i and the

2D points in the highlighted region in Ii are used as a set of

fuzzy correspondences.
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Once we have a set of fuzzy correspondences, alignment

is done by a ray-point registration method outlined in [18].

This technique handles noisy, non-uniform alignment by

minimizing the distance of the source shape to the target

shape while maximizing matched area on target shape. This

aligns the rays from the camera center through the 2D points

on the image plane to the 3D points from the depth image.

The result of this method is a transformation from the Li-

DAR to the camera coordinate system which allows us to

project points.

2.4. Dataset Comparison

Table 1 gives a summary comparison between recent

datasets involving either stereo matching or multimodal

color/thermal imagery.

In recent years, there has been an increase in the num-

ber color/thermal multimodal datasets, most of which are

pedestrian detection benchmarks. In particular, there is the

multispectral pedestrian dataset [15], the LITIV [2], the

Thermal Infrared Video (TIV) benchmark [34], the ther-

mal object tracking benchmark [1], the OSU color-thermal

benchmark [9], the Alcorn State University MultiSpectral

Stereo (ASUMSS) dataset [38], and the Stereo Thermal

benchmark [20]. Of these, only the LITIV has ground

truth disparity information and only for color-thermal cross

modality pairs. Their ground truth was manually annotated

for 25819 total ground truth pixels. Our dataset, on the

other hand, has automated ground truth with a LiDAR for an

average of approximately 300,000 ground truth points per

pair. This includes not only color-thermal, but also thermal-

thermal and color-color stereo pairs.

Stereo matching benchmarks have a longer history with

color-only imagery. There exists the EISATS sets [25],

the Middlebury dataset [30], the Make3D dataset [29], the

Ladicky dataset [21], the HCI Robust Vision Challenge

Dataset [23], and the KITTI dataset [12, 11, 10, 24], to

name a few. The largest among these is KITTI dataset,

a comprehensive autonomous driving color stereo dataset

that includes dense disparity, odometry, object detection,

and scene flow ground truth data. Unlike KITTI, CATS has

the thermal modality as well as more diverse non-road im-

agery. Sample rectified color and thermal images are shown

in figure 3.

KITTI has been developed for autonomous driving appli-

cations, and the nature of the data reflects this, with stereo

pairs containing various scenes of roads, buildings, cars,

and pedestrians. As a result, many of the algorithms devel-

oped for and tested on KITTI leverage assumptions about

this type of data. Machine learning techniques such as [36]

have used KITTI training data, and have the potential to

over-fit their model on roadway scenes. The CATS dataset

has been developed to reflect a variety of environments,

objects, lighting, and environmental conditions to help de-

Figure 3. Sample rectified images and corresponding inpainted

ground truth disparity in color and thermal modalities

velop robust algorithms in both standard color stereo match-

ing, thermal stereo matching, and cross-modality stereo.

We apply lighting and environmental modifiers to the scene

in the form of various lighting and fog levels. Information

about the number of images with modifiers applied is pre-

sented in Table 2. CATS contains 48 scenes with people,

including scenes with person-person occlusion, and foggy

scenes of a simulated fire, showing potential applications of

thermal imaging for rescue and firefighting operations.

3. Experimental Setup

In this section we will outline our experimental setting

and describe how we have tested existing stereo matching

techniques. Since CATS features different image modalities

as well as varying lighting and environmental conditions,

the experiments have been built to highlight these aspects.

We have used uncalibrated rectification [3] to create a

series of rectified color-color, thermal-thermal, and color-

thermal stereo images. For the cross-modality pairs, manual

correspondences were used for rectification. We have used

the projection technique discussed in section 2.3.1 to project

3D points to each image, the points are then transformed

according to the rectified images, allowing us to generate

disparity maps by taking the horizontal difference between

individual points. We compare these ground truth disparity

masks with disparity estimates obtained by the algorithms

discussed in the following subsection.

3.1. Algorithm Comparisons

We have compared 6 different stereo disparity algo-

rithms of varying complexity, ranging from simple block

matching to modern convolutional neural networks based

methods. This is by no means an exhaustive list of disparity

algorithms, but we have made an effort to test top perform-

ing methods from the KITTI benchmark for which code was

made available. Here we will outline and briefly summarize

the disparity methods tested.

– Block Matching (BM) [19] matches patches in a range
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Table 1. Comparison of several datasets
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Middlebury [30] 33 Indoor Objs 66 ∼ 179 mil 100% 0.2px N Y N 5.5 – ’14

Make3D [29] 257 Outdoor Nature 514 ∼ 0.9 mil 0.4% 55mm N Y N 0.8 – ’07

Ladicky [21] 1175 Outdoor 2350 100 manual manual N Y N 0.1 – ’12

HCI [23] Mils Outdoor Roads Mils 0 – – N Y N 1.4 – ’12

EISATS [25] 464 Parking Lot 928 ∼ 11 mil 7% 20mm N Y N 0.3 – ’10

KITTI [12] 389 Outdoor Roads 778 ∼ 90 mil 50% 20mm N Y N 0.5 – ’12,’15

LITIV [2] 16k Indoor Ppl 32k ∼ 26k <0.01% manual Y N N 0.17 0.17 ’14

CATS (Ours) 343 In+Outdoor 1372 ∼ 51 mil 50% 2mm Y Y Y 1 0.3 ’16

Table 2. Dataset information
Attribute # of Images

None 672

Dark 328

Low Light 308

Light Fog 32

Heavy Fog 32

Pedestrians 192

by comparing the sum of absolute differences between

each image.

– Semi-global Block Matching (SGBM) [14] uses a hier-

archical mutual information calculation based match-

ing and a global cost approximation.

– Growing Correspondence Seeds (GCS) [6] generates a

small set of initial correspondences, and grows these

seeds in a way that guarantees matching accuracy.

– MC-CNN [36] uses a convolutional neural network to

learn a similarity measure between patches. We use

two of the fast implementations, one trained on the

Middlebury dataset [30], and one trained on the KITTI

dataset [12].

– COR Stereo [7] uses a local model that handles slanted

planes as well as a multiscale framework of overlap-

ping regions to generate dense matches.

– SPS Stereo [35] uses a slanted plane model, jointly

segments the image, and recovers the depth.

3.2. Evaluation Metrics

To evaluate the efficacy of the above disparity techniques

we directly compare per pixel disparity from the estimation

techniques to our generated ground truth disparity maps.

We report the density, mean error, and accuracy of each

method. Density is the fraction of the overall image area

for which disparity is estimated, mean error is the mean

absolute per-pixel difference, and accuracy is the fraction

of pixels for which the estimated disparity is within τ of

the ground truth value. We conduct a number of experi-

ments in the following section, but these metrics will be

used throughout.

4. Results Discussion

Each algorithm in Section 3.1 was evaluated on the en-

tirety of the CATS dataset for color-color, thermal-thermal,

and cross-modality matching. Figure 4 shows the results of

all the algorithms applied to a small set of example images

from our dataset. The first column shows results on color

images. Color stereo matching has been well studied and

many algorithms perform favorably on these images. The

second and third column show thermal-thermal matching,

with the third column being a scene captured in the dark.

This highlights that thermal imaging is unaffected by a lack

of illumination. The final column is cross-modality. We

also present our results in the form of Tables 3, 4, and 5,

where we report averaged results over each scene with nor-

mal lighting conditions for different values of τ , as well as

results for different environmental modifiers for τ = 3.

4.1. Colorcolor Matching

As highlighted by the first column in Figure 4, and the

results of Table 3, color-color matching has the best perfor-

mance. We consistently see the lowest error, highest den-

sity, and highest accuracy for methods across all algorithms.

The vast majority of algorithms have been developed, and

tested in this domain. However, color-color matching suf-

fers greatly when environmental modifiers are introduced.

Darkness and low light cause performance to drop in each

algorithm, as expected. Certain algorithms are better suited

for different conditions, with SPS performing better in low

light, and COR performing best in fog.
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Figure 4. Comparison of stereo matching algorithms on CATS data. A) Color-color matching. B) Thermal-thermal matching. C) Thermal-

thermal matching in a dark scene. D) Cross-modality matching.
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Table 3. Color-color stereo matching
Accuracy Accuracy with modifiers

density mean error (px) τ =3 τ =5 τ =10 τ =20 τ =3 dark τ =3 low light τ =3 low fog τ =3 high fog

Block Matching 0.8382 25.4811 0.1343 0.2199 0.4189 0.6048 0.0504 0.0694 0.0489 0.0479

SGBM 0.8239 16.334 0.1597 0.2741 0.6015 0.8183 0.0685 0.0895 0.0512 0.0475

GCS 0.1975 44.29 0.1974 0.3246 0.5741 0.7714 0.0293 0.0762 0.054 0.0287

SPS 1 20.0361 0.1362 0.2159 0.385 0.6081 0.0831 0.1078 0.0427 0.0466

COR 1 37.6084 0.1032 0.1752 0.3439 0.5643 0.0646 0.0779 0.1027 0.0963

MC-CNN (KITTI) 1 28.2421 0.1354 0.2169 0.3931 0.5908 0.0507 0.0882 0.0497 0.044

MC-CNN (Middlebury) 1 53.2755 0.1133 0.1816 0.3297 0.4716 0.027 0.0553 0.0329 0.0282

Table 4. Thermal-thermal stereo matching
Accuracy Accuracy with modifiers

density mean error (px) τ =3 τ =5 τ =10 τ =20 τ =3 dark τ =3 low light τ =3 low fog τ =3 high fog

Block Matching 0.82 25.4016 0.1542 0.2553 0.4152 0.5692 0.1234 0.1131 0.1257 0.1234

SGBM 0.7972 25.7898 0.2072 0.3418 0.5225 0.6585 0.1912 0.1892 0.2005 0.207

GCS 0.1401 43.3571 0.2436 0.3796 0.5765 0.7188 0.2452 0.2686 0.2228 0.1942

SPS 1 15.5543 0.2 0.3044 0.5021 0.76 0.1977 0.1826 0.1809 0.1966

COR 1 33.4988 0.0944 0.1592 0.2989 0.4773 0.1061 0.1078 0 0

MC-CNN (KITTI) 1 21.0059 0.1975 0.3057 0.4948 0.7018 0.1957 0.1818 0.2136 0.2119

MC-CNN (Middlebury) 1 36.6651 0.1619 0.2499 0.3983 0.5613 0.1504 0.14 0.1885 0.187

4.2. Thermalthermal Matching

Thermal-thermal matching is more challenging, and we

see this with decreases in density and increases in mean

pixel error. The accuracy numbers seem to increase, but this

is in part due to lower resolution, meaning a smaller dispar-

ity range, and small errors in disparity have a larger effect

on estimated depth. We also see a far less pronounced effect

from environmental modifiers as expected. Thermal images

are unaffected by lighting; however, outdoor scenes with

sunlight also have dynamic changes in temperature which

adds texture in the thermal modality. We observed better

results for outdoor scenes than indoor scenes with thermal-

thermal matching. We do see a small decrease in perfor-

mance when fog is added, however this may be due to the

fact that our foggy scenes are all indoors (to facilitate the

use of a fog machine), and therefore most objects are room

temperature and have little contrast. The thermal images

themselves do not show the fog and remain unaffected by

it.

4.3. Cross Modality Matching

Our results show that there is significant work needed for

any real applications of cross modality matching. The last

column of Figure 4 sometimes looks arbitrary or random,

but a few of the algorithms show promise. Both MC-CNN

algorithms show the outline of the person sitting on bench

and portions of the bench itself. The SPS algorithm gives

the lowest mean error and has some of the higher accuracy

values. Because SPS computes segmentation and boundary

labels, it is able to more effectively identify entire objects

between the modalities. Since the objects do not share tex-

ture information across modalities, object boundaries can

be a useful identifier they do share.

Cross modality gives the worst results overall. Most ex-

isting cross-modality datasets target pedestrians detection

and not stereo matching. By providing ground truth match-

ing regions in both modalities, our dataset can be leveraged

to train and test new feature descriptors that are modality

invariant.

4.4. Analysis of Results

Existing disparity estimation techniques have been tai-

lored for color imagery and are often ill suited for other

modalities. Thermal-thermal disparity matching suffers

greatly from the lack of texture, meaning that objects with

texture in the color images often appear uniform in thermal

modality. This makes thermal-thermal matching more dif-

ficult with methods that do not handle textureless regions.

Cross-modality matching is exceptionally challenging due

to the lack of mutual information across the modalities.

Furthermore many of the state-of-the-art disparity tech-

niques have been tailored to the specific datasets on which

they have been tested. The KITTI dataset, for example,

contains mostly planar road surfaces, planar buildings, and

cars. COR stereo and SPS both use a slanted plane model

which accurately models the scenes in KITTI, but do not

handle many of scenes in CATS in the color modality. Ad-

ditionally, MC-CNN shows that a deep learning approach

that works well on KITTI does not necessarily translate to

CATS due to the differences in the scenes.

We find that semi-global block matching is consistently

among the top performing algorithms for color-color and

thermal-thermal matching, but is ill-suited for cross modal-

ity matching. GCS typically obtains accurate results, but

has very low density and contains a number of large outliers

in thermal-thermal matching. COR stereo under-performed

on our dataset, particularly in thermal-thermal and cross

modality matching. Both variants of MC-CNN perform

similarly, with the version trained on KITTI outperforming

the version trained using the Middlebury dataset. SPS per-

forms well in thermal-thermal and cross-modality in terms

of mean error.
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Table 5. Cross modality stereo matching
Accuracy Accuracy with modifiers

density mean error (px) τ =3 τ =5 τ =10 τ =20 τ =3 dark τ =3 low light τ =3 low fog τ =3 high fog

Block Matching 0.7989 31.5529 0.0637 0.1084 0.221 0.4317 0.0593 0.0562 0.0605 0.0606

SGBM 0.7932 31.1338 0.0806 0.1347 0.2724 0.5069 0.08 0.0814 0.0735 0.0719

GCS 0.1313 50.6428 0.0952 0.1576 0.3088 0.5635 0.1055 0.1196 0.0817 0.0562

SPS 1 24.4966 0.0914 0.147 0.2782 0.5575 0.0875 0.0943 0.1202 0.1131

COR 1 34.5943 0.0563 0.0931 0.189 0.4032 0.0702 0.0584 0.018 0.0191

MC-CNN (KITTI) 1 31.4504 0.073 0.1214 0.2364 0.4817 0.0674 0.0719 0.0774 0.0817

MC-CNN (Middlebury) 1 44.0422 0.0632 0.1065 0.2059 0.4115 0.0563 0.0606 0.0899 0.0916

5. Conclusion

In this work we have introduced a new benchmark

dataset for stereo matching which includes color-color,

thermal-thermal, and cross-modality stereo pairs. The

CATS dataset offers a new testbed for evaluating stereo

matching with high accuracy ground truth across a diverse

set of scenes. This work represents the first attempt to com-

prehensively evaluate stereo matching in thermal and be-

tween modalities, and shows that current approaches are ill-

suited for this problem. We have developed a method for

LiDAR to camera alignment that does not need a calibra-

tion board or exact correspondences. We hope to inspire

new stereo algorithms that can handle both cross-modality

and thermal matching in a more general set of scenes. We

have released the dataset and LiDAR to camera calibration

code publicly so that the community can work with data

of this nature without needing access to expensive LiDARs

or thermal cameras. As thermal cameras become more af-

fordable and higher quality, robust algorithms and compre-

hensive evaluation of their capabilities will become increas-

ingly important.

In the future, we will be building on this dataset to in-

clude semantic labels and bounding boxes in each modal-

ity, to enable novel segmentation, detection and classifica-

tion work in both two and three dimensions across modali-

ties. We are developing algorithms to more robustly handle

thermal and cross-modality matching, and we will use the

ground truth disparity we have generated to train machine

learning methods for disparity estimation.
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