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Figure 1: Examples of chair and animal shapes assembled by composing simple volumetric primitives (cuboids). The

obtained reconstructions allows an interpretable representation for each object and provides a consistent parsing across shapes

e.g. chair seats are captured by the same primitive across the category.

Abstract

We present a learning framework for abstracting com-

plex shapes by learning to assemble objects using 3D vol-

umetric primitives. In addition to generating simple and

geometrically interpretable explanations of 3D objects, our

framework also allows us to automatically discover and ex-

ploit consistent structure in the data. We demonstrate that

using our method allows predicting shape representations

which can be leveraged for obtaining a consistent parsing

across the instances of a shape collection and constructing

an interpretable shape similarity measure. We also examine

applications for image-based prediction as well as shape

manipulation.

1. Introduction

“Treat nature by means of the cylinder, the sphere, the

cone, everything brought into proper perspective”

Paul Cezanne

Cezanne’s insight that an object can be conceived as as-

sembled from a set of volumetric primitives has resurfaced

multiple times in the vision and graphics literature. In com-

puter vision, generalized cylinders were introduced by Bin-

ford back in 1971, where a cross-sectional area is swept

along a straight or curved axis while possibly being shrunk

or expanded during the process [3]. One of the key moti-

vations was parsimony of description – an object could be

described by relatively few generalized cylinders, each of

which in turn requiring only a few parameters. Volumet-

ric primitives remained popular through the 1990s as they

provided a coherent framework for explaining shape infer-

ence from a single image, perceptual organization, as well

as recognition of a 3D object from 2D views. However,

fitting generalized cylinders to image data required consid-

erable hand crafting, and as machine learning techniques

for object recognition came to the fore in the 1990s, this

paradigm faded from the main stage.

Of course, finding parsimonious explanations for com-

plex phenomena lies at the core of learning-based visual

understanding. Indeed, machine learning is only possible

because our visual world, despite its enormous complexity,

is also highly structured – visual patterns don’t just happen

once, but keep on repeating in various configurations. In

contemporary computer vision, this structure is most often
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modeled via human supervision: the repeating patterns are

labeled as objects or object parts, and supervised learning

methods are employed to find and name them in novel im-

agery. However, it would seem more satisfying if complex

structures could be explained in terms of simpler underlying

structures.

In this paper we return to the classic problem of explain-

ing objects with volumetric primitives, but using the mod-

ern tools of unsupervised learning and convolutional neural

networks (CNNs). We choose the simplest possible primi-

tives, rigidly transformed cuboids, and show how deep con-

volutional networks can be trained to assemble arbitrary 3D

objects out of them (at some level of approximation). The

main reason we succeed where the classic approaches failed

is because we aim to explain the entire dataset of 3D ob-

jects jointly, allowing us to learn the common 3D patterns

directly from the data.

While the representation of the 3D object shapes e.g.

as meshes or voxel occupancies, is typically complex and

high-dimensional, the resulting explanation in terms of ba-

sic primitives is parsimonious, with a small number of pa-

rameters. As examples of their applicability, we lever-

age the primitive based representation for various tasks e.g.

part discovery, image based abstraction, shape manipula-

tion etc. Here we do not wish to reprise the classic de-

bates on the value of volumetric primitives – while they

were oversold in the 70s and 80s, they suffer from com-

plete neglect now, and we hope that this demonstration of

feasibility of learning how to assemble an object from volu-

metric primitives will reignite interest. Code is available at

https://shubhtuls.github.io/volumetricPrimitives.

2. Related Work

3D Representation and Reconstruction. The classic ap-

proaches for modeling objects and scenes dating to the

very beginnings of the computer vision discipline, such as

blocks world [28], generalized cylinders [3], and geons [2],

emphasized the compactness of representation as the cen-

tral goal. In a similar spirit, a few modern approaches

have attempted to reconstruct objects/scenes using sim-

ple primitives, including Lego pieces [35] and qualitative

3D blocks [12]. Apart from these attempts, most main-

stream methods for representing and reconstructing objects

typically use much higher-dimensional representations e.g.

objects as point clouds [20, 36] or exemplar CAD mod-

els [24, 25, 39]. The success of the latter set of approaches

have been largely driven by the data-driven reasoning which

the classical methods did not leverage. Our work aims to

combine the two – we aim for a parsimonious representa-

tion but discover the underlying parsimony in a data-driven

manner instead of relying on hand-crafted cues and priors.

An additional property of our learned approach is the con-

sistency of representation across instances. Classical ap-

proaches solve a per-instance optimization and obtain an

unordered set of primitives whereas our our approach out-

puts a consistent indexed set of primitives – this allows sev-

eral applications examined in Section 5.

Parsing Objects, Scenes and 3D Shapes. The idea of

exploiting repeating structures in large datasets has been

central to efforts on unsupervised object discovery and co-

segmentation [31, 29]. Data-driven compositionality, in

particular, has been used for co-segmentation [7], as well

as scene parsing and novel scene generation [30, 18]. In the

domain of 3D shapes, the idea of exploiting compositional-

ity has played a similarly important role for object represen-

tation, parsing, and manipulation. Pre-labeled, part-based

shape representations were used for capturing the category-

specific shape manifold [8], as well as generating novel ob-

jects [19, 17] or recovering 3D from 2.5D data [34]. Other

methods aim to automatically discover these components in

3D shape datasets [16], as well as model their relative ar-

rangements [40]. Similar to these shape and scene based

methods, our framework can automatically discover consis-

tent components and understand the structure of the data,

but we do so by virtue of learning to generate parsimonious

explanations.

Deep Generative Models. The rapid recent progress in su-

pervised learning tasks by using deep learning techniques

has been accompanied by a growing interest in leverag-

ing similar methods to discover structure in the visual data.

Some recent approaches demonstrate that using generative

adversarial networks [10, 27] allows learning the data dis-

tribution but the underlying latent space lacks interpretabil-

ity. Other generative methods aim to explicitly decouple the

underlying factors of variation [5, 23] but rely on supervi-

sion for disentangling these factors. More closely related to

our work, some recent approaches use recurrent networks

to iteratively generate components to explain a simple 2D

input scene [11, 15, 6]. Our work uses similar principles of

learning component based explanations of complex shapes

where the components are interpretable 3D primitives.

3. Learning Object Assembly

We formulate the problem of assembling a target object

O, given input signal I as that of predicting (up to) M

distinct parts which are then composed to output the final

shape. Towards this, we learn a CNN hθ parametrized by θ

which outputs a primitive based representation. The task of

learning this CNN is an unsupervised one – we do not have

any annotations for the primitive parameters that best de-

scribe the target objects. However, even though there is no

direct supervision, one can measure if a predicted primitive

configuration is good by checking if the assembled object

matches the target object. Using this insight, we formulate

a loss function which informs us if the shape assembled us-
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Figure 2: Overview of our approach. Given the input volume corresponding to an object O, we use a CNN to predict primitive

shape and transformation parameters {(zm, qm, tm)} for each part (Section 3.1). The predicted parameters implicitly define

transformed volumetric primitives {P̄m} whose composition induces an assembled shape. We train our system using a loss

function which attempts to minimize the discrepancy between the ground-truth mesh for O and the assembled shape which

is implicitly defined by the predicted parameters (Section 3.2).

ing the predicted primitives matches the target shape and

optimize this loss to train the CNN.

An overview of our approach is presented in Figure 2.

Given a discretized representation of the target shape as in-

put, we use a CNN to predict a primitive representation (de-

scribed in Section 3.1). The predicted representation im-

plicitly defines an assembled shape by composing the pre-

dicted primitives. Section 3.2 describes a differentiable loss

function that allows using this representation in a learning

framework. While the initial presentation assumes the use

of a fixed number of primitives, Section 3.3 extends our ap-

proach to allow a variable number of primitives.

3.1. Primitive based Representation

We represent an assembled shape by composing the pre-

dicted simple transformed primitives. Each primitive is en-

coded in terms of a tuple (z, q, t) where z represents its

shape in a canonical frame and (q, t) represent the spatial

transformation (rotation and translation). The assembled

shape predicted by the neural network hθ can therefore be

written as below.

{(zm, qm, tm)|m = 1, · · · ,M} = hθ(I) (1)

The motivation for this parametrization is to exploit the

compositionality of parts as well as the independence of

‘what’ and ‘where’ (part shape and spatial transformation

respectively). The representation of a shape as a set of

parts allows independent reasoning regarding semantically

separate units like chair legs, seat etc. The decomposition

in terms of part shape and transformation parameters fur-

ther decomposes factors of variation like ‘broad aeroplane

wing’ (captured by shape) and ‘tilted chair back’ (captured

by transformation).

3.2. Loss Function for Assembled Shape

We want to define a differentiable loss function

L({(zm, qm, tm)}, O) between the CNN prediction

{(zm, qm, tm)} and the target object O. This is a chal-

lenging task because the prediction and the groundtruth

have different 3D representations – the prediction is a

parametrized shape whereas the groundtruth is a mesh

consisting of triangles. To overcome this, we leverage the

fact that the parametrization in terms of simple primitives

allows efficient computation of some properties of the

shape induced by their composition. In particular, we can

compute the distance field (Section 3.2.1) of the assembled

shape as well as sample points on the surface of the

primitives. These allow us to define two complimentary

losses which together aim to minimize the discrepancy

between the predicted and ground-truth shape. The Cov-

erage Loss tries to enforce that the object O is subsumed

by the predicted assembled shape. The Consistency Loss

enforces the other direction – that the object O subsumes

the predicted shape. By optimizing these losses together,

we ensure that the assembled shape tries to be maximally

consistent with the target object.

3.2.1 Preliminaries

Notation. We represent by Pm, the untransformed prim-

itive as predicted according to zm and use P̄m to denote

the primitive Pm after rotation, translation according to

(qm, tm). Therefore, the final shape induced by the com-

position of the predicted primitives is ∪
m
P̄m.

We use the function S(·) to represent the surface of the

argument and p ∼ S(·) represents a random point sampled

on it e.g. p ∼ S(P̄m) corresponds to a point sampled on the

surface of mth primitive. We also require notations for sim-

ple rigid transformations – we denote by R(p, q) result of

rotating a point p according to rotation specified by quater-

nion q and similarly, T (p, t) denotes the result of translating

a point p by t. Note that the operations R, T are both dif-

ferentiable.

Distance Field. A distance field C( · ;O) corresponding to

an object O is a function R
3 → R

+ that computes the dis-

tance to the closest point of the object. Note that it evaluates

to 0 in the object interior.

C(p;O) = min
p′∈O

‖p− p′‖2 (2)
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3.2.2 Coverage Loss : O ⊆ ∪
m
P̄m .

We want to penalize the CNN prediction if the target object

O is not completely covered by the predicted shape ∪
m
P̄m.

A sufficient condition to ensure this is that the distance field

of the assembled shape evaluates to zero for all points on

the surface of O.

L1({(zm, qm, tm)}, O) = Ep∼S(O)‖C(p;∪
m
P̄m)‖2 (3)

Computation can be simplified due to a nice property of

distance fields. It is easy to show that the distance field of

a composed shape equals to the pointwise minimum of the

distance fields of all composing shapes:

C(p;∪
m
P̄m) = min

m
C(p; P̄m) (4)

This decomposition rule boils the distance field of a

whole shape down to the distance field of a primitive. In

the following, we show how to efficiently compute C for

primitives as cuboids.

Distance field of Primitives. Given an origin-centred

cuboid represented by z ≡ (w, h, d) – its extent in the three

dimensions, its distance field Ccub( · ; z) can be computed

as below (using max(0, x) ≡ x+):

Ccub(p; z)
2 = (|px| − w)2+ + (|py| − h)2+ + (|pz| − d)2+

Consider an object O (with an associated field C( · ;O))
undergoing a rotation R (parametrized by quaternion q) fol-

lowed by a translation t. The distance field at a point p w.r.t.

the transformed object is the same as the distance field at p′

wrt. the canonical object where p′ = R−1(p− t). This ob-

servations allows us to complete the formulation by defining

C(p; P̄m) (required in Eq. 4) as below.

C(p; P̄m) = C(p′;Pm); p′ = R(T (p,−tm), q̄m) (5)

C( · ;Pm) = Ccub( · ; zm) (6)

3.2.3 Consistency Loss : ∪
m
P̄m ⊆ O.

We want to penalize the CNN prediction if the predicted

shape ∪
m
P̄m is not completely inside the target object O. A

sufficient condition is to ensure this is that the distance field

of the object O shape evaluates to zero for all points on the

surface of individual primitives P̄m.

L2({(zm, qm, tm)}, O) =
∑

m

Ep∼S(P̄m)‖C(p;O)‖2 (7)

Additionally, we observe that to sample a point p on

the surface of P̄m, one can equivalently sample p′ on the

surface of the untransformed primitive Pm and then rotate,

translate p′ according to (qm, zm).

p ∼ S(P̄m) ≡ T (R(p′, qm), tm); p′ ∼ S(Pm)

An aspect for computing gradients for the predicted param-

eters using this loss is the ability to compute derivatives for

zm given gradients for a sampled point on the canonical

untransformed primitive p′ ∼ S(Pm). We do so by using

the re-parametrization trick [22] which decouples the pa-

rameters from the random sampling. As an example, con-

sider a point being sampled on a rectangle extending from

(−w,−h) to (w, h). Instead of sampling the x-coordinate

as x ∼ [−w,w], one can use u ∼ [−1, 1] and x = uw. This

re-parametrization of sampling allows one to compute ∂x
∂w

.

We provide the details for applying the re-parametrization

trick for a cuboid primitive in the appendix [1].

3.3. Allowing Variable Number of Primitives

The framework we have presented so far reconstructs

each instance in an object category using exactly M primi-

tives. However, different instances in an object category can

be explained by different number of primitives e.g. some

chairs have handles, others don’t. To incorporate this, in

addition to predicting the shape and transformation of each

primitive, we also predict the probability of its existence

pm. We first discuss the modified representation predicted

by the CNN and discuss how the loss function can incorpo-

rate this.

Primitive Representation. As we mentioned above, the

primitive representation has an added parameter pm – the

probability of its existence. To incorporate this, we factor

the primitive shape zm into two components – (zsm, zem).
Here zsm represents the primitive’s dimensions (e.g. cuboid

height, width, depth) as before and zem ∼ Bern(pm) is a

binary variable which denotes if the primitive actually ex-

ists i.e. if zem = 0 we pretend as if the mth primitive does

not exist. The prediction of the CNN in this scenario is as

below.

{(zsm, qm, tm, pm)|m = 1 · · ·M} = hθ(I) (8)

∀m zem ∼ Bern(pm); zm ≡ (zsm, zem) (9)

Note that the CNN predicts pm – the parameter of the

Bernoulli distribution from which the part existence vari-

able zem is sampled. This representation allows the predic-

tion of a variable number of parts e.g. if a chair is best ex-

plained using k < M primitives, the network can predict a

high pm for only k primitives and a low pm for the remain-

ing M − k primitives.

Learning. Under the reformulated representation of prim-

itives, the CNN output does not induce a unique assem-

bled shape – it induces a distribution of possible shapes

where the mth primitive stochastically exists with proba-

bility pm. In this scenario, we want to minimize the ex-

pected loss across the possible assemblies. The first step is

to modify the consistency and coverage losses to incorpo-

rate zm ≡ (zsm, zem). Towards this, we note that the un-
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transformed primitive Pm is either a cuboid (if zem = 1) or

empty (if zem = 0). In case it is empty, we can simply skip

it the the consistency loss (Section 3.2.3) for this primitive

and can incorporate this in the coverage loss (Section 3.2.2)

by modifying Eq. 6 as follows -

C( · ;Pm) =

{

∞, if zem = 0

Ccub( · ; zsm), if zem = 1
(10)

We can now define the final loss L(hθ(I), O) using the

concepts developed. Note that this is simply the expected

loss across possible samplings of zem according to pm.

L({(zm, qm, tm)}, O) = L1({(zm, qm, tm)}, O)

+ L2({(zm, qm, tm)}, O) (11)

L(hθ(I), O) = E∀m ze

m
∼Bern(pm)L({(zm, qm, tm)}, O)

Under this loss function, the gradients for the continu-

ous variables i.e. {(zsm, qm, tm)} can be estimated by av-

eraging their gradients across samples. However, to com-

pute gradients for the distribution parameter pm, we use the

REINFORCE algorithm [38] which basically gives positive

feedback if the overall error is low (reward is high) and neg-

ative feedback otherwise. To further encourage parsimony,

we include a small parsimony reward (reward for choosing

fewer primitives) when computing gradients for pm.

4. Experiments

Dataset. We perform our experiments primarily using the

ShapeNet [4] dataset which has a large collection of 3D

models. In particular, we use the ‘airplane’ and ‘chair’

object categories which have thousands of meshes avail-

able. The ShapeNet models are already aligned in a canon-

ical frame and are of a fixed scale. Additionally, in order

to demonstrate applicability beyond rigid objects, we also

manually download and similarly preprocess a set of around

100 models corresponding to four-legged animals.

Network Architecture and Training. The dataset de-

scribed above gives us a set of 3D objects {Oi}. Cor-

responding to Oi, the input to our CNN is a discretized

representation as a volumetric occupancy grid Ii of size

32 ∗ 32 ∗ 32 (we later experiment with rendered images as

input in Section 5.3). The encoder used in our shape assem-

bler, as shown in Figure 2, takes in as input an occupancy

grid and passes it through 3D convolutional and fully con-

nected layers with intermediate non-linearities to output the

primitive parameters {(zsm, qm, tm, pm)|m = 1 · · ·M} ≡
hθ(Ii). In this work, we use cuboid primitives and zsm
represents the width, height and thickness of cuboids. We

use ADAM [21] to train our network according to the loss

L(hθ(Ii), Oi) described in Section 3 which aims to make

the assembled shape predicted using Ii match to the target

object Oi.

Implementation Details. The coverage and consistency

loss functions are both defined using expectations over sam-

pled points. In practice, we randomly sample 1000 points

on S(O) to implement Eq. 3 and 150 points from each

S(P̄m) to implement Eq. 7. To efficiently compute the dis-

tance field of the target object O at an arbitrary point p in

Eq. 7, we precompute the distance field and its derivatives

for samples in a dense regular grid and use it to obtain effi-

cient but approximate gradients
∂C(p,O)

∂p
.

Another practical difficulty is that the gradients for the

primitive existence probabilities pm are extremely noisy in

the initial training stages – e.g. in the initial stages if a prim-

itive is incorrectly placed, the CNN may learn to predict a

very small pm instead of learning to align the primitive cor-

rectly. To overcome this, we use a two-stage training pro-

cess. We first train the network using a fixed high value

of pm across primitives and later allow the network to also

learn pm while also encouraging simplicity by the external

parsimony reward. As shown in Figure 5, this has the ef-

fect of first using a large number of primitives and in later

stages, merging them together and using fewer primitives.

After the CNN has been trained, when computing the

assembled representation for an object, we use MLE esti-

mates instead of sampling i.e. zem = ✶(pm > 0.5). The

final shape predictions using the CNN may still have redun-

dant parts used and we use a simple post-processing step to

refine the prediction by removing the parts which signifi-

cantly overlap with others.

Results and Analysis. We show the results of our method

for three object categories – chairs, aeroplanes and animals

in Figure 3. We observe that the predictions successfully

capture the coarse structure and are consistent across ob-

jects. The results indicate that the we can handle structural

variations within a category e.g. the objects in the right side

of Figure 3 have a different structure than those on the left

which occur more commonly in the dataset.

We visualize in Figure 5 the training error across itera-

tions. We observe that in the initial training stage (up to

20000 iterations), the loss rapidly decreases as the correct

configuration is being learned. In the second stage of train-

ing, when we allow pm to be learned, the error initially in-

creases – this is because some primitives, encouraged by

the parsimony reward, now start disappearing and the net-

work eventually learns to use fewer primitives better. Even

though the reconstruction error in the initial stages is lower,

the reconstructions using fewer primitives, are more parsi-

monious. This provides an insight regarding the tradeoff

between representation parsimony and reconstruction accu-

racy – and that we should not judge the former by the latter.
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Figure 3: Final predictions of our method on chairs, animals and aeroplanes. We visualize the more commonly occurring

modes on the left and progressively towards the right show rarer configurations predicted.

Figure 4: Visualization of the training progression. We vi-

sualize the prediction for two instances (shown in column 1)

after every 10,000 iterations (left to right, in columns 2-6).

The last column shows the result after post-processing to

remove redundant parts that overlap significantly with oth-

ers. The initial training stage (up to 20,000 iterations) uses

all primitives but we later allow the network to learn to use

fewer primitives and the predictions gradually become more

parsimonious.

5. Applications

We observe in Figure 1 and Figure 3 that the inferred

representations are consistent across a category – chair seat

is explained consistently using the same primitive. They

are also descriptive of the underlying shape and are, by con-

struction, interpretable. Therefore, our framework allows us

to automatically discover descriptive, consistent and inter-

pretable shape abstractions using a collection of 3D models.

By virtue of these properties, our representation can enable

several applications related to shape similarity, part discov-

ery, perception and shape manipulation.

Figure 5: We plot the Coverage (L1) and Consistency (L2)

losses over training iterations. The losses both decreases

in the initial stage of training (up to 20,000 iterations) but

when we allow the use of varying number of primitives

along with parsimony reward, the losses initially increase.

This reveals a tradeoff between representation parsimony

and reconstruction accuracy.

5.1. Unsupervised Parsing and Correspondence

The learned primitive decomposition is useful for obtain-

ing part-level correspondences across instances. Since we

use a common network across an object category, simple

and consistent solutions are preferred to explain the data i.e.

the same primitive explains the chair back across the cate-

gory. We can leverage this observation to extract correspon-

dences across the category by assigning labels to points ac-

cording to the primitive that explains them – we assign each

point to the primitive that has the lowest C(p, P̄m), giving

preference to larger primitives to break ties. We therefore

obtain a consistent labelling of all points across instances

using the predicted primitive decomposition – some exam-

ples are depicted in Figure 6.

We also evaluate this parsing on the Shape COSEG [37]
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Figure 6: Projection of the predicted primitives onto the original shape. We assign each point p in the original shape to the

corresponding primitive with lowest distance field C(p, P̄m). We visualize the parsing by coloring each point according to

the assigned primitive. We see that similar parts e.g. aeroplane wings, chair seat, etc. are consistently colored.

Figure 7: Embeddings computed using various distance measures - a) Voxel IoU based distance b) Ours (all primitives) c)

Ours (chair back, seat primitives) d) Ours (chair back orientation). While the IoU based embedding conflates chairs different

fine level structure (e.g. with/without handles), our embedding using all primitives encodes them separately. Additionally,

unlike common shape representations, our inferred abstractions give us control over similarity measures – we can choose

to consider only specific primitives if required e.g. chair back and seat which, as expected, results in ignoring existence of

chair handles. We can also focus on specific properties e.g. chair back orientation and observe a 1D manifold emerge in this

scenario. See appendix [1] for high-resolution images.

dataset by measuring the accuracy using annotated ground-

truth. While the ground-truth only has 3 clusters (chair

back, seat, legs), our method as well as previous unsuper-

vised approaches [32, 37] cluster shapes into a larger num-

ber of partitions (number of primitives in our case) and as-

sign each partition a ground-truth label to evaluate. We ob-

tain a mean accuracy of 89.0% whereas [32] reports 78.6%
and 84.8% accuracy with initial and refined parsings respec-

tively1. See appendix [1] for qualitative results.

1Unfortunately, we found that [32] used a preliminary version of the

Shape COSEG dataset [37]. We were unable to obtain this preliminary

version, therefore the results are not exactly comparable. The algorithm in

[37] does use the current dataset but reports no quantitative results.

5.2. Interpretable Shape Similarity

The trained CNN of our shape assembler maps ev-

ery 3D shape to corresponding primitive parameters

{(zm, qm, tm)}. These parameters succinctly capture the

geometry of the underlying object. We find that a simple

euclidean distance in the embedding space is a reliable mea-

sure of shape similarity. We use this distance to compute a

t-sne [26] embedding of shapes and visualize 1000 random

instances in Figure 7 . We observe that the automatically

discovered structure captures similarity better than a sim-

ple voxel IoU based metric and that clusters correspond to

natural sub-categories e.g. sofa etc.

One aspect unique to our approach is that the shape em-

bedding is interpretable and instead of using primitive pa-
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rameters for all parts, we can modify the distance measure

to focus on specifics of interest for the application. As an

example, we show the resulting t-sne embedding if only

2 primitives, which correspond to back and seat, are used

to compute the distance across shapes. We observe that

the embedding reflects the desired similarity e.g. unlike in

the case of using all primitives to measure shape similar-

ity, chairs with and without handles are now embedded to-

gether. We also compute the embedding for the distance

measure which only measures the difference in the orienta-

tion (qm) for a specific part (chair back) and observe that

this is a 1D manifold with the tilt increasing as we traverse

it. Therefore, unlike common shape representations, our in-

ferred abstractions give us control over similarity measures.

Figure 8: Inferred abstractions using real image inputs.

Figure 9: We deform the source mesh (top) to have a shape

similar to the target mesh (bottom) by using the inferred

primitive representation. Each source mesh point is as-

signed a local coordinate in the closest primitive’s frame.

A deformation of the primitives from the source to target

configuration induces a deformed mesh (shown on right).

5.3. Image based Abstraction

Given our trained model hθ which infers primitive rep-

resentation using volume inputs, we can train an image

based prediction model gθ′ . We obtain volume-image pairs

(Vi, Ii) by rendering ShapeNet models with random light-

ing and background (as suggested in [33]) and train the im-

age based network to mimic the volume based network’s

predictions i.e. we train gθ′ to minimize ‖hθ(Vi)−gθ′(Ii)‖
2.

This distillation technique [14] for using paired data to train

a model for predicting outputs similar to a pre-trained CNN

is common [13] and has previously also been used for learn-

ing shape embeddings [9]. We find that we can successfully

apply this to our scenario and learn an image-based pre-

diction model that outputs the abstraction of the underlying

shape given a single image. We show some results in Fig-

ure 8. This demonstrates that one can learn to predict shape

abstractions using varying inputs and this might enable ap-

plications in robotics settings where such inference might

help in grasping, planning etc.

5.4. Shape Manipulation

The inferred primitive based shape abstractions can be

used as a skeleton to guide manipulation of the underlying

objects. We can assign each mesh point a local coordinate

in the frame of its corresponding primitive (as computed in

Section 5.1). A rotation, translation or scaling of the cor-

responding primitive can thereby induce a change in the

global coordinates of the associated mesh points. We show

some examples in Figure 9 where we deform a source mesh

to have a similar configuration as a target mesh. While the

transformation used in this example is defined using a target

mesh, one can also use our representation for other transfor-

mation e.g. making the legs longer or tilting the back etc.

6. Conclusion

In this work, we take an unsupervised, data-driven ap-

proach to explain visual information in terms of simpler

primitives. Taking inspiration from the classic work on gen-

eralized cylinders [3] and geons [2], we too argue that any

visual explanation must be in terms of 3D volumetric enti-

ties, not 2D pixel patches. However, unlike the earlier work

in this area we firmly believe in being data-driven and let-

ting the data itself discover the best representation.

We demonstrated the applicability of data-driven 3D un-

derstanding of the visual world in a very simple setting –

that of explaining objects from cuboidal primitives. This

merely represents the first steps towards the goal of gener-

ating parsimonious descriptions of the visual input and hope

that this will motivate further efforts, including the use of a

wider catalogue of basic parametrized primitives, to under-

stand the underlying 3D structure of the world.
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