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Abstract

We propose Deep Feature Interpolation (DFI), a new data-

driven baseline for automatic high-resolution image trans-

formation. As the name suggests, DFI relies only on sim-

ple linear interpolation of deep convolutional features from

pre-trained convnets. We show that despite its simplicity,

DFI can perform high-level semantic transformations like

“make older/younger”, “make bespectacled”, “add smile”,

among others, surprisingly well—sometimes even matching

or outperforming the state-of-the-art. This is particularly

unexpected as DFI requires no specialized network architec-

ture or even any deep network to be trained for these tasks.

DFI therefore can be used as a new baseline to evaluate

more complex algorithms and provides a practical answer

to the question of which image transformation tasks are still

challenging after the advent of deep learning.

1. Introduction

Generating believable changes in images is an active and

challenging research area in computer vision and graphics.

Until recently, algorithms were typically hand-designed for

individual transformation tasks and exploited task-specific

expert knowledge. Examples include transformations of

human faces [41, 17], materials [2, 1], color [50], or sea-

sons in outdoor images [23]. However, recent innovations in

deep convolutional auto-encoders [33] have produced a suc-

cession of more versatile approaches. Instead of designing

each algorithm for a specific task, a conditional (or adver-

sarial) generator [21, 13] can be trained to produce a set of

possible image transformations through supervised learn-

ing [48, 43, 52]. Although these approaches can perform a

variety of seemingly impressive tasks, in this paper we show

that a surprisingly large set of them can be solved via lin-

ear interpolation in deep feature space and may not require

Input Older

Figure 1. Aging a face with DFI.

specialized deep architectures.

How can linear interpolation be effective? In pixel space,

natural images lie on an (approximate) non-linear mani-

fold [44]. Non-linear manifolds are locally Euclidean, but

globally curved and non-Euclidean. It is well known that in

pixel space linear interpolation between images introduces

ghosting artifacts, a sign of departure from the underlying

manifold, and linear classifiers between image categories

perform poorly.

On the other hand, deep convolutional neural networks

(convnets) are known to excel at classification tasks such as

visual object categorization [38, 14, 15]—while relying on a

simple linear layer at the end of the network for classification.

These linear classifiers perform well because networks map

images into new representations in which image classes

are linearly separable. In fact, previous work has shown

that neural networks that are trained on sufficiently diverse

object recognition classes, such as VGG [38] trained on

ImageNet [22], learn surprisingly versatile feature spaces

and can be used to train linear classifiers for additional image

classes. Bengio et al. [3] hypothesize that convnets linearize

the manifold of natural images into a (globally) Euclidean

subspace of deep features.

Inspired by this hypothesis, we argue that, in such deep
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Figure 2. A schematic outline of the four high-level DFI steps.

feature spaces, some image editing tasks may no longer be

as challenging as previously believed. We propose a simple

framework that leverages the notion that in the right feature

space, image editing can be performed simply by linearly

interpolating between images with a certain attribute and

images without it. For instance, consider the task of adding

facial hair to the image of a male face, given two sets of

images: one set with facial hair, and one set without. If con-

vnets can be trained to distinguish between male faces with

facial hair and those without, we know that these classes

must be linearly separable. Therefore, motion along a single

linear vector should suffice to move an image from deep

features corresponding to “no facial hair” to those corre-

sponding to “facial hair”. Indeed, we will show that even

a simple choice of this vector suffices: we average convo-

lutional layer features of each set of images and take the

difference.

We call this method Deep Feature Interpolation (DFI).

Figure 1 shows an example of a facial transformation with

DFI on a 390× 504 image.

Of course, DFI has limitations: our method works best

when all images are aligned, and thus is suited when there

are feature points to line up (e.g. eyes and mouths in face

images). It also requires that the sample images with and

without the desired attribute are otherwise similar to the

target image (e.g. in the case of Figure 2, the other images

should contain Caucasian males).

However, these assumptions on the data are comparable

to what is typically used to train generative models, and in

the presence of such data DFI works surprisingly well. We

demonstrate its efficacy on several transformation tasks com-

monly used to evaluate generative approaches. Compared

to prior work, it is much simpler, and often faster and more

versatile: It does not require re-training a convnet, is not

specialized on any particular task, and it is able to process

much higher resolution images. Despite its simplicity we

show that on many of these image editing tasks it outper-

forms state-of-the-art methods that are substantially more

involved and specialized.

2. Related Work

Probably the generative methods most similar to ours

are [24] and [32], which similarly generate data-driven at-

tribute transformations using deep feature spaces. We use

these methods as our primary points of comparison; however,

they rely on specially trained generative auto-encoders and

are fundamentally different from our approach to learning im-

age transformations. Works by Reed et al. [33, 34] propose

content change models for challenging tasks (identity and

viewpoint changes) but do not demonstrate photo-realistic

results. A contemporaneous work [4] edits image content

by manipulating latent space variables. However, this ap-

proach is limited by the output resolution of the underlying

generative model. An advantage of our approach is that it

works with pre-trained networks and has the ability to run

on much higher resolution images. In general, many other

uses of generative networks are distinct from our problem

setting [13, 5, 51, 37, 30, 6, 8], as they deal primarily with

generating novel images rather than changing existing ones.

Gardner et al. [9] edits images by minimizing the witness

function of the Maximum Mean Discrepancy statistic. The

memory needed to calculate the transformed image’s features

by their method grows linearly whereas DFI removes this

bottleneck.

Mahendran and Vedaldi [28] recovered visual imagery by

inverting deep convolutional feature representations. Gatys

et al. [11] demonstrated how to transfer the artistic style of

famous artists to natural images by optimizing for feature

targets during reconstruction. Rather than reconstructing

imagery or transferring style, we edit the content of an exist-

ing image while seeking to preserve photo-realism and all
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content unrelated to the editing operation.

Many works have used vector operations on a learned

generative latent space to demonstrate transformative ef-

fects [7, 32, 12, 46]. In contrast, we suggest that vector

operations on a discriminatively-trained feature space can

achieve similar effects.

In concept, our work is similar to [41, 10, 42, 19, 17] that

use video or photo collections to transfer the personality and

character of one person’s face to a different person (a form of

puppetry [39, 45, 20]). This difficult problem requires a com-

plex pipeline to achieve high quality results. For example,

Suwajanakorn et al. [41] combine several vision methods:

fiducial point detection [47], 3D face reconstruction [40]

and optical flow [18]. Our method is less complicated and

applicable to other domains (e.g., product images of shoes).

While we do not claim to cover all the cases of the tech-

niques above, our approach is surprisingly powerful and

effective. We believe investigating and further understand-

ing the reasons for its effectiveness would be useful for better

design of image editing with deep learning.

3. Deep Feature Interpolation

In our setting, we are provided with a test image x which

we would like to change in a believable fashion with re-

spect to a given attribute. For example, the image could

be a man without a beard, and we would like to modify

the image by adding facial hair while preserving the man’s

identity. We further assume access to a set of target im-

ages with the desired attribute St = {xt
1, ...,x

t
n} (e.g., men

with facial hair) and a set of source images without the at-

tribute Ss = {xs
1, ...,x

s
m} (e.g., men without facial hair).

Further, we are provided with a pre-trained convnet trained

on a sufficiently rich object categorization task—for exam-

ple, the openly available VGG network [38] trained on Im-

ageNet [35]. We can use this convnet to obtain a new rep-

resentation of an image, which we denote as x → φ(x).
The vector φ(x) consists of concatenated activations of the

convnet when applied to image x. We refer to it as the deep

feature representation of x.

Deep Feature Interpolation can be summarized in four

high-level steps (illustrated in Figure 2):

1. We map the images in the target and source sets St

and Ss into the deep feature representation through

the pre-trained convnet φ (e.g., VGG-19 trained on

ILSVRC2012).

2. We compute the mean feature values for each set of

images, φ̄t and φ̄s, and define their difference as the

attribute vector

w = φ̄t − φ̄s. (1)

3. We map the test image x to a point φ(x) in deep feature

space and move it along the attribute vector w, resulting

in φ(x) + αw.

4. We can reconstruct the transformed output image z by

solving the reverse mapping into pixel space w.r.t. z

φ(z) = φ(x) + αw. (2)

Although this procedure may appear deceptively simple, we

show in Section 4.2 that it can be surprisingly effective. In

the following we will describe some important details to

make the procedure work in practice.

Selecting St and Ss. DFI assumes that the attribute vector

w isolates the targeted transformation, i.e., it points towards

the deep feature representation of image x with the desired

attribute change. If such an image z was available (e.g.,

the same image of Mr. Robert Downey Jr. with beard),

we could compute w = φ(z)− φ(x) to isolate exactly the

difference induced by the change in attribute. In the absence

of the exact target image, we estimate w through the target

and source sets. It is therefore important that both sets are

as similar as possible to our test image x and there is no

systematic attribute bias across the two data sets. If, for

example, all target images in St were images of more senior

people and source images in Ss of younger individuals, the

vector w would unintentionally capture the change involved

in aging. Also, if the two sets are too different from the test

image (e.g., a different race) the transformation would not

look believable. To ensure sufficient similarity we restrict

St and Ss to the K nearest neighbors of x. Let N t
K denote

the K nearest neighbors of St to φ(x); we define

φ̄t =
1

K

∑

x
t∈N t

K

φ(xt) and φ̄s =
1

K

∑

x
s∈N s

K

φ(xs). (3)

These neighbors can be selected in two ways, depending on

the amount of information available. When attribute labels

are available, we find the nearest images by counting the

number of matching attributes (e.g., matching gender, race,

age, hair color). When attribute labels are unavailable, or as

a second selection criterion, we take the nearest neighbors

by cosine distance in deep feature space.

Deep feature mapping. There are many choices for a map-

ping into deep feature space x → φ(x). We use the convolu-

tional layers of the normalized VGG-19 network pre-trained

on ILSVRC2012, which has proven to be effective at artistic

style transfer [11]. The deep feature space must be suitable

for two very different tasks: (1) linear interpolation and (2)

reverse mapping back into pixel space. For the interpolation,

it is advantageous to pick deep layers that are further along

the linearization process of deep convnets [3]. In contrast,

for the reverse mapping, earlier layers capture more details

of the image [28]. The VGG network is divided into five

7066



pooling regions (with increasing depth). As an effective com-

promise we pick the first layers from the last three regions,

conv3 1, conv4 1 and conv5 1 layers (after ReLU acti-

vations), flattened and concatenated. As the pooling layers

of VGG reduce the dimensionality of the input image, we

increase the image resolution of small images to be at least

200× 200 before applying φ.

Image transformation. Due to the ReLU activations used

in most convnets (including VGG), all dimensions in φ(x)
are non-negative and the vector is sparse. As we average

over K images (instead of a single image as in [3]), we

expect φ̄t, φ̄s to have very small components in most features.

As the two data sets St and Ss only differ in the target

attribute, features corresponding to visual aspects unrelated

to this attribute will be averaged to very small values and

approximately subtracted away in the vector w.

Reverse mapping. The final step of DFI is to reverse map

the vector φ(x) + αw back into pixel space to obtain an

output image z. Intuitively, z is an image that corresponds

to φ(z) ≈ φ(x)+αw when mapped into deep feature space.

Although no closed-form inverse function exists for the VGG

mapping, we can obtain a color image by adopting the ap-

proach of [28] and find z with gradient descent:

z = argmin
z

1

2
‖(φ(x)+αw)−φ(z)‖22+λV βRV β (z), (4)

where RV β is the Total Variation regularizer [28] which

encourages smooth transitions between neighboring pixels,

RV β (z)=
∑

i,j

(

(zi,j+1 − zi,j)
2 + (zi+1,j − zi,j)

2
)

β

2 (5)

Here, zi,j denotes the pixel in location (i, j) in image z.

Throughout our experiments, we set λV β = 0.001 and β =
2. We solve (4) with the standard hill-climbing algorithm

L-BFGS [26].

4. Experimental Results

We evaluate DFI on a variety of tasks and data sets. For

perfect reproducibility our code is available at https://

github.com/paulu/deepfeatinterp.

4.1. Changing Face Attributes

We compare DFI to AEGAN [24], a generative adversar-

ial autoencoder, on several face attribute modification tasks.

Similar to DFI, AEGAN also makes changes to faces by vec-

tor operations in a feature space. We use the Labeled Faces

in the Wild (LFW) data set, which contains 13,143 images

of faces with predicted annotations for 73 different attributes

(e.g., SUNGLASSES, GENDER, ROUND FACE, CURLY HAIR,

MUSTACHE, etc.). We use these annotations as attributes

for our experiments. We chose six attributes for testing:

SENIOR, MOUTH SLIGHTLY OPEN, EYES OPEN, SMILING,

MOUSTACHE and EYEGLASSES. (The negative attributes are

YOUTH, MOUTH CLOSED, NARROW EYES, FROWNING, NO

BEARD, NO EYEWEAR.) These attributes were chosen be-

cause it would be plausible for a single person to be changed

into having each of those attributes. Our test set consists of

38 images that did not have any of the six target attributes,

were not WEARING HAT, had MOUTH CLOSED, NO BEARD

and NO EYEWEAR. As LFW is highly gender imbalanced,

we only used images of the more common gender, men, as

target, source, and test images.

Matching the approach of [24], we align the face images

and crop the outer pixels leaving a 100 × 100 face image,

which we resize to 200×200. Target (source) collections are

LFW images which have the positive (negative) attributes.

From each collection we take the K = 100 nearest neighbors

(by number of matching attributes) to form St and Ss.

We empirically find that scaling w by its mean squared

feature activation makes the free parameter somewhat more

consistent across multiple attribute transformations. If d is

the dimensionality of φ(x) and pow is applied element-wise

then we define

α =
β

1

d
pow(w, 2)

. (6)

We set β = 0.4.

Comparisons are shown in Figure 3. Looking down each

column, we expect each image to express the target attribute.

Looking across each row, we expect to see that the identity of

the person is preserved. Although AEGAN often produces

the right attributes, it does not preserve identity as well as

the much simpler DFI.

Perceptual Study. Judgments of visual image changes are

inherently subjective. To obtain an objective comparison

between DFI and AEGAN we conducted a blind perceptual

study with Amazon Mechanical Turk workers. We asked

workers to pick the image which best expresses the target

attribute while preserving the identity of the original face.

This is a nuanced task so we required workers to complete

a tutorial before participating in the study. The task was

a forced choice between AEGAN and DFI (shown in ran-

dom order) for six attribute changes on 38 test images. We

collected an average of 29.6 judgments per image from 136

unique workers and found that DFI was preferred to AEGAN

by a ratio of 12:1. The least preferred transformation was

Senior at 4.6:1 and the most preferred was Eyeglasses at 38:1

(see Table 1).

4.2. High Resolution Aging and Facial Hair

One of the major benefits of DFI over many generative

models is the ability to run on high resolution images. How-

ever, there are several challenges in presenting results on

high resolution faces.
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Original Deep Feature Interpolation

Older
Mouth
Open

Eyes
Open Smiling Moustache Glasses

AEGAN

Older
Mouth
Open

Eyes
Open Smiling Moustache Glasses

Figure 3. (Zoom in for details.) Adding different attributes to the same person (random test images). Left. Original image. Middle. DFI.

Right. AEGAN. The goal is to add the specified attribute while preserving the identity of the original person. For example, when adding a

moustache to Ralf Schumacher (3rd row) the hairstyle, forehead wrinkle, eyes looking to the right, collar and background are all preserved

by DFI. No foreground mask or human annotation was used to produce these test results.

older
mouth eyes

smiling moustache glasses
open open

4.57 7.09 17.6 20.6 24.5 38.3

Table 1. Perceptual study results. Each column shows the ratio at

which workers preferred DFI to AEGAN on a specific attribute

change (see Figure 3 for images).

First, we need a high-resolution dataset from which

to select Ss and St. We collect a database of 100,000

high resolution face images from existing computer vision

datasets (CelebA, MegaFace, and Helen) and Google image

search [27, 29, 25]. We augment existing datasets, selecting

only clear, unobstructed, front-facing high-resolution faces.

This is different from many existing datasets which may

have noisy and low-resolution images.

Next, we need to learn the attributes of the images present

in the face dataset to properly select source and target images.

Because a majority of images we collect do not have labels,

we use face attribute classifiers developed using labeled data

from LFW and CelebA.

Finally, the alignment of dataset images to the input im-

age needs to be as close as possible, as artifacts that result

from poor alignment are more obvious at higher resolutions.

Instead of aligning our dataset as a preprocessing step, we

use an off-the-shelf face alignment tool in DLIB [16] to align

images in Ss and St to the input image at test time.

We demonstrate results on editing megapixel faces for the

tasks of aging and adding facial hair on three different faces.

Due to the size of these images, selected results are shown

in Figure 5. For full tables of results on these tasks, please
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Figure 4. (Zoom in for details.) Filling missing regions. Top. LFW faces. Bottom. UT Zappos50k shoes. Inpainting is an interpolation

from masked to unmasked images. Given any dataset we can create a source and target pair by simply masking out the missing region. DFI

uses K=100 such pairs derived from the nearest neighbors (excluding test images) in feature space. The face results match wrinkles, skin

tone, gender and orientation (compare noses in 3rd and 4th images) but fail to fill in eyeglasses (3rd and 11th images). The shoe results match

style and color but exhibit silhouette ghosting due to misalignment of shapes. Supervised attributes were not used to produce these results.

For the curious, we include the source image but we note that the goal is to produce a plausible region filling—not to reproduce the source.

see the supplementary materials.

4.3. Inpainting Without Attributes

Inpainting fills missing regions of an image with plausible

pixel values. There can be multiple correct answers. Inpaint-

ing is hard when the missing regions are large (see Figure 4

for our test masks). Since attributes cannot be predicted (e.g.,

eye color when both eyes are missing) we use distance in

feature space to select the nearest neighbors.

Inpainting may seem like a very different task from chang-

ing face attributes, but it is actually a straightforward appli-

cation of DFI. All we need are source and target pairs which

differ only in the missing regions. Such pairs can be gen-

erated for any dataset by taking an image and masking out

the same regions that are missing in the test image. The

images with mask become the source set and those without

the target set. We then find the K=100 nearest neighbors

in the masked dataset (excluding test images) by cosine dis-

tance in VGG-19 pool5 feature space. We experiment on

two datasets: all of LFW (13,143 images, including male

and female images) and the Shoes subset of UT Zappos50k

(29,771 images) [49, 31]. For each dataset we find a single

β that works well (1.6 for LFW and 2.8 for UT Zappos50k).

We show our results in Figure 4 on 12 test images (more

in supplemental) which match those used by disCVAE [48]

(see Figure 6 of their paper). Qualitatively we observe that

the DFI results are plausible. The filled face regions match

skin tone, wrinkles, gender, and pose. The filled shoe re-

gions match color and shoe style. However, DFI failed to

produce eyeglasses when stems are visible in the input and

some shoes exhibit ghosting since the dataset is not perfectly

aligned. DFI performs well when the face is missing (i.e.,

the central portion of each image) but we found it performs

worse than disCVAE when half of the image is missing

(Figure 8). Overall, DFI works surprisingly well on these

inpainting tasks. The results are particularly impressive con-

sidering that, in contrast to disCVAE, it does not require

attributes to describe the missing regions.

4.4. Varying the free parameters

Figure 6 illustrates the effect of changing β (strength of

transformation) and K (size of source/target sets). As β in-

creases, task-related visual elements change more noticeably

(Figure 7). If β is low then ghosting can appear. If β is too

large then the transformed image may jump to a point in

feature space which leads to an unnatural reconstruction. K

controls the variety of images in the source and target sets.

A lack of variety can create artifacts where changed pixels

do not match nearby unchanged pixels (e.g., see the lower

lip, last row of Figure 6). However, too much variety can

cause St and Ss to contain distinct subclasses and the set

mean may describe something unnatural (e.g., in the first
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Original β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1.0

Figure 7. Morphing a face to make it appear older. The transformation becomes more pronounced as the value of β increases.

row of Figure 6 the nose has two tips, reflecting the presence

of left-facing and right-facing subclasses). In practice, we

pick an β and K which work well for a variety of images

and tasks rather than choosing per-case.

5. Discussion

In the previous section we have shown that Deep Fea-

ture Interpolation is surprisingly effective on several image

transformation tasks. This is very promising and may have

implications for future work in the area of automated image

transformations. However, DFI also has clear limitations

and requirements on the data. We first clarify some of the

aspects of DFI and then focus on some general observations.

Image alignment is a necessary requirement for DFI to

work. We use the difference of means to cancel out the

contributions of convolutional features that are unrelated

to the attribute we wish to change, particularly when this

attribute is centered in a specific location (adding a mustache,

opening eyes, adding a smile, etc). For example, when

adding a mustache, all target images contain a mustache and

therefore the convolutional features with the mustache in

their receptive field will not average out to zero. While max-

pooling affords us some degree of translation invariance, this

reasoning breaks down if mustaches appear in highly varied

locations around the image, because no specific subset of

convolutional features will then correspond to “mustache

features”. Image alignment is a limitation but not for faces,

an important class of images. As shown in Section 4.2,

existing face alignment tools are sufficient for DFI.

Time and space complexity. A significant strength of DFI

is that it is very lean. The biggest resource footprint is

GPU memory for the convolutional layers of VGG-19 (the

large fully-connected layers are not needed). A 1280× 960
image requires 4 GB and takes 5 minutes to reconstruct.

A 200 × 200 image takes 20s to process. The time and

space complexity are linear. In comparison, many generative

models only demonstrate 64 × 64 images. Although DFI

does not require the training of a specialized architecture,

it is also fair to say that during test-time it is significantly

slower than a trained model (which, typically, needs sub-

seconds) As future work it may be possible to incorporate

techniques from real-time style-transfer [36] to speed-up

DFI in practice.

DFI’s simplicity. Although there exists work on high-

resolution style transfer [11, 28, 36], to our knowledge, DFI

is the first algorithm to enable automated high resolution con-

tent transformations. The simple mechanisms of DFI may

inspire more sophisticated follow-up work on scaling up

current generative architectures to higher resolutions, which

may unlock a wide range of new applications and use cases.

Generative vs. Discriminative networks. To our knowl-

edge, this work is the first cross-architectural comparison of

an AE against a method that uses features from a discrimi-

natively trained network. To our great surprise, it appears

that a discriminative model has a latent space as good as an

AE model at diting content. A possible explanation is that

the AE architecture could organize a better latent space if it

were trained on a more complex dataset. AE are typically

trained on small datasets with very little variety compared to

the size and richness of recognition datasets. The richness

of ImageNet seems to be an important factor: in early ex-

periments we found that the convolutional feature spaces of

VGG-19 outperformed those of VGG-Face on face attribute

change tasks.

Linear interpolation as a baseline. Linear interpolation

in a pre-trained feature space can serve as a first test for de-

termining if a task is interesting: problems that can easily be

solved by DFI are unlikely to require the complex machinery

of generative networks. Generative models can be much

more powerful than linear interpolation, but the current prob-

lems (in particular, face attribute editing) which are used to

showcase generative approaches are too simple. Indeed, we

do find many problems where generative models outperform

DFI. In the case of inpainting we find DFI to be lacking

when the masked region is half the image (Figure 8). DFI is

also incapable of shape [53] or rotation [34] transformations

since those tasks require aligned data. Finding more of these

difficult tasks where generative models outshine DFI would

help us better evaluate generative models. We propose DFI

to be the linear interpolation baseline because it is very easy

to compute, it will scale to future high-resolution models, it
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Figure 5. (Zoom in for details.) Editing megapixel faces. First

column. Original image. Right columns. The top 3 rows show

aging (β = {0.15, 0.25}) and the bottom 3 rows show the addition

of facial hair (β = {0.21, 0.31}). High resolution images are

challenging since artifacts are more perceivable. We find DFI to be

effective on the aging and addition of facial hair tasks.

β = 0.8 β = 1.6 β = 2.4 β = 3.2 β = 4.0

K
 =

 1
K

 =
 1

0
K

 =
 1

0
2

K
 =

 1
0

3
K

 =
 1

0
4

Figure 6. Inpainting and varying the free parameters. Rows: K,

the number of nearest neighbors. Columns: β, higher values

correspond to a larger perturbation in feature space. When K is too

small the generated pixels do not fit the existing pixels as well (the

nose, eyes and cheeks do not match the age and skin tone of the

unmasked regions). When K is too large a difference of means fails

to capture the discrepancy between the distributions (two noses are

synthesized). When β is too small or too large the generated pixels

look unnatural. We use K = 100 and β = 1.6.

Figure 8. Example of a hard task for DFI: inpainting an image with

the right half missing.

does not require supervised attributes, and it can be applied

to nearly any aligned class-changing problems.

6. Conclusion

We have introduced DFI which interpolates in a pre-

trained feature space to achieve a wide range of image

transformations like aging, adding facial hair and inpainting.

Overall, DFI performs surprisingly well given the method’s

simplicity. It is able to produce high quality images over a

variety of tasks, in many cases of higher quality than exist-

ing state-of-the-art methods. This suggests that, given the

ease with which DFI can be implemented, it should serve

as a highly competitive baseline for certain types of image

transformations on aligned data. Given the performance

of DFI, we hope that this spurs future research into image

transformation methods that outperform this approach.
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