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Abstract

We introduce an inference technique to produce discrim-

inative context-aware image captions (captions that de-

scribe differences between images or visual concepts) using

only generic context-agnostic training data (captions that

describe a concept or an image in isolation). For exam-

ple, given images and captions of “siamese cat” and “tiger

cat”, we generate language that describes the “siamese

cat” in a way that distinguishes it from “tiger cat”. Our

key novelty is that we show how to do joint inference over

a language model that is context-agnostic and a listener

which distinguishes closely-related concepts. We first ap-

ply our technique to a justification task, namely to describe

why an image contains a particular fine-grained category

as opposed to another closely-related category of the CUB-

200-2011 dataset. We then study discriminative image cap-

tioning to generate language that uniquely refers to one

of two semantically-similar images in the COCO dataset.

Evaluations with discriminative ground truth for justifica-

tion and human studies for discriminative image captioning

reveal that our approach outperforms baseline generative

and speaker-listener approaches for discrimination.

1. Introduction

Language is the primary modality for communicating,

and representing knowledge. To convey relevant informa-

tion, we often use language in a way that takes into account

context. For example, instead of describing a situation in a

“literal” way, one might pragmatically emphasize selected

aspects in order to be persuasive, impactful or effective.

Consider the target image at the bottom left in Fig. 1. A

literal description “An airplane is flying in the sky” conveys

the semantics of the image, but would be inadequate if the

goal was to disambiguate this image from the distractor im-

age (bottom right). For this purpose, a more pragmatic de-

scription would be, “A large passenger jet flying through a

blue sky”. This description is aware of context, namely, that

the distractor image also has an airplane. People use such

pragmatic considerations continuously, and effortlessly in

Figure 1: An illustration of two tasks requiring pragmatic reasoning ex-

plored in this paper. 1) justification: Given an image of a bird, a target

(ground-truth) class (green), and a distractor class (red), describe the target

image to explain why it belongs to the target class, and not the distractor

class. The distractor class images are only shown for illustration, and are

not provided to the algorithm. 2) discriminative image captioning: Given

two similar images, produce a sentence to identify a target image (green)

from the distractor image (red). Our introspective speaker model improves

over a context-free speaker.

teaching, conversation and discussions.

In this vein, it is desirable to endow machines with prag-

matic reasoning. One approach would be to collect training

data of language used in context, for example, discrimina-

tive ground truth utterances from people describing images

in context of other images, or justifications explaining why

an image contains a target class as opposed to a distractor

class (Fig. 1). Unfortunately, collecting such data has a pro-

hibitive cost, since the space of objects in possible contexts

is often too large. Furthermore, in some cases the context

in which we wish to be pragmatic may be unknown apri-

ori. For example, a free-form conversation agent may have

to respond in a context-aware or discriminative fashion de-

pending upon the history of a conversation. Such scenarios

also arise in human-robot interaction, as in the case where,

a robot may need to reason about which spoon a person is

asking for. Thus, in this paper, we focus on deriving prag-

matic (context-aware) behavior given access only to generic

(context-agnostic) ground truth.
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We study two qualitatively different real-world vision

tasks that require pragmatic reasoning. The first is justifi-

cation, where the model needs to justify why an image cor-

responds to one fine-grained object category, as opposed to

a closely related, yet undepicted category. Justification is

a task that is important for hobbyists, and domain experts:

ornithologists and botanists often need to explain why an

image depicts particular species as opposed to a closely-

related species. Another potential application for justifica-

tion is in machine teaching, where an algorithm instructs

non-expert humans about new concepts.

Our second task is discriminative image captioning,

where the goal is to generate a sentence that describes an

image in context of other semantically similar images. This

task is not only grounded in pragmatics, but is also inter-

esting as a scene understanding task to check fine-grained

image understanding. It also has potential applications to

human robot interaction.

Recent work by Andreas and Klein [1] derives pragmatic

behaviour in neural language models using only context-

free data. While we are motivated by similar considera-

tions, the key algorithmic novelty of our work over [1] is

a unified inference procedure which leads to more efficient

search for discriminative sentences (Sec. 5). Our approach

is based on the realization that one may simply re-use the

sampling distribution from the generative model, instead of

training a separate model to assess discriminativeness [1].

This also has important implications for practitioners, since

one can easily adapt existing context-free captioning mod-

els for context-aware captioning without additional training.

Furthermore, while [1] was applied to an abstract scenes

dataset [43], we apply our model to two qualitatively differ-

ent real-image datasets: the fine-grained birds dataset CUB-

200-2011 [38], and the COCO [21] dataset which contains

real-life scenes with common objects.

In summary, the key contributions of this paper are:

• A novel inference procedure that models an introspec-

tive speaker (IS), allowing a speaker (S) (say a generic

image captioning model) to reason about pragmatic

behavior without additional training.

• Two new tasks for studying discriminative behaviour,

and pragmatics, grounded in vision: justification, and

discriminative image captioning.

• A new dataset (CUB-Justify) to evaluate justification

systems on fine-grained bird images with 5 captions

for 3161 (image, target class, distractor class) triplets.

• Our evaluations on CUB-Justify, and human evalua-

tion on COCO show that our approach outperforms

baseline approaches at inducing discrimination.

2. Related Work

Pragmatics: The study of pragmatics – how context in-

fluences usage of language, stems from the foundational

work of Grice [13] who analyzed how cooperative multi-

agent linguistic agents could model each others’ behav-

ior to achieve a common objective. Consequently, a lot

of pragmatics literature has studied higher-level behavior

in agents including conversational implicature [5] and the

Gricean maxims [37]. These works aim to derive pragmatic

behavior given minimal assumptions on individual agents

and typically use hand-tuned lexicons and rules. More re-

cently, there have been exciting developments on apply-

ing reinforcement learning (RL) techniques to these prob-

lems [25, 7, 19], requiring less manual tuning.

We are also interested in deriving pragmatic behavior,

but our focus is on scaling context-sensitive behavior to vi-

sion tasks. Other works model ideas from pragmatics to

learn language via games played online [39] or for human-

robot collaboration [32]. In a similar spirit, here we are

interested in applying ideas from pragmatics to build sys-

tems that can provide justifications (Sec. 4.1) and provide

discriminative image captions (Sec. 4.2).

Most relevant to our work is the recent work on deriving

pragmatic behavior in abstract scenes made with clipart, by

Andreas, and Klein [1]. Unlike their technique, our pro-

posed approach does not require training a second listener

model and supports more efficient inference (Sec. 3.3).

More details are provided in Sec. 3.1.

Beyond Image Captioning: Image captioning, the task of

generating natural language description for an image, has

seen quick progress [10, 11, 36, 40]. Recently, research

has shifted beyond image captioning, addressing tasks like

visual question answering [2, 12, 23, 42], referring expres-

sion generation [18, 24, 26, 30], and fill-in-the-blanks [41].

In a similar spirit, the two tasks we introduce here, justifi-

cation, and discriminative image captioning, can be viewed

as “beyond image captioning” tasks. Sadovnik et al. [29]

first studied a discriminative image description task, with

the goal of distinguishing one image from a set of images.

Their approach incorporates cues such as discriminability

and saliency, and uses hand-designed rules for constructing

sentences. In contrast, we develop inference techniques to

induce discriminative behavior in neural models. The ref-

erence game from [1] can also be seen as a discriminative

image captioning task on abstract scenes made from clipart,

while we are interested in the domain of real images. The

work on generating referring expressions by Mao et al. [24]

generates discriminative captions which refer to particular

objects in an image given context-aware supervision. Our

work is different in the sense that we address an instance

of pragmatic reasoning in the common case where context-

dependent data is not available for training.

Rationales: Several works have studied how machines can

understand human rationales, including enriching classifi-

cation by asking explanations from humans [9], and incor-

porating human rationales in active learning [6, 27]. In
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contrast, we focus on machines providing justifications to

humans. This could potentially allow machines to teach

new concepts to humans (machine teaching). Other recent

work [14] looks at post-hoc explanations for classification

decisions. Instead of explaining why a model thinks an im-

age is a particular class, [14] describes why an image is of a

class predicted by the classifier. Unlike this task, our justi-

fication task requires reasoning about explicit context from

the distractor class. Further, we are not interested in pro-

viding rationalizations for classification decisions but in ex-

plaining the differences between confusing concepts to hu-

mans. We show a comparison to [14] in [33], demonstrating

the importance of context for justification.

Beam Search with Modified Objectives: Beam search is

an approximate, greedy technique for inference in sequen-

tial models. We perform beam search on a modified objec-

tive for our introspective speaker model to induce discrimi-

nation. This is similar in spirit to recent works on inducing

diversity in beam search [35], and maximum mutual infor-

mation inference for sequence-to-sequence models [20].

3. Approach

We describe our approach for inducing context-aware

language for: 1) justification, where the context is another

class, and 2) discriminative image captioning, where the

context is a semantically similar image. For clarity, we first

describe the formulation for justification, and then discuss a

modification for discriminative image captioning.

In the justification task (Fig. 1 top), we wish to produce

a sentence s, comprised of a sequence of words {si}, based

on a given image I of a target concept ct in the context of

a distractor concept cd. The produced justification should

capture aspects of the image that discriminate between the

target, and the distractor concepts. Note that images of the

distractor class are not provided to the algorithm.

We first train a generic context-agnostic image caption-

ing model (from here on referred to as speaker) using train-

ing data from Reed et al. [28] who collected captions de-

scribing bird images on the CUB-200-2011 [38] dataset.

We condition the model on ct in addition to the image. That

is, we model p(s|I, ct). This not only helps produce bet-

ter sentences (providing the model access to more informa-

tion), but is also the cornerstone of our approach for dis-

crimination (Sec. 3.2). Our language models are recurrent

neural networks which represent the state-of-the-art for lan-

guage modeling across a range of popular tasks like image

captioning [36, 40], machine translation [3] etc.

3.1. Reasoning Speaker

To induce discrimination in the utterances from a lan-

guage model, it is natural to consider using a generator, or

speaker, which models p(s|I, ct) in conjunction with a lis-

tener function f(s, ct, cd) that scores how discriminative an

utterance s is. The task of a pragmatic reasoning speaker

RS, then, is to select utterances which are good sentences

as per the generative model p, and are discriminative per f :

RS(I, ct, cd)=argmax
s

λp(s|I, ct) + (1−λ)f(s, ct, cd)

(1)

where 0 ≤ λ ≤ 1 controls the tradeoff between linguistic

adequacy of the sentence, and discriminativeness.

A similar reasoning speaker model forms the core of the

approach of [1], where p, and f are implemented using

multi-layer perceptrons (MLPs). As noted in [1], select-

ing utterances from such a reasoning speaker poses several

challenges. First, exact inference in this model over the ex-

ponentially large space of sentences is intractable. Second,

in general one would not expect the discriminator function

f to factorize across words, making joint optimization of

the reasoning speaker objective difficult. Thus, Andreas,

and Klein [1] adopt a sampling based strategy, where p is

considered as the proposal distribution whose samples are

ranked by a linear combination of p, and f (Eq. 1). Im-

portantly, this distribution is over full sentences, hence the

effectiveness of this formulation depends heavily on the dis-

tribution captured by p, since the search over the space of

all strings is solely based on the speaker. This is inefficient,

especially when there is a mismatch in the statistics of the

context-free (generative), and the unknown context-aware

(discriminative) sentence distributions. In such cases, one

must resort to drawing many samples to find good discrim-

inative sentences.

3.2. Introspective Speaker

Our approach for incorporating contextual behavior is

based on a simple modification to the listener f (Eq. 1).

Given the generator p, we construct a listener module that

wants to discriminate between ct, and cd, using the follow-

ing log-likelihood ratio:

f(s, ct, cd) = log
p(s|ct, I)

p(s|cd, I)
. (2)

This listener only depends on a generative model,

p(s|c, I), for the two classes ct, and cd. We name it “in-

trospector” to emphasize that this step re-uses the genera-

tive model, and does not need to train an explicit listener

model. Substituting the introspector into Eq. 1 induces the

following introspective speaker model for discrimination:

∆(I, ct, cd)
︸ ︷︷ ︸

introspective speaker

= argmax
s

λ log p(s|ct, I)
︸ ︷︷ ︸

speaker

+ (1−λ) log
p(s|ct, I)

p(s|cd, I)
︸ ︷︷ ︸

introspector

, (3)

with λ that trades-off the weight given to generation, and

introspection (similar to Eq. 1). In general, we expect this
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approach to provide sensible results when ct, and cd are

similar. That is, we expect humans to describe similar con-

cepts in similar ways, hence p(s|ct, I) should not be too dif-

ferent from p(s|cd, I). Thus, the introspector is less likely

to overpower the speaker in Eq. 3 in such cases (for a given

λ). Note that for sufficiently different concepts the speaker

alone is likely to be sufficient for discrimination. That is,

describing the concept in isolation is likely to be enough to

discriminate against a different or unrelated concept.

A careful inspection of the introspective speaker model

reveals two desirable properties over previous work [1].

First, the introspector model does not need training, since

it only depends on p, the original generative model. Thus,

existing language models can be readily re-used to produce

context-aware outputs by conditioning on cd. We demon-

strate empirical validation of this in Sec. 5. This would help

scale this approach to scenarios where it is not known apri-

ori which concepts need to be discriminated, in contrast to

approaches which train a separate listener module. Second,

it leads to a unified, and efficient inference for the introspec-

tive speaker (Eq. 3), which we describe next.

3.3. Emitter­Suppressor (ES) Beam Search for
RNNs

We now describe a search algorithm for implementing

the maximization in Eq. 3, which we call emitter-suppressor

(ES) beam search. We use the beam search [22] algorithm,

which is a heuristic graph-search algorithm commonly used

for inference in Recurrent Neural Networks [15, 35].

We first factorize the posterior log-probability terms in

the introspective speaker equation (Eq. 3) p(s|ct, I) =
∏T

τ=1 p(sτ |s1:τ−1, ct, I), denoting s1:T = {sτ}
T
τ=1 (s1:0

corresponds to a null string). T is the length of the sentence.

We then combine terms from Eq. 3, yielding the following

emitter-suppressor objective for the introspective speaker:

∆(I, ct, cd) = argmax
s

T∑

τ=1

log

emitter
︷ ︸︸ ︷

p(sτ |s1:τ−1, ct, I)

p(sτ |s1:τ−1, cd, I)
1−λ

︸ ︷︷ ︸

suppressor

.

(4)

The emitter (numerator in Eq. 4) is the generative model

conditioned on the target concept ct, deciding which token

to select at a given timestep. The suppressor (the denomina-

tor in Eq. 4) is conditioned on the distractor concept cd, pro-

viding signals to the emitter on which tokens to avoid. This

is intuitive – to be discriminative, we want to emit words

that match ct, but avoid emitting words that match cd.

We maximize the emitter-suppressor objective (Eq. 4)

using beam search. Vanilla beam search, as typically used

in language models, prunes the output space at every time-

step keeping the top-B (usually incomplete) sentences with

highest log-probabilities so far (speaker in Eq. 3). Instead,

Figure 2: Emitter-suppressor beam search for beam size 1, for distinguish-

ing an image of “black-throated blue warbler” from the distractor class

“black and white warbler”. Green: A language model p(s|ct, I) produces

a caption “white belly and breast ... ”. Red: When feeding the distractor

class to the language model, since the two birds share the attribute white

belly, which appears in the image, the term ”white” is highly suppressed.

Blue: Picking likely words for the emitter, and unlikely for the suppres-

sor yields a discriminative caption “blue throat ..”. Note that emitter, and

suppressor share history (the previouly generated words).

we run beam search to keep the top-B sentences with high-

est ES ratio in Eq. 4. Fig. 2 illustrates this ES beam search

for a beam size of 1.

It is important to consider how the trade-off parameter

λ affects the produced sentences. For λ = 1, the model

generates descriptions that ignore the context. At the other

extreme, low λ values are likely to make the produced sen-

tences very different from any sentence in the training set

(repeated words, ungrammatical sentences). It is not trivial

to assume that there exists a wide enough range of λ creat-

ing sentences that are both discriminative, and well-formed.

However, our results (Sec. 5) indicate that such a range of λ

exists in practice.

3.4. Discriminative Image Captioning

We are given a target image It, and a distractor Id,that

we wish to distinguish, similar to the two classes for the jus-

tification task. We construct a speaker (or generator) for this

task by training a standard image captioning model. Given

this speaker, we construct an emitter-suppressor equation

(as in Eq. 4):

∆(It, Id) = argmax
s

T∑

τ=1

log

emitter
︷ ︸︸ ︷

p(sτ |s1:τ−1, It)

p(sτ |s1:τ−1, Id)
1−λ

︸ ︷︷ ︸

suppressor

. (5)

We re-use the mechanics of emitter-suppressor beam

search from Sec. 3.3, conditioning the emitter on the target

image It, and the suppressor on the distractor image Id.
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4. Experimental Setup

We provide details of the CUB dataset, of our CUB-

Justify dataset used for evaluation, and of the speaker-

training setup for the justification task. We then discuss the

experimental protocols for discriminative image captioning.

4.1. Justification

CUB Dataset: The Caltech UCSD birds (CUB)

dataset [38] contains 11788 images for 200 species of North

American birds. Each image in the dataset has been anno-

tated with 5 fine-grained captions by Reed et al. [28]. These

captions mention various details about the bird (“This is a

white spotted bird with a long pointed black beak.”) while

not mentioning the name of the bird species.

CUB-Justify Dataset: We collect a new dataset (CUB-

Justify) with ground truth justifications for evaluating jus-

tification. We first sample the target, and distractor classes

from within a hyper-category created based on the last name

of the folk names of the 200 species in CUB. For instance,

“rufous hummingbird”, and “ruby throated hummingbird”

both fall in the hyper-category “hummingbird”. We in-

duce 37 such hyper-categories. The largest single hyper-

category is “Warbler” with 25 categories. We then select a

subset of (approx.) 15 images from the test set of CUB-200-

2011 [38] for each of the 200 classes, to form a CUB-Justify

test split. We use the rest for speaker training (CUB-Justify

train split).

Workers were then shown an image of the “rufous hum-

mingbird”, for instance, and a set of 6 other images (from

CUB-Justify test split) all belonging to the distractor class

“ruby throated hummingbird”, to form the visual notion of

the distractor class. They were also shown a diagram of the

morphology of birds indicating various parts such as tarsus,

rump, wingbars etc. (similar to Reed et al. [28]). The in-

struction was to describe the target image such that it is not

confused with images from the distractor class. Some birds

are best distinguished by non-visual cues such as their call,

or their migration patterns. Thus, we drop the categories of

birds from the original list of triplets which were labeled as

too hard to distinguish by the workers. At the end of this

process we are left with 3161 triplets with 5 captions each.

We split this dataset into 1070 validation (for selecting the

best value of λ), and 2091 test examples respectively. More

details on the interface can be found in [33].

Speaker Training: We implement a model similar to

“Show, Attend, and Tell” from Xu et al. [40], modifying the

original model to provide the class as input, similar in spirit

to [14]. Exact details of our model architecture are given

in [33]. We train the model on the CUB-Justify train split.

Recall that this just has context-agnostic captions from [28].

To evaluate the quality of our speaker model, we report

numbers here using the CIDEr-D metric [34] commonly

used for image captioning [14, 17, 36] computed on the

context-agnostic captions from [28]. Our captioning model

with both the image, and class as input reaches a validation

score of 50.2 CIDEr-D, while the original image-only cap-

tioning model reaches a CIDEr-D of 49.1. The scores are in

a similar range as existing CUB captioning approaches [14].

Justification Evaluation: We measure performance of the

(context-aware) justification captions on the CUB-Justify

discriminative captions using the CIDEr-D metric. CIDEr-

D weighs n-grams by their inverse document frequencies

(IDF), giving higher weights to sentences having “con-

tent” n-grams (“red beak”) than generic n-grams (“this

bird”) [14]. Further, CIDEr-D captures importance of an n-

gram for the image. For instance, it emphasizes “red beak”

over, say, “black belly” if “red beak” is used more often in

human justifications. We also report METEOR [4] scores

for completeness. More detailed discussion on metrics can

be found in [33].

4.2. Discriminative Image Captioning

Dataset: We want to test if reasoning about context with an

introspective speaker can help discriminate between pairs

of very similar images from the COCO dataset. To con-

struct a set of confusing image pairs, we follow two strate-

gies. First, easy confusion: For each image in the validation

(test) set, we find its nearest neighbor in the FC7 space of

a pre-trained VGG-16 CNN [31], and repeat this process of

neighbor finding for 1000 randomly chosen source images.

Second, hard confusion: To further narrow down to a list

of semantically similar confusing images, we then run the

speaker model on the nearest neighbor images, and compute

word-level overlap (intersection over union) of their gener-

ated sentences. We then pick the top 1000 pairs with most

overlap. Interestingly, the top 539 pairs had identical cap-

tions. This reflects the issue of the output of image caption-

ing models lacking diversity, and seeming templated [8, 36].

Speaker Training and Evaluation: We train our genera-

tive speaker for use in emitter-suppressor beam search us-

ing the model from [36] implemented in the neuraltalk2

project [16]. We use the train/val/test splits from [17].

Our trained and finetuned speaker model achieves a perfor-

mance of 91 CIDEr-D on the test set. As seen in Eq. 5, no

category information is used for this task. We evaluate ap-

proaches for discriminative image captioning based on how

often they help humans to select the correct image out of

the pair of images.

5. Results

5.1. Justification

Methods and Baselines: We evaluate the following mod-

els: 1. IS(λ): Introspective speaker from Eq. 3; 2. IS(1):

standard literal speaker, which generates a caption condi-

tioned on the image and target class, but which ignores the
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Figure 3: CUB-Justify validation results: CIDEr-D vs. λ on CUB-

Justify validation. Our introspective speaker approaches (IS(λ) and semi-

blind-IS(λ)) models perform best, followed by the class-only introspective

speaker (blind-IS(λ)). semi-blind-IS(λ) outperforms other methods for a

wider range of λ. All approaches which reason about pragmatics beat the

baseline generative approach IS(1). Error bars denote standard error of the

mean score estimated across the validation set.

distractor class; 3. semi-blind-IS(λ): Introspective speaker

in which the listener does not have access to the image, but

the speaker does; 4. blind-IS(λ): Introspective speaker with-

out access to image, conditioned only on classes; 5. RS(λ):

Our implementation of Andreas and Klein [1], but using our

(more powerful) language model, and Eq. 3 with a listener

that models
p(s|ct)
p(s|cd)

(similar to semi-blind-IS(λ)) for ranking

samples (as opposed to a trained MLP [1], to keep things

comparable). All approaches use 10 beams/samples (which

is better than lower values) unless stated otherwise.

Validation Performance: Fig. 3 shows the performance on

CUB-Justify validation set as a function of λ, the hyper-

parameter controlling the tradeoff between the speaker and

the introspector (Eq. 3). For the RS(λ) baseline, λ stands

for the tradeoff between the log-probability of the sentence

and the score from the discriminator function for sample

re-ranking. A few interesting observations emerge. First,

both our IS(λ) and semi-blind-IS(λ) models outperform the

baselines for the mid range of λ values. IS(λ) model does

better overall, but semi-blind-IS(λ) has a more stable per-

formance over a wider range of λ. This indicates that when

conditioned on the image, the introspector has to be highly

discriminative (low lambda values) to overcome the signals

from the image, since discrimination is between classes.

Second, as λ is decreased from 1, most methods improve

as the sentences become more discriminative, but then get

worse again as λ becomes too low. This is likely to happen

because when λ is too low, the model explores rare tokens

and parts of the output space that have not been seen during

training, leading to badly-formed sentences (Fig. 4). This

effect is stronger for IS(λ) models than for RS(λ), since

RS(λ) searches the output space over samples from the gen-

erator and only ranks using the joint reasoning speaker ob-

jective (Eq. 1). Interestingly, at λ = 1 (no discrimination),

the RS(λ) approach, which samples from the generator,

also performs better than other approaches, which use beam

Approach CIDEr-D METEOR

IS(λ) 18.4 ± 0.2 26.5

semi-blind-IS(λ) 18.5 ± 0.2 27.5

RS(λ) 15.8 ± 0.2 26.5

IS(1) 12.3 ± 0.1 25.3

blind-IS(λ) 16.1 ± 0.2 26.8

Table 1: CUB-Justify test results: CIDEr-D, and METEOR scores

(higher the better) computed on test set of CUB-Justify. Each model used

the best λ selected on the validation set (Fig. 3). Error values are standard

error of the mean (SEM is less than 0.05 for METEOR). semi-blind-IS(λ)

outperforms other methods.

search to select high log-probability (context-agnostic) sen-

tences. This indicates that in the absence of ground truth

justifications, there is indeed a discrepancy between search-

ing for discriminativeness and searching for a highly likely

context-agnostic sentence.

We perform more comparisons with the RS(λ) baseline,

sweeping over {10, 50, 100} samples from the generator for

listener reranking (Eq. 1). We find that using 100 samples,

RS(λ) gets comparable CIDEr-D scores (18.8) (but lower

METEOR scores) than our semi-blind-IS(λ) approach with

a beam size of 10. This suggests that our semi-blind-IS(λ)

approach is more computationally efficient at exploring the

output space because our emitter-suppressor beam search

allows us to do joint greedy inference over speaker and in-

trospector, leading to more meaningful local decisions. For

completeness, we also trained a listener module discrimi-

natively, and used it as a ranker for RS(λ). We found that

this gets to 16.2 ± 0.3 CIDEr-D (at λ = 0.5) on validation,

which is lower than IS(λ), showing that the bottleneck for

performance is sampling, rather than the discriminativeness

of the listener. More details can be found in [33].

Test Performance: Table. 1 details the performance of the

above models on the test set of CUB-Justify, with each

model using its best-performing λ on the validation set

(Fig. 3). Both introspective-speaker models strongly out-

perform the baselines, with semi-blind-IS(λ) slightly out-

performing the IS(λ) model. This could be due to the per-

formance of semi-blind-IS(λ) being less sensitive to the ex-

act choice of λ (from Fig. 3). Among the baselines, the best

performing method is the blind-IS(λ) model, presumably

because this model does emitter-suppressor beam search,

while the other two baseline approaches rely on sampling

and regular beam search respectively.

Qualitative Results: We next showcase some qualitative

results that demonstrate 1) aspects of pragmatics, and 2)

context dependence captured by our best-performing semi-

blind-IS(λ) model. Fig. 4 demonstrates how sentences ut-

tered by the introspective speaker change with λ. At λ = 1
the sentence describes the image well, but is oblivious of the

context (distractor class). The sentence “A small sized bird

has a very long and pointed bill.” is discriminative of hum-

mingbirds against other birds, but not among hummingbirds

(many of which tend to have long beaks/bills). At λ = 0.7,
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Figure 4: The effect of context weight: An image of a “Rufous Humming-

bird” in the context of another hummingbird type. A generative (context-

blind) description describes the bird as having a long beak, but this feature

is not discriminative. When taking into account the context, intermediate λ

values yield descriptions that highlight that the Rufous is brown with a red

throat. For λ = 0, the model does not force sentences to be well formed.

Figure 5: The effect of context class: An image of a “Tennessee Warbler”,

which has light green wings, and a white eyebrow. When described in

the context of a mourning warbler, which has a green hue, the description

highlights that the target bird has a white eyebrow. When described in the

context of the “Black and White Warbler”, the description highlights that

the target bird has green color.

and λ = 0.5, the model captures discriminative features

such as the “red neck”, “white belly”, and “red throat”. In-

terestingly, at λ = 0.7 the model avoids saying “long beak”,

a feature shared by both birds. Next, Fig. 5 demonstrates

how the selected utterances change based on the context.

A limitation of our approach is that, since the model never

sees discriminative training data, in some cases it produces

repeated words (“green green green”) when encouraged to

be discriminative at inference time.

Finally, Fig. 6 illustrates the importance of visual rea-

soning for the justification task. Fine-grained species often

have large intra-class variances which a blind approach to

justification would ignore. Thus, a good justification ap-

proach needs to be grounded in the image signal to pick the

discriminative cues appropriate for the given instance.

5.2. Discriminative Image Captioning

As explained in Sec. 4.2 we create two sets of semanti-

cally similar target, and distractor images: easy confusion

based on FC7 features alone, and hard confusion based on

both FC7, and sentences generated from the speaker (im-

age captioning model). We are interested in understanding

if emitter-suppressor inference helps identify the target im-

age better than the generative speaker baseline. Thus the

two approaches are speaker (S) (baseline), and introspec-

tive speaker (IS) (our approach). We use λ = 0.3 based on

Green Kingfisher

Target Image and Class

Blind‐Introspective Speaker:

(baseline)

This bird is blue with red on

Its chest and has a long pointy beak

Introspective Speaker:

(our approach)

This is a green green and black bird with a 

green crown.

Distractor Class

Pied Kingfisher
Ground Truth Justifications

• This is a bird with dark 

green crown and dark 

green coverts.

• This is a bird with black 

and green crown and 

green mantle

Intra‐ Class Variance
Green Kingfisher

Figure 6: The importance of visual signal for justification in fine-

grained categories. Given the image of a green kingfisher (left), a blind-

IS(λ) model says the bird has “red on its chest”, which is inaccurate for

this image, and a “long pointy beak”, which is not a discriminative feature

for this context. At the same time, the semi-blind-IS(λ) model mentions

the “green crown”, and avoids uttering “red chest”. Given the complicated

intra-category invariances in bird categories (right), it is intuitive that the

image signal is important for justification.

Approach easy confusion (%) hard confusion (%)

S (baseline) 74.6 52.5

IS (ours) 89.0 74.1

Table 2: % of image pairs that are correctly discriminated by humans,

based on descriptions in COCO. Introspective speaker (IS) is better at

pointing to the target image given a confusing distractor image across both

easy, and hard data splits than a speaker (S). Standard error is below the

precision we report numbers at.

our results on the CUB dataset. We run all approaches at a

beam size of 2 (typically best for COCO [16]).

Human Studies: We setup a two annotation forced choice

(2AFC) study where we show a caption to raters asking

them to “pick an image that the sentence is more likely to

be describing.”. Each target distractor image pair is tested

against the generated captions. We check the fraction of

times a method caused the target image to be picked by a

human. A discriminative image captioning method is con-

sidered better if it enables humans to identify the target im-

age more often. Results of the study are summarized in Ta-

ble. 2. We find that our approach outperforms the baseline

speaker (S) on the easy confusion as well as the hard confu-

sion splits. However, the gains from our approach are larger

on the hard confusion split, which is intuitive.

Qualitative Results: The qualitative results from our

COCO experiments are shown in Fig. 7. The target image,

when successfully identified, is shown with a green border.

We show examples where our model identifies the target im-

age better in the first two rows, and some failure cases in the

third row. Notice how the model is able to modify its utter-

ances to account for context, and pragmatics, when going

from λ = 1 (speaker) to λ = 0.3 (introspective speaker).

Note that the sentences typically respect grammatical con-

structs despite being forced to be discriminative.

6. Discussion

Describing absence of concepts and inducing compara-

tive language are exciting directions for future work on jus-
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Figure 7: Pairs of images whose captions generated by a generic captioning speaker baseline (S) are identical. We apply our introspective speaker (IS)

technique to distinguish the image on the left from the image on the right in each pair. The target image (left) is shown with a green border when the IS

generated sentence is able to identify it correctly. Notice how the introspective speaker often refers more unambiguously to the target image. For example,

for the sheep image (middle left), the IS generated sentence mentions that the sheep are grazing in a lush green field. In the bottom row we show some

failure examples. The bottom left example is interesting, where the model calls the stop sign a policeman. In some cases (the wedding cake image), where

the distributions captured by the emitter, and supressor RNN’s are identical, our IS approach produces the same sentence as the baseline (S).

tification. For instance, when justifying why an image is a

lion and not a tiger, it would be useful to be able to say “be-

cause it does not have stripes.”, or “because it has a more

hair on its face.” Beyond pragmatics, the justification task

also has interesting relations to human learning. Indeed, we

all experience that we learn better when someone takes time

out to justify or explain their point of view. One can imag-

ine such justifications being helpful for “machine teaching”,

where a teacher (machine) can provide justifications to a hu-

man learner explaining the rationale for an image belonging

to a particular fine-grained category as opposed to a differ-

ent, possibly mistaken, or confusing fine-grained category.

There are some fundamental limitations to inducing

context-aware captions from context-agnostic supervision.

For instance, if two distinct concepts are very similar,

human-generated context-free descriptions may be identi-

cal, and our model (as well as baselines) would fail to ex-

tract any discriminative signal. Indeed, it is hard to address

such situations without context-aware ground truth.

We believe modeling higher-order reasoning (such as

pragmatics) by reusing the sampling distribution from lan-

guage models can be a powerful tool. It may be applicable

to other higher-order reasoning, without necessarily setting

up policy gradient estimators on reward functions. Indeed,

our inference objective can also be formulated for training.

However, initial experiments on this did not yeild signifi-

cant performance improvements.

7. Conclusion

We introduce a novel technique for deriving pragmatic

language from recurrent neural network language models,

namely, an image-captioning model that takes into account

the context of a distractor class or a distractor image. Our

technique can be used at inference time to better discrimi-

nate between concepts, without having seen discriminative

training data. We study two tasks in the vision, and lan-

guage domain which require pragmatic reasoning: justifi-

cation – explaining why an image belongs to one category

as opposed to another, and discriminative image captioning

– describing an image so that one can distinguish it from

a closely related image. Our experiments demonstrate the

strength of our method over generative baselines, as well as

adaptations of previous work to our setting. We will make

the code, and datasets available online.
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