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Abstract

We present an approach to effectively use millions of im-

ages with noisy annotations in conjunction with a small

subset of cleanly-annotated images to learn powerful image

representations. One common approach to combine clean

and noisy data is to first pre-train a network using the large

noisy dataset and then fine-tune with the clean dataset. We

show this approach does not fully leverage the information

contained in the clean set. Thus, we demonstrate how to

use the clean annotations to reduce the noise in the large

dataset before fine-tuning the network using both the clean

set and the full set with reduced noise. The approach com-

prises a multi-task network that jointly learns to clean noisy

annotations and to accurately classify images. We evaluate

our approach on the recently released Open Images dataset,

containing ∼9 million images, multiple annotations per im-

age and over 6000 unique classes. For the small clean set

of annotations we use a quarter of the validation set with

∼40k images. Our results demonstrate that the proposed

approach clearly outperforms direct fine-tuning across all

major categories of classes in the Open Image dataset. Fur-

ther, our approach is particularly effective for a large num-

ber of classes with wide range of noise in annotations (20-

80% false positive annotations).

1. Introduction

Deep convolutional neural networks (ConvNets) prolif-

erate in current machine vision. One of the biggest bottle-

necks in scaling their learning is the need for massive and

clean collections of semantic annotations for images. To-

day, even after five years of success of ImageNet [8], there

is still no publicly available dataset containing an order of

magnitude more clean labeled data. To tackle this bottle-

neck, other training paradigms have been explored aiming

to bypass the need of training with expensive manually col-

lected annotations. Examples include unsupervised learn-
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Figure 1. Sample images and annotations from the Open Images

validation set illustrating the variety of images and the noise in the

annotations. We are concerned with the task of training a robust

multi-label image classifier from the noisy annotations. While the

image annotations are simple lists of classes, our model implicitly

learns the structure in the label space. For illustrative purposes, the

structure is sketched as a graph with green and red edges denot-

ing strong positive and negative relations. Our proposed approach

produces both a cleaned version of the dataset as well as a robust

image classifier.

ing [17], self-supervised learning [9, 24, 25, 31] and learn-

ing from noisy annotations [6, 23].

Most of these approaches make a strong assumption that

all annotations are noisy, and no clean data is available.

In reality, typical learning scenarios are closer to semi-

supervised learning: images have noisy or missing anno-

tations, and a small fraction of images also have clean an-

notations. This is the case for example, when images with

noisy annotations are mined from the web, and then a small

fraction gets sent to costly human verification.
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Figure 2. High-level overview of our approach. Noisy input la-

bels are cleaned and then used as targets for the final classifier.

The label cleaning network and the multi-label classifier are jointly

trained and share visual features from a deep convnet. The clean-

ing network is supervised by the small set of clean annotations (not

shown) while the final classifier utilizes both the clean data and the

much larger noisy data.

In this paper, we explore how to effectively and effi-

ciently leverage a small amount of clean annotations in con-

junction with large amounts of noisy annotated data, in par-

ticular to train convolutional neural networks. One common

approach is to pre-train a network with the noisy data and

then fine-tune it with the clean dataset to obtain better per-

formance. We argue that this approach does not fully lever-

age the information contained in the clean annotations. We

propose an alternative approach: instead of using the small

clean dataset to learn visual representations directly, we use

it to learn a mapping between noisy and clean annotations.

We argue that this mapping not only learns the patterns of

noise, but it also captures the structure in the label space.

The learned mapping between noisy and clean annotations

allows to clean the noisy dataset and fine-tune the network

using both the clean and the full dataset with reduced noise.

The proposed approach comprises a multi-task network that

jointly learns to clean noisy annotations and to accurately

classify images, Figure 2.

In particular, we consider an image classification prob-

lem with the goal of annotating images with all concepts

present in the image. When considering label noise, two

aspects are worth special attention. First, many multi-

label classification approaches assume that classes are in-

dependent. However, the label space is typically highly

structured as illustrated by the examples in Figure 1. We

therefore model the label-cleaning network as condition-

ally dependent on all noisy input labels. Second, many

classes can have multiple semantic modes. For example,

the class coconut may be assigned to an image containing a

drink, a fruit or even a tree. To differentiate between these

modes, the input image itself needs to be taken into account.

Our model therefore captures the dependence of annotation

noise on the input image by having the learned cleaning net-

work conditionally dependent on image features.

We evaluate the approach on the recently-released large-

scale Open Images Dataset [16]. The results demonstrate

that the proposed approach significantly improves perfor-

mance over traditional fine-tuning methods. Moreover, we

show that direct fine-tuning sometimes hurts performance

when only limited rated data is available. In contrast, our

method improves performance across the full range of label

noise levels, and is most effective for classes having 20%

to 80% false positive annotations in the training set. The

method performs well across a range of categories, show-

ing consistent improvement on classes in all eight high-level

categories of Open Images (vehicles, products, art, person,

sport, food, animal, plant).

This paper makes the following contributions. First, we

introduce a semi-supervised learning framework for multi-

label image classification that facilitates small sets of clean

annotations in conjunction with massive sets of noisy an-

notations. Second, we provide a first benchmark on the re-

cently released Open Images Dataset. Third, we demon-

strate that the proposed learning approach is more effective

in leveraging small labeled data than traditional fine-tuning.

2. Related Work

This paper introduces an algorithm to leverage a large

corpus of noisily labeled training data in conjunction with a

small set of clean labels to train a multi-label image classifi-

cation model. Therefore, we restrict this discussion to learn-

ing from noisy annotations in image classification. For a

comprehensive overview of label noise taxonomy and noise

robust algorithms we refer to [11].

Approaches to learn from noisy labeled data can gen-

erally be categorized into two groups: Approaches in the

first group aim to directly learn from noisy labels and focus

mainly on noise-robust algorithms, e.g., [3, 15, 21], and la-

bel cleansing methods to remove or correct mislabeled data,

e.g., [4]. Frequently, these methods face the challenge of

distinguishing difficult from mislabeled training samples.

Second, semi-supervised learning (SSL) approaches tackle

these shortcomings by combining the noisy labels with a

small set of clean labels [33]. SSL approaches use la-

bel propagration such as constrained bootstrapping [7] or

graph-based approaches [10]. Our work follows the semi-

supervised paradigm, however focusing on learning a map-

ping between noisy and clean labels and then exploiting the

mapping for training deep neural networks.

Within the field of training deep neural networks there

are three streams of research related to our work. First, var-

ious methods have been proposed to explicitly model la-

bel noise with neural networks. Natarajan et al. [23] and

Sukhbaatar et al. [27] both model noise that is conditionally

independent from the input image. This assumption does

not take into account the input image and is thus not able to

distinguish effectively between different visual modes and

related noise. The closest work in this stream of research

is from Xiao et al. [32] that proposes an image-conditioned
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Figure 3. Overview of our approach to train an image classifier from a very large set of training samples with noisy labels (orange) and a

small set of samples which additionally have human verification (green). The model contains a label cleaning network that learns to map

noisy labels to clean labels, conditioned on visual features from an Inception V3 ConvNet. The label cleaning network is supervised by the

human verified labels and follows a residual architecture so that it only needs to learn the difference between the noisy and clean labels.

The image classifier shares the same visual features and learns to directly predict clean labels supervised by either (a) the output of the

label cleaning network or (b) the human rated labels, if available.

noise model. They first aim to predict the type of noise for

each sample (out of a small set of types: no noise, random

noise, structured label swapping noise) and then attempt to

remove it. Our proposed model is also conditioned on the

input image, but differs from these approaches in that it does

not explicitly model specific types of noise and is designed

for multiple labels per image, not only single labels. Also

related is the work of Misra et al. [22] who model noise aris-

ing from missing, but visually present labels. While their

method is conditioned on the input image and is designed

for multiple labels per image, it does not take advantage of

cleaned labels and their focus is on missing labels, while

our approach can address both incorrect and missing labels.

Second, transfer learning has become common practice

in modern computer vision. There, a network is pre-trained

on a large dataset of labeled images, say ImageNet, and

then used for a different but related task, by fine-tuning on a

small dataset for specific tasks such as image classification

and retrieval [26] and image captioning [30]. Unlike these

works, our approach aims to train a network from scratch

using noisy labels and then facilitates a small set of clean

labels to fine-tune the network.

Third, the proposed approach has surface resemblance

to student-teacher models and model compression, where a

student, or compressed, model learns to imitate a teacher

model of generally higher capacity or with privileged infor-

mation [2, 5, 14, 20]. In our framework, we train a ConvNet

with two classifiers on top, a cleaning network and an im-

age classifier, where the output of the cleaning network is

the target of the image classifier. The cleaning network has

access to the noisy labels in addition to the visual features,

which could be considered privileged information. In our

setup the two networks are trained in one joint model.

3. Our Approach

Our goal is to train a multi-label image classifier us-

ing a large dataset with relatively noisy labels, where ad-

ditionally a small subset of the dataset has human veri-

fied labels available. This setting naturally occurs when

collecting images from the web where only a small sub-

set can be verified by experts. Formally, we have a very

large training dataset T comprising tuples of noisy labels

y and images I, T = {(yi, Ii), ...}, and a small dataset V
of triplets of verified labels v, noisy labels y and images I,

V = {(vi, yi, Ii), ...}. The two sets differ significantly in

size with |T | ≫ |V |. For instance, in our experiments, T
exceeds V by three orders of magnitude. Each label y or

v is a sparse d-dimensional vector with a binary annotation

for each of the d classes indicating whether it is present in

the image or not. Since the labels in T contain significant

label noise and V is too small to train a ConvNet, our goal

is to design an efficient and effective approach to leverage

the quality of the labels in V and the size of T .

3.1. MultiTask Label Cleaning Architecture

We propose a multi-task neural network architecture that

jointly learns to reduce the label noise in T and to annotate

images with accurate labels. An overview of the model ar-

chitecture is given in Figure 3. The model comprises a fully

convolutional neural network [12, 18, 19] f with two classi-
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fiers g and h. The first classifier is a label cleaning network

denoted as g that models the structure in the label space and

learns a mapping from the noisy labels y to the human veri-

fied labels v, conditional on the input image. We denote the

cleaned labels output by g as ĉ so that ĉ = g (y, I). The sec-

ond classifier is an image classifier denoted as h that learns

to annotate images by imitating the first classifier g by us-

ing g’s predictions as ground truth targets. We denote the

predicted labels output by h as p̂ so that p̂ = h (I).
The image classifier h is shown in the bottom row of

Figure 3. First, a sample image is processed by the convolu-

tional network to compute high level image features. Then,

these features are passed through a fully-connected layer w
followed by a sigmoid σ, h = σ(w(f(I))). The image clas-

sifier outputs p̂, a d-dimensional vector [0, 1]d encoding the

likelihood of the visual presence of each of the d classes.

The label cleaning network g is shown in the top row of

Figure 3. In order to model the label structure and noise

conditional on the image, the network has two separate in-

puts, the noisy labels y as well as the visual features f(I).
The sparse noisy label vector is treated as a bag of words

and projected into a low dimensional label embedding that

encodes the set of labels. The visual features are similarly

projected into a low dimensional embedding. To combine

the two modalities, the embedding vectors are concatenated

and transformed with a hidden linear layer followed by a

projection back into the high dimensional label space.

Another key detail of the label cleaning network is an

identity-skip connection that adds the noisy labels from the

training set to the output of the cleaning module. The skip

connection is inspired by the approach from He et al. [13]

but differs in that the residual cleaning module has the vi-

sual features as side input. Due to the residual connection,

the network only needs to learn the difference between the

noisy and clean labels instead of regressing the entire label

vector. This simplifies the optimization and enables the net-

work to predict reasonable outputs right from the beginning.

When no human rated data is available, the label cleaning

network defaults to not changing the noisy labels. As more

verified groundtruth becomes available, the network grace-

fully adapts and cleans the labels. To remain in the valid

label space the outputs are clipped to 0 and 1. Denoting the

residual cleaning module as g′, the label cleaning network

g computes cleaned labels

ĉ = clip(y + g′(y, f(I)), [0, 1]) (1)

3.2. Model Training

To train the proposed model we formulate two losses

that we minimize jointly using stochastic gradient descent:

a label cleaning loss Lclean that captures the quality of the

cleaned labels ĉ and a classification loss Lclassify that cap-

tures the quality of the predicted labels p̂. The calculation

of the loss terms is illustrated on the right side of Figure 3.

Table 1. Breakdown of the ground-truth annotations in the valida-

tion set of the Open Images Dataset by high-level category. The

dataset spans a wide range of everyday categories from manmade

products to personal activities as well as coarse and fine-grained

natural species.

high-level category unique labels annotations

vehicles 944 240,449

products 850 132,705

art 103 41,986

person 409 55,417

sport 446 65,793

food 862 140,383

animal 1064 187,147

plant 517 87,542

others 1388 322,602

The label cleaning network is supervised by the verified

labels of all samples i in the human rated set V . The clean-

ing loss is based on the difference between the cleaned la-

bels ĉi and the corresponding ground truth verified labels vi,

Lclean =
∑

i∈V

|ĉi − vi| (2)

We choose the absolute distance as error measure, since the

label vectors are very sparse. Other measures such as the

squared error tend to smooth the labels.

For the image classifier, the supervision depends on the

source of the training sample. For all samples j from the

noisy dataset T , the classifier is supervised by the cleaned

labels ĉj produced by the label cleaning network. For sam-

ples i where human ratings are available, i ∈ V , supervision

comes directly from the verified labels vi. To allow for mul-

tiple annotations per image, we choose the cross-entropy as

classification loss to capture the difference between the pre-

dicted labels p̂ and the target labels.

Lclassify =−
∑

j∈T

[

ĉj log(p̂j) + (1− ĉj) log(1− p̂j)
]

−
∑

i∈V

[

vi log(p̂i) + (1− vi) log(1− p̂i)
]

(3)

It is worth noting that the vast majority of training ex-

amples come from set T . Thus, the second summation in

Equation 3 dominates the overall loss of the model. To pre-

vent a trivial solution, in which the cleaning network and

classifier both learn to predict label vectors of all zeros,

ĉj = p̂j = {0}d, the classification loss is only propagated

to p̂j . The cleaned labels ĉj are treated as constants with

respect to the classification and only incur gradients from

the cleaning loss.
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Figure 4. Label statistics for the Open Images dataset. Classes

are ordered by frequency and annotation quality respectively. (a)

Classes are heavily skewed in terms of number of annotations, e.g.,

”vehicle” occurs over 900,000 times whereas ”honda nsx” only

occurs 70 times. (b) Classes also vary significantly in annotation

quality which refers to the probability that an image labeled with

a class actually contains that class. Overall, more than 70% of the

∼80M annotations in the dataset are correct and common classes

tend to have higher annotation quality.

To train the cleaning network and image classifier jointly

we sample training batches that contain samples from T as

well as V in a ratio of 9 : 1. This allows us to utilize the

large number of samples in T while giving enough supervi-

sion to the cleaning network from V .

4. Experiments

4.1. Dataset

We evaluate our proposed model on the recently-released

Open Images dataset [16]. The dataset is uniquely suited

for our task as it contains a very large collection of im-

ages with relatively noisy annotations and a small valida-

tion set with human verifications. The dataset is multi-label

and massively multi-class in the sense that each image con-

tains multiple annotations and the vocabulary contains sev-

eral thousand unique classes. In particular, the training set

contains 9,011,219 images with a total of 79,156,606 anno-

tations, an average of 8.78 annotations per image. The val-

idation set contains another 167,056 images with a total of

2,047,758 annotations, an average of 12.26 annotations per

image. The dataset contains 6012 unique classes and each

class has at least 70 annotations over the whole dataset.

One key distinction from other datasets is that the classes

in Open Images are not evenly distributed. Some high-level

classes such as ‘vehicle‘ have over 900,000 annotations

while many fine-grain classes are very sparse, e.g., ‘honda

nsx‘ only occurs 70 times. Figure 4(a) shows the distribu-

tion of class frequencies over the validation set. Further,

many classes are highly related to each other. To differenti-

ate our evaluation between clusters of semantically closely

related classes, we group classes with respect to their asso-

ciated high-level category. Table 1 gives an overview of the

main categories and their statistics over the validation set.

Besides the uneven distribution of classes, another key

distinction of the dataset is annotation noise. The train-

ing ground-truth comes from an image classifier similar to

Google Cloud Vision API1. Due to the automated annota-

tion process, the training set contain a considerable amount

of noise. Using the validation set to estimate the annotation

quality, we observe that 26.6% of the automatic annotations

are considered false positives. The quality varies widely be-

tween the classes. Figure 4(b) shows the distribution of the

quality of the automated annotations. While some classes

only have correct annotations, others do not have any. How-

ever, the noise is not random, since the label space is highly

structured, see Figure 1 for examples.

For our experiments, we use the training set as large cor-

pus of images with only noisy labels T . Further, we split

the validation set into two parts: one quarter of about 40

thousand images is used in our cleaning approach provid-

ing both noisy and human verified labels V . The remaining

three-quarters are held out and used only for validation.

4.2. Evaluation Task and Metrics

We evaluate our approach using multi-label image clas-

sification, i.e., predicting a score for each class-image pair

indicating the likelihood the concept described by the class

is present in the image.

There is no standard evaluation procedure yet for classi-

fication on the Open Images dataset. Thus, we choose the

widely used average precision (AP) as metric to evaluate

performance. The AP for each class c is

APc =

∑N

k=1
Precision(k, c) · rel(k, c)

number of positives
(4)

where Precision(k, c) is the precision for class c when re-

trieving k annotations and rel(k, c) is an indicator func-

tion that is 1 iff the ground truth for class c and the im-

age at rank k is positive. N is the size of the validation

set. We report the mean average precision (MAP) that takes

the average over the APs of all d, 6012, classes, MAP =

1/d
∑d

c=1
APc. Further, because we care more about the

model performance on commonly occurring classes we also

report a class agnostic average precision, APall. This met-

ric considers every annotation equally by treating them as

coming from one single class.

Evaluation on Open Images comes with the challenge

that the validation set is collected by verifying the auto-

matically generated annotations. As such, human verifica-

tion only exists for a subset of the classes for each image.

This raises the question of how to treat classes without ver-

ification. One option is to consider classes with missing

1https://cloud.google.com/vision/
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Table 2. Comparison of models in terms of AP and MAP on the

held out subset of the Open Images validation set. Our approach

outperforms competing methods. See Sections 4.2 and 4.3 for

more details on the metrics and model variants.

Model APall MAP

Baseline 83.82 61.82

Misra et al. [22] visual classifier 83.55 61.85

Misra et al. [22] relevance classifier 83.79 61.89

Fine-Tuning with mixed labels 84.80 61.90

Fine-Tuning with clean labels 85.88 61.53

Our Approach with pre-training 87.68 62.36

Our Approach trained jointly 87.67 62.38

human-verification as negative examples. However, we ob-

serve that a large number of the highly ranked annotations

are likely correct but not verified. Treating them as nega-

tives would penalize models that differ substantially from

the model used to annotate the dataset. Thus, we choose

instead to ignore classes without human-verification in our

metrics. This means the measured precision at full recall for

all approaches is very close to the precision of the annota-

tion model, see the PR curve in Figure 6(a).

4.3. Baselines and Model Variants

As baseline model for our evaluation we train a network

solely on the noisy labels from the training set. We refer to

this model as baseline and use it as the starting point for all

other variants. We compare the following approaches.

Fine-tune with clean labels: A common approach is to use

the clean labels directly to supervise the last layer. This

approach converges quickly because the dataset for fine-

tuning is very small; however, many classes have very few

training samples making it prone to overfitting.

Fine-tune with mix of clean and noisy labels: This ad-

dresses the shortcomings of limited training samples. We

fine-tune the last layer with a mix of training samples from

the small clean and the large noisy set (in a 1 to 9 ratio).

Our approach with pre-trained cleaning network: We

compare two different variants of our approach. Both are

trained as described in Section 3.2. They only differ with

respect to their initialization. For first variant, we initially

train just the label cleaning network on the human rated

data. Then, subsequently we train the cleaning network and

the classification layer jointly.

Our approach trained jointly: To reduce the overhead of

pre-training the cleaning network, we also train a second

variant in which the cleaning network and the classification

layer are trained jointly right from the beginning.

Misra et al.: Finally, we compare to the approach of Misra

et al. [22]. As expected, our method performs better since

their model does not utilize the clean labels and their noise
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Figure 5. Performance gain of our approach with respect to how

common a class is and how noisy its annotations are in the dataset.

We sort the classes along the x-axis, group them into 10 equally

sized groups and compute the MAP gain over the baseline within

each group. (a) Most effective is our approach for classes that

occur frequently. (b) Our approach improves performance across

all levels of annotation quality. It shows the largest gain for classes

with 20% to 80% false annotations, classes that contain sufficient

negative and positive examples in the human rated set.

model focuses only on missing labels.

4.4. Training Details

For our base model, we use an Inception v3 network ar-

chitecture [28], implemented with TensorFlow [1] and op-

timized with RMSprop [29] with learning rate 0.045 and

exponential learning rate decay of 0.94 every 2 epochs. As

only modification to the architecture we replace the final

softmax with a 6012-way sigmoid layer. The network is su-

pervised with a binary cross-entropy loss. We trained the

baseline model on 50 NVIDIA K40 GPUs using the noisy

labels from the Open Images training set. We stopped train-

ing after 49 million mini-batches (with 32 images each).

This network is the starting point for all model variants.

The four different fine-tuning variants are trained for ad-

ditional 4 million batches each. The learning rate for the last

classification layer is initialized to 0.001. For the cleaning

network it is set higher to 0.015, because its weights are ini-

tialized randomly. For the approach with pre-trained clean-

ing network, it is first trained with a learning rate of 0.015
until convergence and then set to 0.001 once it is trained
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Table 3. Mean average precision for classes grouped according to high-level categories of the Open Images Dataset. Our method consis-

tently performs best across all categories.

Model vehicles products art person sport food animal plant

Baseline 56.92 61.51 68.28 59.46 62.84 61.79 61.14 59.00

Fine-Tuning with mixed labels 57.00 61.56 68.23 59.49 63.12 61.77 61.27 59.14

Fine-Tuning with clean labels 56.93 60.94 68.12 58.39 62.56 61.60 61.18 58.90

Our Approach with pre-training 57.15 62.31 68.89 60.03 63.60 61.87 61.26 59.45

Our Approach trained jointly 57.17 62.31 68.98 60.05 63.61 61.87 61.27 59.36
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Figure 6. Precision-recall curves for all methods measured over all annotations and for the major categories of products and animals. In

general, our method performs best, followed by fine-tuning with clean labels, fine-tuning with a mix of clean and noisy labels, and the

baseline model. Over all classes, we see improvements across all confidence levels. For products the main improvements come from

annotations with high-confidence. For animals we observe mainly gains in the lower confidence regime. It is worthy of note there is

virtually no difference between pre-training the cleaning network and learning it jointly.

jointly with the classifier. To balance the losses, we weight

Lclean with 0.1 and Lclassify with 1.0.

4.5. Results

We first analyze the overall performance of the proposed

approach. Table 2 shows mean average precision as well as

class agnostic average precision. Generally, performance in

terms of APall is higher than for MAP , indicating that av-

erage precision is higher for common than for rare classes.

Considering all annotations equally, APall, we see clear im-

provements of all variants over the baseline. Further, the

two variants of the proposed approach perform very similar

and demonstrate a significant lead over direct fine-tuning.

The results in terms of MAP show a different picture.

Instead of improving performance, fine-tuning on the clean

data directly even hurts the performance. This means the

improvement in APall is due to a few very common classes,

but performance in the majority of classes decreases. For

many classes the limited number of annotations in the clean

label set seems to lead to overfitting. Fine-tuning on clean

and noisy annotations alleviates the problem of overfitting,

however, at a cost in overall performance. Our approach

on the other hand does not face the problem of overfit-

ting. Again, our two variants perform very similar and both

demonstrate significant improvements over the baseline and

direct fine-tuning. The consistent improvement over all an-

notations and over all classes shows that our approach is

clearly more effective than direct fine-tuning to extract the

information from the clean label set.

The similar performance of the variants with and without

pre-trained cleaning network indicate that pre-training is not

required and our approach can be trained jointly. Figure 7

shows example results from the validation set.

4.5.1 Effect of label frequency and annotation quality

We take a closer look at how class frequency and annotation

quality effects the performance of our approach.

Figure 5(a) shows the performance improvement of our

approach over the baseline with respect to how common a

class is. The x-axis shows the 6012 unique classes in in-

creasing order from rare to common. We group the classes

along the axis into 10 equally sized groups The result re-

veals that our approach is able to achieve performance gains

across almost all levels of frequency. Our model is most ef-

fective for very common classes and shows improvement

for all but a small subset of rare classes. Surprisingly, for

very rare classes, mostly fine-grained object categories, we
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Figure 7. Examples from the hold-out portion of the Open Images validation set. We show the top 5 most confident predictions of the

baseline model, directly fine-tuning on clean labels and our approach, along with whether the prediction is correct of incorrect. Our

approach consistently removes false predictions made by the baseline model. Example gains are the removal of ‘team sport’ and recall

of ‘muscle’ in the upper left. This is a very typical example as most sport images are annotated with ‘ball game’ and ‘team sport’ in the

dataset. Directly fine-tuning achieves mixed results. Sometimes it performs similar to our approach and removes false labels, but for others

it even recalls more false labels. This illustrates the challenge of overfitting for directly-finetuning.

again observe an improvement.

Figure 5(b) shows the performance improvement with

respect to the annotation quality. The x-axis shows the

classes in increasing order from very noisy annotations to

always correct annotations. Our approach improves perfor-

mance across all levels of annotation quality. The largest

gains are for classes with medium levels of annotation

noise. For classes with very clean annotations the perfor-

mance is already very high, limiting the potential for fur-

ther gains. For very noisy classes nearly all automatically

generated annotations are incorrect. This means the label

cleaning network receives almost no supervision for what a

positive sample is. Classes with medium annotation quality

contain sufficient negative as well as positive examples in

the human rated set and have potential for improvement.

4.5.2 Performance on high-level categories of Open

Images dataset

Now we evaluate the performance on the major sub-

categories of classes in the Open Images dataset. The cat-

egories, shown in Table 1, range from man-made objects

such as vehicles to persons and activities to natural cate-

gories such as plants. Table 3 shows the mean average pre-

cision. Our approach clearly improves over the baseline and

direct fine-tuning. Similar results are obtained for class ag-

nostic average precision, where we also show the precision-

recall curves for the major categories of products and an-

imals in Figure 6. For products the main improvements

come from high-confidence labels, whereas, for animals we

observe mainly gains in the lower confidence regime.

5. Conclusion

How to effectively leverage a small set of clean labels

in the presence of a massive dataset with noisy labels? We

show that using the clean labels to directly fine-tune a net-

work trained on the noisy labels does not fully leverage the

information contained in the clean label set. We present an

alternative approach in which the clean labels are used to

reduce the noise in the large dataset before fine-tuning the

network using both the clean labels and the full dataset with

reduced noise. We evaluate on the recently released Open

Images dataset showing that our approach outperforms di-

rect fine-tuning across all major categories of classes.

There are a couple of interesting directions for future

work. The cleaning network in our setup combines the

label and image modalities with a concatenation and two

fully connected layers. Future work could explore higher

capacity interactions such as bilinear pooling. Further, in

our approach the input and output vocabulary of the clean-

ing network is the same. Future work could aim to learn a

mapping of noisy labels in one domain into clean labels in

another domain such as Flickr tags to object categories.
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