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Abstract

Recent captioning models are limited in their ability to

scale and describe concepts unseen in paired image-text

corpora. We propose the Novel Object Captioner (NOC),

a deep visual semantic captioning model that can describe

a large number of object categories not present in exist-

ing image-caption datasets. Our model takes advantage of

external sources – labeled images from object recognition

datasets, and semantic knowledge extracted from unanno-

tated text. We propose minimizing a joint objective which

can learn from these diverse data sources and leverage

distributional semantic embeddings, enabling the model to

generalize and describe novel objects outside of image-

caption datasets. We demonstrate that our model exploits

semantic information to generate captions for hundreds of

object categories in the ImageNet object recognition dataset

that are not observed in MSCOCO image-caption training

data, as well as many categories that are observed very

rarely. Both automatic evaluations and human judgements

show that our model considerably outperforms prior work

in being able to describe many more categories of objects.

1. Introduction

Modern visual classifiers [6, 22] can recognize thou-

sands of object categories, some of which are basic or entry-

level (e.g. television), and others that are fine-grained and

task specific (e.g. dial-phone, cell-phone). However, recent

state-of-the-art visual captioning systems [2, 3, 8, 10, 15,

26] that learn directly from images and descriptions, rely

solely on paired image-caption data for supervision and fail

in their ability to generalize and describe this vast set of rec-

ognizable objects in context. While such systems could be

scaled by building larger image/video description datasets,

obtaining such captioned data would be expensive and la-

borious. Furthermore, visual description is challenging be-

cause models have to not only correctly identify visual con-

cepts contained in an image, but must also compose these

concepts into a coherent sentence.

Visual Classifiers. 

Existing captioners.

MSCOCO

A okapi standing in the 
middle of a field.
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+ +
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sources with auxiliary objectives.
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init + train

Visual 
Classifiers
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Figure 1. We propose a model that learns simultaneously from

multiple data sources with auxiliary objectives to describe a va-

riety of objects unseen in paired image-caption data.

Recent work [7] shows that, to incorporate the vast

knowledge of current visual recognition networks with-

out explicit paired caption training data, caption models

can learn from external sources and learn to compose sen-

tences about visual concepts which are infrequent or non-

existent in image-description corpora. However, the pio-

neering DCC model from [7] is unwieldy in the sense that

the model requires explicit transfer (“copying”) of learned

parameters from previously seen categories to novel cate-

gories. This not only prevents it from describing rare cate-

gories and limits the model’s ability to cover a wider variety

of objects but also makes it unable to be trained end-to-end.

We instead propose the Novel Object Captioner (NOC), a

network that can be trained end-to-end using a joint training

strategy to integrate knowledge from external visual recog-

nition datasets as well as semantic information from inde-

pendent unannotated text corpora to generate captions for a

diverse range of rare and novel objects (as in Fig. 1).

Specifically, we introduce auxiliary objectives which al-

low our network to learn a captioning model on image-

caption pairs simultaneously with a deep language model

and visual recognition system on unannotated text and la-

beled images. Unlike previous work, the auxiliary objec-

tives allow the NOC model to learn relevant information

from multiple data sources simultaneously in an end-to-end

fashion. Furthermore, NOC implicitly leverages pre-trained

distributional word embeddings enabling it to describe un-

seen and rare object categories. The main contributions of

our work are 1) an end-to-end model to describe objects

not present in paired image-caption data, 2) auxiliary/joint
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training of the visual and language models on multiple data

sources, and 3) incorporating pre-trained semantic embed-

dings for the task. We demonstrate the effectiveness of our

model by performing extensive experiments on objects held

out from MSCOCO [13] as well as hundreds of objects from

ImageNet [21] unseen in caption datasets. Our model sub-

stantially outperforms previous work [7] on both automated

as well as human evaluations.

2. Related Work

Visual Description. This area has seen many different ap-

proaches over the years [27, 11, 18], and more recently deep

models have gained popularity for both their performance

and potential for end-to-end training. Deep visual descrip-

tion frameworks first encode an image into a fixed length

feature vector and then generate a description by either con-

ditioning text generation on image features [2, 8, 26] or em-

bedding image features and previously generated words into

a multimodal space [9, 10, 15] before predicting the next

word. Though most models represent images with an inter-

mediate representation from a convolutional neural network

(such as fc7 activations from a CNN), other models repre-

sent images as a vector of confidences over a fixed number

of visual concepts [3, 7]. In almost all cases, the parameters

of the visual pipeline are initialized with weights trained on

the ImageNet classification task. For caption generation,

recurrent networks (RNNs) are a popular choice to model

language, but log bilinear models [9] and maximum entropy

language models [3] have also been explored. Our model is

similar to the CNN-RNN frameworks in [7, 15] but neither

of these models can be trained end-to-end to describe ob-

jects unseen in image-caption pairs.

Novel object captioning. [16] proposed an approach that

extends a model’s capability to describe a small set of novel

concepts (e.g. quidditch, samisen) from a few paired train-

ing examples while retaining its ability to describe previ-

ously learned concepts. On the other hand, [7] introduce

a model that can describe many objects already existing

in English corpora and object recognition datasets (Ima-

geNet) but not in the caption corpora (e.g. pheasant, otter).

Our focus is on the latter case. [7] integrate information

from external text and visual sources, and explicitly trans-

fer (‘copy’) parameters from objects seen in image-caption

data to unseen ImageNet objects to caption these novel cate-

gories. While this works well for many ImageNet classes it

still limits coverage across diverse categories and cannot be

trained end-to-end. Furthermore, their model cannot cap-

tion objects for which few paired training examples already

exist. Our proposed framework integrates distributional se-

mantic embeddings implicitly, obviating the need for any

explicit transfer and making it end-to-end trainable. It also

extends directly to caption ImageNet objects with few or no

descriptions.
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Figure 2. Our NOC image caption network. During training,

the visual recognition network (left), the LSTM-based language

model (right), and the caption model (center) are trained simul-

taneously on different sources with different objectives but with

shared parameters, thus enabling novel object captioning.

Multi-modal and Zero-Shot Learning. Another closely

related line of research takes advantage of distributional

semantics to learn a joint embedding space using visual

and textual information for zero-shot labeling of novel

object categories [4, 19], as well as retrieval of images

with text [12, 23]. Visual description itself can be cast

as a multimodal learning problem in which caption words

w0, ..., wn−1 and an image are projected into a joint em-

bedding space before the next word in a caption, wn, is gen-

erated [10, 15]. Although our approach uses distributional

word embeddings, our model differs in the sense that it can

be trained with unpaired text and visual data but still com-

bine the semantic information at a later stage during cap-

tion generation. This is similar in spirit to works in natural

language processing that use monolingual data to improve

machine translation [5].

3. Novel Object Captioner (NOC)
Our NOC model is illustrated in Fig. 2. It consists of a

language model that leverages distributional semantic em-

beddings trained on unannotated text and integrates it with a

visual recognition model. We introduce auxiliary loss func-

tions (objectives) and jointly train different components on

multiple data sources, to create a visual description model

which simultaneously learns an independent object recog-

nition model, as well as a language model.

We start by first training a LSTM-based language model

(LM) [24] for sentence generation. Our LM incorporates

dense representations for words from distributional embed-

dings (GloVe, [20]) pre-trained on external text corpora. Si-

multaneously, we also train a state-of-the-art visual recog-

nition network to provide confidences over words in the vo-

cabulary given an image. This decomposes our model into

discrete textual and visual pipelines which can be trained

exclusively using unpaired text and unpaired image data

(networks on left and right of Fig. 2). To generate descrip-

tions conditioned on image content, we combine the pre-

dictions of our language and visual recognition networks

by summing (element-wise) textual and visual confidences
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over the vocabulary of words. During training, we introduce

auxiliary image-specific (LIM), and text-specific (LLM)

objectives along with the paired image-caption (LCM) loss.

These loss functions, when trained jointly, influence our

model to not only produce reasonable image descriptions,

but also predict visual concepts as well as generate cohe-

sive text (language modeling). We first discuss the auxiliary

objectives and the joint training, and then discuss how we

leverage embeddings trained with external text to compose

descriptions about novel objects.

3.1. Auxiliary Training Objectives

Our motivation for introducing auxiliary objectives is to

learn how to describe images without losing the ability to

recognize more objects. Typically, image-captioning mod-

els incorporate a visual classifier pre-trained on a source do-

main (e.g. ImageNet dataset) and then tune it to the target

domain (the image-caption dataset). However, important

information from the source dataset can be suppressed if

similar information is not present when fine-tuning, lead-

ing the network to forget (over-write weights) for objects

not present in the target domain. This is problematic in our

scenario in which the model relies on the source datasets

to learn a large variety of visual concepts not present in the

target dataset. However, with pre-training as well as the

complementary auxiliary objectives the model maintains its

ability to recognize a wider variety of objects and is encour-

aged to describe objects which are not present in the target

dataset at test time. For the ease of exposition, we abstract

away the details of the language and the visual models and

first describe the joint training objectives of the complete

model, i.e. the text-specific loss, the image-specific loss,

and the image-caption loss. We will then describe the lan-

guage and the visual models.

3.1.1 Image-specific Loss

Our visual recognition model (Fig. 2, left) is a neural net-

work parametrized by θI and is trained on object recogni-

tion datasets. Unlike typical visual recognition models that

are trained with a single label on a classification task, for the

task of image captioning an image model that has high con-

fidence over multiple visual concepts occurring in an image

simultaneously would be preferable. Hence, we choose to

train our model using multiple labels (more in Sec. 5.1) with

a multi-label loss. If l denotes a label and zl denotes the bi-

nary ground-truth value for the label, then the objective for

the visual model is given by the cross-entropy loss (LIM ):

LIM(I; θI) = −
∑

l

[

zl log(Sl(fIM (I; θI)))

+ (1− zl) log(1− Sl(fIM (I; θI)))
]

(1)

where Si(x) is the output of a softmax function over index

i and input x, and fIM , is the activation of the final layer of

the visual recognition network.

3.1.2 Text-specific Loss

Our language model (Fig. 2, right) is based on LSTM Re-

current Neural Networks. We denote the parameters of this

network by θL, and the activation of the final layer of this

network by fLM . The language model is trained to predict

the next word wt in a given sequence of words w0, ..., wt−1.

This is optimized using the softmax loss LLM which is

equivalent to the maximum-likelihood:

LLM(w0, ..., wt−1; θL) =

−
∑

t

log(Swt
(fLM (w0, ..., wt−1; θL))) (2)

3.1.3 Image-caption Loss

The goal of the image captioning model (Fig. 2, center) is

to generate a sentence conditioned on an image (I). NOC

predicts the next word in a sequence, wt, conditioned on

previously generated words (w0, ..., wt−1) and an image

(I), by summing activations from the deep language model,

which operates over previous words, and the deep image

model, which operates over an image. We denote these fi-

nal (summed) activations by fCM . Then, the probability of

predicting the next word is given by, P (wt|w0, ..., wt−1, I)

=Swt
(fCM (w0, ..., wt−1, I; θ))

=Swt
(fLM (w0, ..., wt−1; θL) + fIM (I; θI))

(3)

Given pairs of images and descriptions, the caption model

optimizes the parameters of the underlying language model

(θL) and image model (θI ) by minimizing the caption model

loss LCM : LCM(w0, ., wt−1, I; θL, θI)

= −
∑

t

log(Swt
(fCM (w0, ., wt−1, I; θL, θI))) (4)

3.1.4 Joint Training with Auxiliary Losses

While many previous approaches have been successful on

image captioning by pre-training the image and language

models and tuning the caption model alone (Eqn. 4), this

is insufficent to generate descriptions for objects outside of

the image-caption dataset since the model tends to “forget”

(over-write weights) for objects only seen in external data

sources. To remedy this, we propose to train the image

model, language model, and caption model simultaneously

on different data sources. The NOC model’s final objective

simultaneously minimizes the three individual complemen-

tary objectives:

L = LCM + LIM + LLM (5)

By sharing the weights of the caption model’s network with

the image network and the language network (as depicted

in Fig. 2 (a)), the model can be trained simultaneously on

independent image-only data, unannotated text data, as well

as paired image-caption data. Consequently, co-optimizing

different objectives aids the model in recognizing categories

outside of the paired image-sentence data.
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3.2. Language Model with Semantic Embeddings

Our language model consists of the following compo-

nents: a continuous lower dimensional embedding space

for words (Wglove), a single recurrent (LSTM) hidden layer,

and two linear transformation layers where the second layer

(WT
glove) maps the vectors to the size of the vocabulary.

Finally a softmax activation function is used on the out-

put layer to produce a normalized probability distribution.

The cross-entropy loss which is equivalent to the maximum-

likelihood is used as the training objective.

In addition to our joint objective (Eqn.5), we also em-

ploy semantic embeddings in our language model to help

generate sentences when describing novel objects. Specifi-

cally, the initial input embedding space (Wglove) is used to

represent the input (one-hot) words into semantically mean-

ingful dense fixed-length vectors. While the final transfor-

mation layer (WT
glove) reverses the mapping [15, 25] of a

dense vector back to the full vocabulary with the help of a

softmax activation function. These distributional embed-

dings [17, 20] share the property that words that are seman-

tically similar have similar vector representations. The in-

tuitive reason for using these embeddings in the input and

output transformation layers is to help the language model

treat words unseen in the image-text corpus to (semanti-

cally) similar words that have previously been seen so as to

encourage compositional sentence generation i.e. encour-

age it to use new/rare word in a sentence description based

on the visual confidence.

3.3. Visual Classifier

The other main component of our model is the visual

classifier. Identical to previous work [7], we employ the

VGG-16 [22] convolutional network as the visual recogni-

tion network. We modify the final layers of the network to

incorporate the multi-label loss (Eqn. 1) to predict visual

confidence over multiple labels in the full vocabulary. The

rest of the classification network remains unchanged.

Finally, we take an elementwise-sum of the visual and

language outputs, one can think of this as the language

model producing a smooth probability distribution over

words (based on GloVe parameter sharing) and then the im-

age signal “selecting among these based on the visual evi-

dence when summed with the the language model beliefs.

4. Datasets

In this section we describe the image description dataset

as well as the external text and image datasets used in our

experiments.

4.1. External Text Corpus (WebCorpus)

We extract sentences from Gigaword, the British Na-

tional Corpus (BNC), UkWaC, and Wikipedia. Stanford

CoreNLP 3.4.2 [14] was used to extract tokenizations. This

dataset was used to train the LSTM language model. For

the dense word representation in the network, we use GloVe

[20] pre-trained on 6B tokens of external corpora including

Gigaword and Wikipedia. To create our LM vocabulary we

identified the 80,000 most frequent tokens from the com-

bined external corpora. We refine this vocabulary further to

a set of 72,700 words that also had GloVe embeddings.

4.2. Image Caption data
To empirically evaluate the ability of NOC to describe

new objects we use the training and test set from [7].

This dataset is created from MSCOCO [13] by cluster-

ing the main 80 object categories using cosine distance on

word2vec (of the object label) and selecting one object from

each cluster to hold out from training. The training set holds

out images and sentences of 8 objects (bottle, bus, couch,

microwave, pizza, racket, suitcase, zebra), which constitute

about 10% of the training image and caption pairs in the

MSCOCO dataset. Our model is evaluated on how well it

can generate descriptions about images containing the eight

held-out objects.

4.3. Image data
We also evaluate sentences generated by NOC on ap-

proximately 700 different ImageNet [21] objects which are

not present in the MSCOCO dataset. We choose this set

by identifying objects that are present in both ImageNet

and our language corpus (vocabulary), but not present in

MSCOCO. Chosen words span a variety of categories in-

cluding fine-grained categories (e.g., “bloodhound” and

“chrysanthemum”), adjectives (e.g., “chiffon”, “woollen”),

and entry level words (e.g., “toad”). Further, to study how

well our model can describe rare objects, we pick a sepa-

rate set of 52 objects which are in ImageNet but mentioned

infrequently in MSCOCO (52 mentions on average, with

median 27 mentions across all 400k training sentences).

5. Experiments on MSCOCO

We perform the following experiments to compare

NOC’s performance with previous work [7]: 1. We eval-

uate the model’s ability to caption objects that are held out

from MSCOCO during training (Sec. 5.1). 2. To study the

effect of the data source on training, we report performance

of NOC when the image and language networks are trained

on in-domain and out-of-domain sources (Sec. 5.2). In addi-

tion to these, to understand our model better: 3. We perform

ablations to study how much each component of our model

(such as word embeddings, auxiliary objective, etc.) con-

tributes to the performance (Sec. 5.3). 4. We also study if

the model’s performance remains consistent when holding

out a different subset of objects from MSCOCO (Sec. 5.4).

5.1. Empirical Evaluation on MSCOCO
We empirically evaluate the ability of our proposed

model to describe novel objects by following the experi-

mental setup of [7]. We optimize each loss in our model

with the following datasets: the caption model, which
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Model bottle bus couch microwave pizza racket suitcase zebra Avg. F1 Avg. METEOR

DCC 4.63 29.79 45.87 28.09 64.59 52.24 13.16 79.88 39.78 21.00

NOC (ours) 17.78 68.79 25.55 24.72 69.33 55.31 39.86 89.02 48.79 21.32

Table 1. MSCOCO Captioning: F1 scores (in %) of NOC (our model) and DCC [7] on held-out objects not seen jointly during image-

caption training, along with the average F1 and METEOR scores of the generated captions across images containing these objects.

Figure 3. COCO Captioning: Examples comparing captions by

NOC (ours) and DCC [7] on held out objects from MSCOCO.

jointly learns the parameters θL and θI , is trained only

on the subset of MSCOCO without the 8 objects (see sec-

tion 4.2), the image model, which updates parameters θI , is

optimized using labeled images, and the language model

which updates parameters θL, is trained using the corre-

sponding descriptions. When training the visual network

on images from COCO, we obtain multiple labels for each

image by considering all words in the associated captions as

labels after removing stop words. We first present evalua-

tions for the in-domain setting in which the image classifier

is trained with all COCO training images and the language

model is trained with all sentences. We use the METEOR

metric [1] to evaluate description quality. However, ME-

TEOR only captures fluency and does not account for the

mention (or lack) of specific words. Hence, we also use F1

to ascertain that the model mentions the object name in the

description of the images containing the object. Thus, the

metrics measure if the model can both identify the object

and use it fluently in a sentence.

COCO heldout objects. Table 1 compares the F1 score

achieved by NOC to the previous best method, DCC [7] on

the 8 held-out COCO objects. NOC outperforms DCC (by

10% F1 on average) on all objects except “couch” and “mi-

crowave”. The higher F1 and METEOR demonstrate that

NOC is able to correctly recognize many more instances of

the unseen objects and also integrate the words into fluent

descriptions.

5.2. Training data source

To study the effect of different data sources, we also eval-

uate our model in an out-of-domain setting where classifiers

Image Text Model METEOR F1

1
Baseline LRCN 19.33 0

(no transfer) DCC 19.90 0

2
Image Web DCC 20.66 34.94

Net Corpus NOC 17.56 36.50

3 COCO
Web

NOC 19.18 41.74
Corpus

4 COCO COCO
DCC 21.00 39.78

NOC 21.32 48.79

Table 2. Comparison with different training data sources on 8 held-

out COCO objects. Having in-domain data helps both the DCC [7]

and our NOC model caption novel objects.

for held out objects are trained with images from ImageNet

and the language model is trained on text mined from exter-

nal corpora. Table 2 reports average scores across the eight

held-out objects. We compare our NOC model to results

from [7] (DCC), as well as a competitive image caption-

ing model - LRCN [2] trained on the same split. In the

out-of-domain setting (line 2), for the chosen set of 8 ob-

jects, NOC performs slightly better on F1 and a bit lower on

METEOR compared to DCC. However, as previously men-

tioned, DCC needs to explicitly identify a set of “seen” ob-

ject classes to transfer weights to the novel classes whereas

NOC can be used for inference directly. DCC’s transfer

mechanism also leads to peculiar descriptions. E.g., Racket

in Fig. 3.

With COCO image training (line 3), F1 scores of NOC

improves considerably even with the Web Corpus LM train-

ing. Finally in the in-domain setting (line 4) NOC outper-

forms DCC on F1 by around 10 points while also improving

METEOR slightly. This suggests that NOC is able to asso-

ciate the objects with captions better with in-domain train-

ing, and the auxiliary objectives and embedding help the

model to generalize and describe novel objects.

5.3. Ablations

Table 3 compares how different aspects of training im-

pact the overall performance. Tuned Vision contribution

The model that does not incorporate Glove or LM pre-

training has poor performance (METEOR 15.78, F1 14.41);

this ablation shows the contribution of the vision model

alone in recognizing and describing the held out objects.

LM & Glove contribution: The model trained without the
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Contributing factor Glove LM pretrain
Tuned Visual Auxiliary

METEOR F1
Classifier Objective

Tuned Vision - - X X 15.78 14.41

LM & Embedding X X X - 19.80 25.38

LM & Pre-trained Vision X X Fixed - 18.91 39.70

Auxiliary Objective X - X X 19.69 47.02

All X X X X 21.32 48.79

Table 3. Ablations comparing the contributions of the Glove embedding, LM pre-training, and auxiliary objectives, of the NOC model.

Our auxiliary objective along with Glove have the largest impact in captioning novel objects.

Model bed book carrot elephant spoon toilet truck umbrella Avg. F1 Avg. METEOR

NOC (ours) 53.31 18.58 20.69 85.35 02.70 73.61 57.90 54.23 45.80 20.04

Table 4. MSCOCO Captioning: F1 scores (in %) of NOC (our model) on a different subset of the held-out objects not seen jointly during

image-caption training, along with the average F1 and METEOR scores of the generated captions across images containing these objects.

NOC is consistently able to caption different subsets of unseen object categories in MSCOCO.

auxiliary objective, performs better with F1 of 25.38 and

METEOR of 19.80; this improvement comes largely from

the GloVe embeddings which help in captioning novel ob-

ject classes. LM & Pre-trained Vision: It’s interesting to

note that when we fix classifier’s weights (pre-trained on

all objects), before tuning the LM on the image-caption

COCO subset, the F1 increases substantially to 39.70 sug-

gesting that the visual model recognizes many objects but

can “forget” objects learned by the classifier when fine-

tuned on the image-caption data (without the 8 objects).

Auxiliary Objective: Incorporating the auxiliary objectives,

F1 improves remarkably to 47.02. We note here that by

virtue of including auxiliary objectives the visual network

is tuned on all images thus retaining it’s ability to clas-

sify/recognize a wide range of objects. Finally, incorporat-

ing all aspects gives NOC the best performance (F1 48.79,

METEOR 21.32), significantly outperforming DCC.

5.4. Validating on a different subset of COCO

To show that our model is consistent across objects, we

create a different training/test split by holding out a differ-

ent set of eight objects from COCO. The objects we hold out

are: bed, book, carrot, elephant, spoon, toilet, truck and um-

brella. Images and sentences from these eight objects again

constitute about 10% of the MSCOCO training dataset. Ta-

ble 4 presents the performance of the model on this subset.

We observe that the F1 and METEOR scores, although a

bit lower, are consistent with numbers observed in Table 1

confirming that our model is able to generalize to different

subsets of objects.

6. Experiments: Scaling to ImageNet

To demonstrate the scalability of NOC, we describe ob-

jects in ImageNet for which no paired image-sentence data

exists. Our experiments are performed on two subsets of

ImageNet, (i) Novel Objects: A set of 638 objects which are

present in ImageNet as well as the model’s vocabulary but

are not mentioned in MSCOCO. (ii) Rare Objects: A set of

52 objects which are in ImageNet as well as the MSCOCO

vocabulary but are mentioned infrequently in the MSCOCO

captions (median of 27 mentions). For quantitative evalua-

tion, (i) we measure the percentage of objects for which the

model is able to describe at least one image of the object

(using the object label), (ii) we also report accuracy and F1

scores to compare across the entire set of images and objects

the model is able to describe. Furthermore, we obtain hu-

man evaluations comparing our model with previous work

on whether the model is able to incorporate the object label

meaningfully in the description together with how well it

describes the image.

6.1. Describing Novel Objects

Table 5 compares models on 638 novel object categories

(identical to [7]) using the following metrics: (i) Describing

novel objects (%) refers to the percentage of the selected

ImageNet objects mentioned in descriptions, i.e. for each

novel word (e.g., “otter”) the model should incorporate the

word (“otter”) into at least one description about an Ima-

geNet image of the object (otter). While DCC is able to

recognize and describe 56.85% (363) of the selected Ima-

geNet objects in descriptions, NOC recognizes several more

objects and is capable of describing 91.27% (582 of 638)

ImageNet objects. (ii) Accuracy refers to the percentage

of images from each category where the model is able to

correctly identify and describe the category. We report the

average accuracy across all categories. DCC incorporates

a new word correctly 11.08% of the time, in comparison,

NOC improves this appreciably to 24.74%. (iii) F1 score is

computed based on precision and recall of mentioning the

object in the description. Again, NOC outperforms with av-

erage F1 33.76% to DCC’s 14.47%.
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Model Desc. Novel (%) Acc (%) F1 (%)

DCC 56.85 11.08 14.47

NOC 91.27 24.74 33.76

Table 5. ImageNet: Comparing our model against DCC [7] on

% of novel classes described, average accuracy of mentioning the

class in the description, and mean F1 scores for object mentions.

Moussaka (n07872593)
DCC: A white plate topped with a sandwich and a moussaka.
NOC (Ours): A moussaka with cheese and vegetables on a white plate.

Scythe (n04158250)
DCC: A small child is holding a small child on a skateboard.
NOC (Ours): A man is standing on a green field with a scythe.

Caribou (n02433925)
DCC: A caribou is in a field with a small caribou.
NOC (Ours): A caribou that is standing in the grass.

Circuitry (n03034405)
DCC: A large white and black and white photo of a large building.
NOC (Ours): A bunch of different types of circuitry on a table.

Warship (n04552696)
DCC: A warship is sitting on the water.
NOC (Ours): A large warship is on the water.

Newsstand (n03822656)
DCC: A bunch of people are sitting on a newsstand.
NOC (Ours): A extremely large newsstand with many different items on it.

Pharmacy (n03249342) [Both models incorporate the word incorrectly]
DCC: A white refrigerator freezer sitting on top of a pharmacy.
NOC (Ours): A kitchen with a pharmacy and a refrigerator.

Woollen (n04599235)
DCC: A red and white cat sitting on top of a red woollen.
NOC (Ours): A red and blue woollen yarn sitting on a wooden table.

Figure 4. ImageNet Captioning: Examples comparing captions by

NOC (ours) and DCC [7] on objects from ImageNet.

Although NOC and DCC [7] use the same CNN, NOC

is both able to describe more categories, and correctly inte-

grate new words into descriptions more frequently. DCC [7]

can fail either with respect to finding a suitable object that

is both semantically and syntactically similar to the novel

object, or with regard to their language model composing a

sentence using the object name, in NOC the former never

occurs (i.e. we don’t need to explicitly identify similar ob-

jects), reducing the overall sources of error.

Fig. 4 and Fig. 6 (column 3) show examples where NOC

describes a large variety of objects from ImageNet. Fig. 4

compares our model with DCC. Fig. 5 and Fig. 6 (right)

outline some errors. Failing to describe a new object is one

common error for NOC. E.g. Fig. 6 (top right), NOC in-

correctly describes a man holding a “sitar” as a man hold-

ing a “baseball bat”. Other common errors include generat-

ing non-grammatical or nonsensical phrases (example with

“gladiator”, “aardvark”) and repeating a specific object (“A

barracuda ... with a barracuda”, “trifle cake”).

6.2. Describing Rare Objects/Words

The selected rare words occur with varying frequency in

the MSCOCO training set, with about 52 mentions on aver-

Gladiator (n10131815)       Error: Semantics
NOC: A man wearing a gladiator wearing a gladiator hat.

Taper (n13902793)           Error: Counting
NOC: A group of three taper sitting on a table.

Trifle (n07613480)             Error: Repetition
NOC: A trifle cake with trifle cake on top of a trifle cake.

 Lory (n01820348)              Error: Recognition
NOC: A bird sitting on a branch with a colorful bird
           sitting on it.

Figure 5. ImageNet Captioning: Common types of errors observed

in the captions generated by the NOC model.

age (median 27) across all training sentences. For example,

words such as “bonsai” only appear 5 times,“whisk” (11

annotations), “teapot” (30 annotations), and others such as

pumpkin appears 58 times, “swan” (60 annotations), and on

the higher side objects like scarf appear 144 times. When

tested on ImageNet images containing these concepts, a

model trained only with MSCOCO paired data incorporates

rare words into sentences 2.93% of the time with an av-

erage F1 score of 4.58%. In contrast, integrating outside

data, our NOC model can incorporate rare words into de-

scriptions 35.15% of the time with an average F1 score of

47.58%. We do not compare this to DCC since DCC cannot

be applied directly to caption rare objects.

6.3. Human Evaluation

ImageNet images do not have accompanying captions

and this makes the task much more challenging to evalu-

ate. To compare the performance of NOC and DCC we ob-

tain human judgements on captions generated by the mod-

els on several object categories. We select 3 images each

from about 580 object categories that at least one of the

two models, NOC and DCC, can describe. (Note that al-

though both models were trained on the same ImageNet ob-

ject categories, NOC is able to describe almost all of the

object categories that have been described by DCC). When

selecting the images, for object categories that both models

can describe, we make sure to select at least two images for

which both models mention the object label in the descrip-

tion. Each image is presented to three workers. We con-

ducted two human studies (sample interface is in the supple-

ment): Given the image, the ground-truth object category

(and meaning), and the captions generated by the models,

we evaluate on:

Word Incorporation: We ask humans to choose which

sentence/caption incorporates the object label mean-

ingfully in the description. The options provided are:

(i) Sentence 1 incorporates the word better, (ii) Sen-

tence 2 incorporates the word better, (iii) Both sen-
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Tennis player preparing 

to hit the ball with a 

racket.

 A white and red 
cockatoo standing in a 

field.

A woodpecker sitting 
on a tree branch in the 

woods.

A otter is sitting on a 
rock in the sun.

A man holding a 
baseball bat standing in 

front of a building

A cat is laying inside of 
a small white 

aardvark.

A barracuda on a blue 
ocean with a barracuda. 

A man in a red and 
white shirt and a red 
and white octopus.

A red trolley train sits 
on the tracks near a 

building

A close up of a plate of 
food with a spatula.

Rare Words Errors (ImageNet)Novel Objects (ImageNet Images)Novel Objects (COCO)

A bus driving down a 
busy street with people 

standing around.

A cat sitting on a 
suitcase next to a bag.

A man is standing on a 
field with a caddie.

A woman is holding a 
large megaphone in 

her hand.

A orca is riding a small 
wave in the water.

A table with a plate of 
sashimi and vegetables.

A saucepan full of soup 
and a pot on a stove.

A large flounder is 
resting on a rock

Figure 6. Descriptions produced by NOC on a variety of objects, including “caddie”, “saucepan”, and “flounder”. (Right) NOC makes

errors and (top right) fails to describe the new object (“sitar”). More categories of images and objects are in the supplement.

tences incorporate the word equally well, or (iv) Nei-

ther of them do well.

Image Description: We also ask humans to pick which of

the two sentences describes the image better.

This allows us to compare both how well a model incorpo-

rates the novel object label in the sentence, as well as how

appropriate the description is to the image. The results are

presented in Table 6. On the subset of images correspond-

ing to objects that both models can describe (Intersection),

NOC and DCC appear evenly matched, with NOC only hav-

ing a slight edge. However, looking at all object categories

(Union), NOC is able to both incorporate the object label in

the sentence, and describe the image better than DCC.

7. Conclusion
We present an end-to-end trainable architecture that in-

corporates auxiliary training objectives and distributional

semantics to generate descriptions for object classes unseen

in paired image-caption data. Notably, NOC’s architecture

and training strategy enables the visual recognition network

to retain its ability to recognize several hundred categories

of objects even as it learns to generate captions on a differ-

ent set of images and objects. We demonstrate our model’s

captioning capabilities on a held-out set of MSCOCO ob-

jects as well as several hundred ImageNet objects. Both

human evaluations and quantitative assessments show that

our model is able to describe many more novel objects com-

pared to previous work. NOC has a 10% higher F1 on un-

seen COCO objects and 20% higher F1 on ImageNet ob-

jects compared to previous work, while also maintaining or

Word Incorporation Image Description

Objects subset → Union Intersection Union Intersection

NOC is better 43.78 34.61 59.84 51.04

DCC is better 25.74 34.12 40.16 48.96

Both equally good 6.10 9.35 -

Neither is good 24.37 21.91 -

Table 6. ImageNet: Human judgements comparing our NOC

model with DCC [7] on the ability to meaningfully incorporate the

novel object in the description (Word Incorporation) and describe

the image. ‘Union’ and ‘Intersection’ refer to the subset of objects

where atleast one model, and both models are able to incorporate

the object name in the description. All values in %.

improving descriptive quality. We also present an analysis

of the contributions from different network modules, train-

ing objectives, and data sources. Additionally, our model

directly extends to generate captions for ImageNet objects

mentioned rarely in the image-caption corpora. Code is

available at: https://vsubhashini.github.io/noc.html
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