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Abstract

We learn models to generate the immediate future in

video. This problem has two main challenges. Firstly,

since the future is uncertain, models should be multi-modal,

which can be difficult to learn. Secondly, since the fu-

ture is similar to the past, models store low-level details,

which complicates learning of high-level semantics. We

propose a framework to tackle both of these challenges. We

present a model that generates the future by transforming

pixels in the past. Our approach explicitly disentangles the

model’s memory from the prediction, which helps the model

learn desirable invariances. Experiments suggest that this

model can generate short videos of plausible futures. We be-

lieve predictive models have many applications in robotics,

health-care, and video understanding.

1. Introduction

Can you predict what the scene in Figure 1a will look

like in the immediate future? The capability for machines

to anticipate the future would enable several applications in

robotics, health-care, and video understanding [13, 14]. Un-

fortunately, despite the availability of large video datasets

and advances in data-driven learning methods, robust visual

prediction models have been elusive.

We believe there are two primary obstacles in the fu-

ture generation problem. Firstly, the future is uncertain

[18, 35, 36]. In order to produce sharp generations, models

must account for uncertainty, but multi-modal losses can be

difficult to optimize. Secondly, the future is often similar

to the past [5, 45], which models consequently must store.

However, memorizing the past may complicate the learn-

ing of high-level semantics necessary for prediction. In this

paper, we propose a framework to tackle both challenges.

We present an adversarial network that generates the fu-

ture by transforming the pixels in the past. Rather than gen-

erating pixel intensities [28, 18, 35] (which may be too un-

constrained) or generating fixed representations [47, 34, 36]

(which may be too constrained), we propose a model that

learns to transform the past pixels. This formulation un-
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Figure 1: Generating the Future: We develop a large-

scale model for generating the immediate future in uncon-

strained scenes. Our model uses adversarial learning to pre-

dict a transformation from the past into the future by learn-

ing from unlabeled video.

tangles the memory of the past with the prediction of the

future. We believe this formulation helps the network learn

desirable invariances because each layer in the network is

no longer required to store low-level details. Instead, the

network only needs to store sufficient information to trans-

form the input. Our experiments and visualizations suggest

that generating transformations produces more realistic pre-

dictions and also helps learn some semantics.

Since the future is uncertain, we instead train our model

to generate a plausible future. We leverage recent advances

in adversarial learning [7, 26] to train our model to gener-

ate one possible video of the future. Although the model

is not guaranteed to generate the “correct” future, instead

our approach hallucinates transformations for a future that

is plausible. Experiments suggest that humans prefer pre-

dictions from our model better than simple baselines.

We capitalize on large amounts of unlabeled video down-

loaded from the web for learning. Although unlabeled video

lacks labels, it contains rich signals about how objects be-

have and is abundantly available. Our model is trained end-

to-end without supervision using unconstrained, in-the-wild

data from consumer video footage.

The main contribution of this paper is the development

of a large-scale approach for generating videos of the fu-

ture by learning transformations with adversarial learning

and unconstrained unlabeled video. The remainder of this
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Figure 2: Unlabeled Video: We learn models from large

amounts of unconstrained and unlabeled video to train mod-

els to generate the immediate future.

paper describes our approach in detail. In section 3, we de-

scribe the unlabeled video dataset we use for learning and

evaluation. In section 4, we present our adversarial network

for learning transformations into the future. In section 5, we

present several experiments to analyze adversarial networks

for future generation.

2. Related Work

Visual Anticipation: Our work builds upon several

works in both action forecasting [13, 14, 34, 6, 50, 38] and

future generation [28, 18, 35, 37, 47, 50, 11, 17, 45, 51, 36].

While a wide body of work has focused on predicting ac-

tions or motions, our work investigates predicting pixel val-

ues in the future, similar to [28, 18, 35]. However, rather

than predicting unconstrained pixel intensities, we seek to

learn a transformation from past pixels to the future. Prior

work has explored learning transformations in restricted do-

mains [5, 45], such as for robotic arms or clip art. In this pa-

per, we seek to learn transformations from in-the-wild un-

labeled video from consumer cameras.

Visual Transformations: This paper is also related

to learning to understand transformations in images and

videos [8, 9, 49, 39, 45, 5]. We also study transformations,

but focus on learning the transformations for predicting the

future in unconstrained and unlabeled video footage.

Generative Adversarial Models: Our technical ap-

proach takes advantage of advances in generative adversar-

ial networks [7, 26, 2, 41, 25]. However, rather than gener-

ating novel images, we seek to generate videos conditioned

on past frames. Our work is an instance of conditional gen-

erative adversarial networks [19, 18, 35, 25]. However, in

our approach, the generator network outputs a transforma-

tion on the condition, which may help stabilize learning.

Neural Memory Models: Our work extends work in

neural memory models, such as attention networks [44, 43],

memory networks [42, 30], and pointer networks [33]. Our

approach uses a similar idea as [33] to generate the output

by pointing to the the inputs, but we apply it to vision in-

stead. Our network learns to point to past pixels to produce

the transformation into the future.

Unlabeled Video: Our work is related to a growing body
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Figure 3: Transformations: For each (x, y, t) coordinate

in the future, the network estimates a weighted combina-

tion of neighboring pixels from the input frame to render

the predicted frame. The × denotes dot product. Note the

transformation is applied by convolution.

of work that leverages massive amounts of unlabeled video

for visual understanding, such for representation learning

and cross-modal transfer [15, 40, 29, 10, 20, 21, 1, 27, 22,

24, 16, 34]. In our work, we use large amounts of unlabeled

video for learning to generate the immediate future.

3. Dataset

We use large amounts of unlabeled video from Flickr

[32, 35] for both training and evaluation. This dataset is

very challenging due to its unconstrained and “in-the-wild”

nature. The videos depict everyday situations (e.g., par-

ties, restaurants, vacations, families) with an open-world of

objects, scenes, and actions. We download over 500, 000
videos, which we use for learning and evaluation. Given 4
frames as input, we aim to extrapolate the next 12 frames at

full frame-rate into the future (for a total of 16 frames).

We do little pre-processing on the videos. As we are in-

terested object motion and not camera motion, we stabilize

the videos using SIFT and RANSAC. If the camera moves

out of the frame, we fill in holes with neighboring values.

We focus on small videos of 64× 64 spatial resolution and

16 frames, consistent with [26, 35]. We scale the intensity

to between −1 and 1. In contrast to prior work [35], we do

not filter videos by scene categories.

4. Method

We present an approach for generating the immediate fu-

ture in video. Given an input video clip x ∈ R
t×W×H , we

wish to extrapolate a future video clip y ∈ R
T×W×H where
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Figure 4: Network Architecture: We illustrate our convolutional network architecture for generating the future. The input

clip goes through a series convolutions and nonlinearities that preserve resolution. After integrating information across

multiple input frames (if multiple), the network up-samples temporally into the future. The network outputs codes for a

transformation of the input frames, which produces the final video. For details on the transformer, see Figure 3.

conv1 conv2 conv3 conv4 conv5 uconv6 uconv7 uconv8

Num Filters 32 64 128 256 32 32 32 152

Filter Size 1× 3× 3 1× 3× 3 1× 3× 3 1× 3× 3 4× 1× 1 4× 1× 1 4× 1× 1 4× 1× 1
Dilation 1× 1× 1 1× 2× 2 1× 4× 4 1× 8× 8 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1
Padding 0× 1× 1 0× 2× 2 0× 4× 4 0× 8× 8 0× 0× 0 1× 1× 1 2× 1× 1 2× 1× 1
Stride 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1 2× 1× 1 2× 1× 1

Table 1: Network Details: We describe our network architecture in detail. The input is a 4 × 64 × 64 clip. The output of

uconv8 is a 152 × 12 × 64 × 64 transformation code, which is fed into the transformer, producing a 12 × 16 × 16 video.

The dimensions are Time × Width × Height format.

t, T are durations in frames, and W and H are width and

height respectively. We design a deep convolutional net-

work f(x;ω) for the video extrapolation task.

One strategy for predicting the future is to create a net-

work that directly outputs y, such as [18, 35]. However,

since the future is similar to the past, the model will need to

store low-level details (e.g., colors or edges) about the input

x at every layer of representation. Not only is this inefficient

use of network capacity, but it may make it difficult for the

network to learn desirable invariances that are necessary for

future prediction (such as parts or object detectors). Con-

sequently, we wish to develop a model that untangles the

memory of the past from the prediction of the future.

4.1. Generating Transformations

Rather than directly predicting the future, we design f to

output a transformation from the past to the future:

f(x;ω) = γ(g(x;ω), x) (1)

where γ is transformation function and g is a convolutional

neural network to predict these transformations. Since the

input x is available to the transformation function at the end,

g does not necessarily need to store low-level details about

the image. Instead, g only needs to store information suffi-

cient to transform x.

We employ a simple transformation model by interpo-

lating between neighboring pixels [5]. The output pixel at

location (i, j) in frame t is given by the inner product:

γi,j,t(g, x) = gTi,j,t · xi−w:i+w,j−h:j+h (2)

where xa:b,c:d ∈ R
4wh selects the block in the image x from

(a, c) to (b, d), and flattens it to a vector. The transformation

is applied relatively on the original input image, and each

pixel can undergo different transformations from its neigh-

bors. The hyper-parameters w and h define the receptive

field of the transformation. gi,j,t ∈ R
4wh produces the co-

efficients for each neighboring pixel, which we normalize to

be positive and sum to unity. The model can support larger

receptive fields at the expense of extra learnable parameters.

We handle border-effects by padding with replication. We

visualize the operation in Figure 3.

While the transformation could be applied recurrently on

each frame, errors will accumulate, which may complicate

learning. We instead apply the transformation relative to the

input frame, which has the advantage of making the model

more robust for longer time periods. While this requires a
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larger receptive field for the transformations, the increase

in extra parameters is negligible compared to the amount of

training data available (virtually unlimited).

Since we do not have ground truth labels to supervise g,

we can train the prediction model f end-to-end because the

transformation γ is differentiable, allowing us to use back-

propagation. Moreover, this enables us to train the model

without human supervision.

4.2. Adversarial Learning

While we could train f(x;ω) to regress the future y (e.g.

with ℓ2 loss), the model would be unable to handle the

multi-modal nature of the problem [34, 18, 36], which of-

ten manifests as blurry predictions due to the regression-to-

mean problem. Instead, we use a multi-modal loss.

Rather than training the network to predict the correct fu-

ture (which may be a poorly defined task), we instead train

the network to predict one plausible future. To do this, we

take advantage of adversarial learning for video [18, 35, 50].

We simultaneously train a discriminator network d(x, y) to

distinguish real videos from generated videos. The predic-

tor f seeks to maximally fool the discriminator d. Specifi-

cally, during learning, we optimize:

min
ρ

max
ω

∑

i

L (d(xi, yi; ρ), 1)+

L (d(xi, f(xi;ω) ; ρ),−1)

(3)

where L is the binary cross-entropy loss and ±1 specifies

the target category (real or not).

We use a deep spatio-temporal convolutional network as

the discriminator network, similar to [35]. Since the dis-

criminator receives both the input x and the future y, the

network first concatenates x and y along the time dimen-

sion, which is fed into the rest of network. Consequently,

the prediction network f can only fool the discriminator if

it predicts a future video consistent with its input.

Several works have attempted to use adversarial learn-

ing for video prediction [18, 35, 50], however due to the

instability of adversarial learning, they typically also use a

combination of losses (such as regression or total variation

losses). In this paper, we are able to only use an adversarial

objective with unconstrained data.

4.3. Convolutional Network Architecture

We use a convolutional network to parametrize g. Since

we desire to make a dense prediction for each space-time

location, we design g to preserve the resolution of the in-

put throughout the network. To capture long-range spa-

tial dependencies, we employ dilated convolutions [46] that

exponentially increase their receptive field size and main-

tain spatial resolution. To up-sample in time, we use a up-

convolutional temporal network. We visualize the network

architecture for f in Figure 4 and provide the complete con-

figuration in Table 1.

4.4. Optimization

We optimize Equation 3 with mini-batch stochastic gra-

dient descent. We alternate between one update of the dis-

criminator and one update of the generator. We use a batch

size of 32. During learning of the generator, maximizing

ω often does not provide a strong gradient for learning, so

we instead optimize minω
∑

i L (d(xi, f(xi;ω) ; ρ), 1) in

the generator, similar to [7]. We use the Adam optimizer

[12] with a learning rate of 0.0002 and momentum term of

0.5. We train each model for 50, 000 iterations, which typi-

cally takes two days on a GPU. We use batch normalization

on every layer in both the generator and discriminator. We

use rectified linear units (ReLU) for the generator and leaky

ReLU for the discriminator, following [26]. We generate

videos that are 64 × 64 in spatial resolution that are up to

16 frames long at full frame (a little under a second of clock

time). We use Torch7.

5. Experiments

In this section, we present experiments to analyze and

understand the behavior of our model.

5.1. Experimental Setup

We split our dataset into 470, 824 video clips for train-

ing, and 52, 705 video clips for testing. The clip are split by

source video, so clips from the same video are part of the

same partition. Our evaluation follows advice from [31],

which recommends evaluating generative models for the

task at hand. Since our model is trained to generate plau-

sible futures, we use a human psychological study to eval-

Not Preferred
Adv+Tra Reg+Tra Adv+Int Reg+Int Real

P
re

fe
rr

ed

Adv+Tra - 55.6 61.2 55.1 30.6
Reg+Tra 44.4 - 60.8 54.1 36.4
Adv+Int 38.8 39.2 - 39.6 37.3
Reg+Int 44.9 45.9 60.4 - 38.0

Real 69.4 63.6 62.7 62.0 -

Table 2: Future Generation Evaluation: We ask work-

ers on Mechanical Turk the two-alternative forced choice

question “Which video has more realistic motion?” and re-

port the percentage of times that subjects preferred a method

over another. Rows indicate the method that workers pre-

ferred when compared to the one of the columns. For

example, workers preferred the Adv+Tra method over the

Reg+Tra method 55.6% of the time. Adv is for Adversarial,

Tra is for Transformation, Reg is for Regression, and Int is

for Intensity. Overall, predicting transformations with ad-

versarial learning tends to produce more realistic motions.
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Figure 5: Qualitative Video Generation Results: We visualize some of the generated videos. The input is 4 frames and the

model generates the next 12 frames. We qualitatively compare generations from adversary + transformation models versus

regression + transformation models. The green arrows point to regions of good motion, and the red arrows point to regions of

bad motion. The regression model typically adds motion to the scene, but it quickly becomes blurry. The adversary usually

has sharper motion. Best viewed on screen.

uate our predictions, similar to [23, 35]. We use workers

from Amazon Mechanical Turk to answer a two-alternative

forced choice (2AFC) question. We show workers two

videos generated by different methods, and ask them to an-

swer “Which video has more realistic motion?” If workers

tend to choose videos from a particular method more of-

ten, then it suggests that that method generates more realis-

tic motion according to human subjects. We solicit 1, 000
opinions and pay workers 1 cent per decision. We required

workers to have an historical approval rating of 95% to help

ensure quality. We experimented with disqualifying work-

ers who incorrectly said real videos were not real, but this

did not change the relative ranking of methods.

5.2. Baselines

We compare our method against unsupervised future

generation baselines.

Adversarial with Pixel Intensities: Rather than gener-

ating transformations, we could try to directly generate the

pixel intensities of the future. To do this, we remove the

transformation module and modify our network g to output

3-channels (for RGB) with tanh activation. We then train

with adversarial learning. This is similar to [35, 18].

Regression with Transformations: Rather than learn-

ing with adversarial learning, we can instead train the model

only with a regression loss. We use ℓ1 loss.

Regression with Pixel Intensities: We also compared a

regression model that directly regresses the pixel intensities,

combining both of the previous two baselines.

Real Videos: Finally, we compare against the true video

of the future. While we do not expect to generate photo-

realistic videos, it allows us to measure how indistinguish-

able our generations are from real (if at all).

5.3. Future Generation

Table 2 reports subjects preferences for different meth-

ods in the two-alternative force choice for generating 16
frame videos given the first 4 input video frames. Overall,

generating transformations instead of pixel intensities pro-

duces more realistic motions in generating the immediate

future. The adversarial learning with transformations tends

to produce sharper motions, which workers found prefer-

able to the baselines. We also compared generated videos

versus real videos. As one might expect, workers usually
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Input	Frames Adversary	+	Transform	Prediction
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Adversary	+	Pixel	Intensity	Prediction

Figure 6: Qualitative Video Generation Results: We visualize some of the generated videos. The input is 4 frames and the

model generates the next 12 frames. We qualitatively compare generations from adversary + transformation models versus

adversary + pixel intensity models. The green arrows point to regions of good motion, and the red arrows point to regions

of bad motion. The intensity model typically struggles to add any motion, often changing colors instead. Best viewed on

screen.

prefer real videos over synthetic videos.

We show several qualitative examples of the generations

in Figure 5 and Figure 6. We summarize a few our qualita-

tive observations. The transformation models (both regres-

sion and adversary) tend to have the most motion, likely

because the network is more efficiently storing the input.

However, regression transformations tend to be blurry over

longer time periods due to the regression-to-the-mean prob-

lem. The adversarial network that directly generates pixel

intensities generally struggles to create motion and instead

tends to change the colors, likely due to the instability of

adversarial learning. However, adversarial learning with

transformations may provide sufficient constraints to the

output space that the generator learns efficiently. Overall,

the adversarial network with transformations tend to pro-

duce motion that is sharper because the model seeks a mode

of the future rather than the mean-of-modes.

We also visualize some of the internal transformations in

Figure 7. The transformation parameters are colored by the

direction and distance that pixels move. The visualization

shows that the model often learns to transform edges rather

than entire objects, likely because moving edges sufficiently

fool the adversary. Moreover, the motion often is associated

with objects, suggesting learning transformations may be a

good signal for learning about objects.

5.4. Analyzing Invariances

We hypothesize that learning to generate transformations

into the future helps the network learn desirable invariances

that are useful for prediction and higher-level understand-

ing. To evaluate the degree to which the network has learned

any semantics, we experimented with fine-tuning our net-

work for an object recognition task.

We use the PASCAL VOC object classification dataset

[4] using the provided train/val splits. We cut the net-

work from the input until conv4 and fine-tune it to classify

into the 20 object categories in PASCAL VOC. However,

since our network preserves resolution, we must make one

change to produce a category distribution output. We add a

global max pooling layer after conv4 to down-sample the

256×64×6 hidden activations to a 256 dimensional vector,

and add a linear layer to produce the output. We train the

network with multi-class cross entropy loss.

We report performance in Table 3 using mean average
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Frame	4Frame	1 Frame	8

Input	Frames Adversary	+	Transform	Prediction	with	Transformation	Visualization

Frame	12 Frame	16

Figure 7: Visualizing Inferred Transformation: We visualize the transformation generated by our full model. Colors

indicate direction that pixels move relative to the input frame under the transformation. The model learns to mix neighboring

pixels of the input to generate the future frames.

Method 2007 mAP 2012 mAP

Chance 7.3 7.2

Random Initialization 26.7 30.6

Regression + No Transform 30.0 33.6

Adversary + No Transform 29.7 33.3

Regression + Transform 32.6 38.8

Adversary + Transform 32.0 38.1

Table 3: Object Classification: We experiment how well

our prediction network learns semantics by fine-tuning them

for a object recognition task with a little training data. We

report mean average precision on the object classification

task for PASCAL VOC without any additional supervi-

sion. Note we only compare to methods that classify low-

resolution images (64× 64).

precision. While all methods trained to predict the future

outperform a randomly initialized network, our results sug-

gest that learning transformations provides a better signal

for learning semantics than directly producing pixel inten-

sities. We believe this is because the memory of the past is

decoupled from the prediction of the future, which allows

the hidden representation to be robust to low-level signals

(such as color) that are not as useful for object recognition.

0 1000 2000 3000 4000 5000 6000
Number of Labeled Training Images
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Adversary+Transform Init
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Figure 8: Performance vs Labeled Dataset Size: We an-

alyze the performance (mean average precision) on object

classification on PASCAL VOC 2012 for a network initial-

ized with our future predictor versus random initialization.

We obtain the same performance as the baseline using only

one third of the labeled data.

We also analyzed the performance versus the amount of

labeled training data. Figure 8 shows performance of our

full model versus a network randomly initialized. For all

dataset sizes, our approach outperforms a randomly initial-
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(a) Transform + Adversary (b) No Transform (c) No Adversary

Figure 9: Visualizing conv1 Filters: We visualize the learned filters in conv1 of our network compared to baselines. (a)

Our full network (adversary+transformation) learns simple edge and gradient detectors in the first layer. (b) Training without

transformations causes the network to learn color detectors, rather than gradient detectors, because the baseline network now

needs to store the input, which complicates learning of desirable invariances. (c) Training without the adversary learns some

edge detectors, but not as rich as our full model.

(a) Face-like Unit (b) Sports-like Unit (c) Show-like Unit

Figure 10: Hidden Unit Visualization: We visualize some

of the hidden units in our prediction network. We feed im-

ages through our network and highlight regions that max-

imally activate a particular unit, similar to [48]. Since the

network predicts transformations, some of the units are in-

variant to low-level features such as colors. Instead, they

tend to be selective for patterns indicative of motion.

ized network. Interestingly, our results suggest that our full

approach only needs one third of the labeled data to match

performance as the randomly initialized network.

Although the goal in this paper is not to learn visual rep-

resentations, these experiments suggest that transformation

learning is a promising supervisory signal. Since transfor-

mation learning is orthogonal and complementary to [3, 24],

scaling-up future generation could be a fruitful direction for

learning representations. Our experiments are conducted on

smaller images than usual (64× 64 versus 224× 224), and

higher-resolution outputs may enable richer predictions.

5.5. Visualization

To better understand what our prediction network learns,

we visualize some of the internal layers. Figure 9 visualizes

the learned weights of the first convolutional layer of differ-

ent models. Interestingly, our full model (with adversarial

learning and transformations) learns several edge and gra-

dient detectors. However, the baseline model without trans-

formations tends to learn simple color detectors, which may

happen because the network now needs to store the input

throughout the layers. In contrast, the transformation model

can learn more abstract representations because it does not

need to store the past.

Figure 10 visualizes several hidden units in conv4 by

highlighting regions of input images that maximally acti-

vate a certain convolutional unit, similar to [48]. Some of

the units are selective for higher-level objects, such as sport-

ing events, music performances, or faces. In contrast, when

we visualized the networks that directly predict intensity,

the hidden units were highly correlated with colors. These

visualizations suggest that learning to predict transforma-

tions helps learn desirable invariances.

6. Conclusion

We presented a framework to learn to generate the im-

mediate future in video by learning from large amounts of

unconstrained unlabeled video. Our approach tackles two

challenges in future generation: handling the uncertainty of

the future, and handling the memory of the past. We pro-

posed a model that untangles the memory of the past from

the prediction of the future by learning transformations. Ex-

periments and visualizations suggest that learning transfor-

mations helps produce more realistic predictions as well as

helps the model learn some semantics. Our results suggest

that explicit memory models for future prediction can yield

better predictions and desirable invariances.
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