
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Xiaolong Wang Abhinav Shrivastava Abhinav Gupta

The Robotics Institute, Carnegie Mellon University

Abstract

How do we learn an object detector that is invariant to

occlusions and deformations? Our current solution is to use

a data-driven strategy – collect large-scale datasets which

have object instances under different conditions. The hope

is that the final classifier can use these examples to learn

invariances. But is it really possible to see all the occlu-

sions in a dataset? We argue that like categories, occlu-

sions and object deformations also follow a long-tail. Some

occlusions and deformations are so rare that they hardly

happen; yet we want to learn a model invariant to such oc-

currences. In this paper, we propose an alternative solution.

We propose to learn an adversarial network that generates

examples with occlusions and deformations. The goal of

the adversary is to generate examples that are difficult for

the object detector to classify. In our framework both the

original detector and adversary are learned in a joint man-

ner. Our experimental results indicate a 2.3% mAP boost

on VOC07 and a 2.6% mAP boost on VOC2012 object de-

tection challenge compared to the Fast-RCNN pipeline.

1. Introduction

The goal of object detection is to learn a visual model

for concepts such as cars and use this model to localize

these concepts in an image. This requires the ability to

robustly model invariances to illuminations, deformations,

occlusions and other intra-class variations. The standard

paradigm to handle these invariances is to collect large-scale

datasets which have object instances under different condi-

tions. For example, the COCO dataset [18] has more than

10K examples of cars under different occlusions and defor-

mations. The hope is that these examples capture all possi-

ble variations of a visual concept and the classifier can then

effectively model invariances to them. We believe this has

been one of the prime reasons why ConvNets have been so

successful at the task of object detection: they are able to

use all this data to learn invariances.

However, like object categories, we believe even occlu-

sions and deformations follow a long-tail distribution. That

is, some of the occlusions and deformations are so rare that

there is a low chance that they will occur in large-scale

Real World Occlusions

Often Rare

…

Occlusions Created by Adversarial Networks

Real World Deformations

Often Rare

…

Figure 1: We argue that both occlusions and deformations

follow a long-tail distribution. Some occlusions and defor-

mations are rare. In this paper, we propose to use an ad-

versarial network to generate examples with occlusions and

deformations that will be hard for an object detector to clas-

sify. Our adversarial network adapts as the object detector

becomes better and better. We show boost in detection ac-

curacy with this adversarial learning strategy empirically.

datasets. For example, consider the occlusions shown in

Figure 1. We notice that some occlusions occur more of-

ten than others (e.g., occlusion from other cars in a parking

garage is more frequent than from an air conditioner). Sim-

ilarly, some deformations in animals are common (e.g., sit-

ting/standing poses) while other deformations are very rare.

So, how can we learn invariances to such rare/uncommon

occlusions and deformations? While collecting even larger

datasets is one possible solution, it is not likely to scale due

to the long-tail statistics.

Recently, there has been a lot of work on generating

images (or pixels) [3, 8, 26]. One possible way to learn

about these rare occurrences is to generate realistic images

12606

by sampling from the tail distribution. However, this is

not a feasible solution since image generation would re-

quire training examples of these rare occurrences to be-

gin with. Another solution is to generate all possible oc-

clusions and deformations and train object detectors from

them. However, since the space of deformations and occlu-

sions is huge, this is not a scalable solution. It has been

shown that using all examples is often not the optimal solu-

tion [33, 39] and selecting hard examples is better. Is there

a way we can generate “hard” positive examples with dif-

ferent occlusions and deformations and without generating

the pixels themselves?

How about training another network: an adversary that

creates hard examples by blocking some feature maps spa-

tially or creates spatial deformations by manipulating fea-

ture responses. This adversary will predict what it thinks

will be hard for a detector like Fast-RCNN [6] and in turn

the Fast-RCNN will adapt itself to learn to classify these ad-

versarial examples. The key idea here is to create adversar-

ial examples in convolutional feature space and not generate

the pixels directly since the latter is a much harder problem.

In our experiments, we show substantial improvements in

performance of the adversarial Fast-RCNN (A-Fast-RCNN)

compared to the standard Fast-RCNN pipeline.

2. Related Work

In recent years, significant gains have been made in the

field of object detection. These recent successes build upon

the powerful deep features [16] learned from the task of Im-

ageNet classification [2]. R-CNN [7] and OverFeat [30] ob-

ject detection systems led this wave with impressive results

on PASCAL VOC [4]; and in recent years, more computa-

tionally efficient versions have emerged that can efficiently

train on larger datasets such as COCO [18]. For exam-

ple, Fast-RCNN [6] shares the convolutions across different

region proposals to provide speed-up, Faster-RCNN [28]

and R-FCN [15] incorporate region proposal generation in

the framework leading to a completely end-to-end version.

Building on the sliding-window paradigm of the Overfeat

detector, other computationally-efficient approaches have

emerged such as YOLO [27], SSD [19] and DenseBox [12].

Thorough comparisons among these methods are discussed

in [11].

Recent research has focused on three principal direc-

tions on developing better object detection systems. The

first direction relies on changing the base architecture of

these networks. The central idea is that using deeper net-

works should not only lead to improvements in classifica-

tion [2] but also object detection [4, 18]. Some recent work

in this direction include ResNet [9], Inception-ResNet [38]

and ResNetXt [43] for object detection.

The second area of research has been to use contextual

reasoning, proxy tasks for reasoning and other top-down

mechanisms for improving representations for object de-

tection [1, 5, 17, 24, 32, 34, 45]. For example, [32] use

segmentation as a way to contextually prime object detec-

tors and provide feedback to initial layers. [1] uses skip-

network architecture and uses features from multiple lay-

ers of representation in conjunction with contextual reason-

ing. Other approaches include using a top-down features for

incorporating context and finer details [17, 24, 34] which

leads to improved detections.

The third direction to improve a detection systems is to

better exploit the data itself. It is often argued that the recent

success of object detectors is a product of better visual rep-

resentation and the availability of large-scale data for learn-

ing. Therefore, this third class of approaches try to explore

how to better utilize data for improving the performance.

One example is to incorporate hard example mining in an

effective and efficient setup for training region-based Con-

vNets [33]. Other examples of findind hard examples for

training include [20, 35, 41].

Our work follows this third direction of research where

the focus is on leveraging data in a better manner. How-

ever, instead of trying to sift through the data to find hard

examples, we try to generate examples which will be hard

for Fast-RCNN to detect/classify. We restrict the space of

new positive generation to adding occlusions and defor-

mations to the current existing examples from the dataset.

Specifically, we learn adversarial networks which try to pre-

dict occlusions and deformations that would lead to mis-

classification by Fast-RCNN. Our work is therefore related

to lot of recent work in adversarial learning [3, 8, 13, 21,

22, 23, 26, 29, 37]. For example, techniques have been

proposed to improve adversarial learning for image gener-

ation [26] as well as for training better image generative

model [29]. [29] also highlights that the adversarial learn-

ing can improve image classification in a semi-supervised

setting. However, the experiments in these works are con-

ducted on data which has less complexity than object de-

tection datasets, where image generation results are signif-

icantly inferior. Our work is also related to a recent work

on adversarial training in robotics [25]. However, instead

of using an adversary for better supervision, we use the ad-

versary to generate the hard examples.

3. Adversarial Learning for Object Detection

Our goal is to learn an object detector that is robust to

different conditions such as occlusion, deformation and illu-

mination. We hypothesize that even in large-scale datasets,

it is impossible to cover all potential occlusions and defor-

mations. Instead of relying heavily on the dataset or sifting

through data to find hard examples, we take an alternative

approach. We actively generate examples which are hard

for the object detector to recognize. However, instead of

generating the data in the pixel space, we focus on a re-

stricted space for generation: occlusion and deformation.
Mathematically, let us assume the original object detec-

2607

Fully

Connected

Layers

Softmax

Classification

Loss

Soft-L1

Bbox Reg.

Loss

RoI

Pooling

Layer ×

Fully

Connected

Layers

Occlusion

Mask

Dropout

Values

Mask Selection

according to Loss

Conv Layers

Figure 2: Our network architecture of ASDN and how it combines with Fast RCNN approach. Our ASDN network takes

as input image patches with features extracted using RoI pooling layer. ASDN network than predicts an occlusion/dropout

mask which is then used to drop the feature values and passed onto classification tower of Fast-RCNN.

tor network is represented as F(X) where X is one of the
object proposals. A detector gives two outputs Fc which
represents class output and Fl represent predicted bounding
box location. Let us assume that the ground-truth class for
X is C with spatial location being L. Our original detector
loss can be written down as,

LF = Lsoftmax(Fc(X), C) + [C /∈ bg]Lbbox(Fl(X), L),

where the first term is the SoftMax loss and the second

term is the loss based on predicted bounding box location

and ground truth box location (foreground classes only).

Let’s assume the adversarial network is represented as

A(X) which given a feature X computed on image I , gen-

erates a new adversarial example. The loss function for the

detector remains the same just that the mini-batch now in-

cludes fewer original and some adversarial examples.
However, the adversarial network has to learn to predict

the feature on which the detector would fail. We train this
adversarial network via the following loss function,

LA = −Lsoftmax(Fc(A(X)), C).

Therefore, if the feature generated by the adversarial net-

work is easy for the detector to classify, we get a high loss

for the adversarial network. On the other hand, if after ad-

versarial feature generation it is difficult for the detector, we

get a high loss for the detector and a low loss for the adver-

sarial network.

4. A-Fast-RCNN: Approach Details

We now describe the details of our framework. We first

give a brief overview of our base detector Fast-RCNN. This

is followed by describing the space of adversarial genera-

tion. In particular, we focus on generating different types

of occlusions and deformations in this paper. Finally, in

Section 5, we describe our experimental setup and show the

results which indicate significant improvements over base-

lines.

4.1. Overview of Fast-RCNN

We build upon the Fast-RCNN framework for object de-

tection [6]. Fast-RCNN is composed of two parts: (i) a con-

volutional network for feature extraction; (ii) an RoI net-

work with an RoI-pooling layer and a few fully connected

layers that output object classes and bounding boxes.

Given an input image, the convolutional network of the

Fast-RCNN takes the whole image as an input and produces

convolutional feature maps as the output. Since the opera-

tions are mainly convolutions and max-pooling, the spatial

dimensions of the output feature map will change accord-

ing to the input image size. Given the feature map, the RoI-

pooling layer is used to project the object proposals [40]

onto the feature space. The RoI-pooling layer crops and

resizes to generate a fixed size feature vector for each ob-

ject proposal. These feature vectors are then passed through

fully connected layers. The outputs of the fully connected

layers are: (i) probabilities for each object class including

the background class; and (ii) bounding box coordinates.

For training, the SoftMax loss and regression loss are

applied on these two outputs respectively, and the gradients

are back propagated though all the layers to perform end-

to-end learning.

4.2. Adversarial Networks Design

We consider two types of feature generations by adver-

sarial networks competing against the Fast-RCNN (FRCN)

detector. The first type of generation is occlusion. Here,

we propose Adversarial Spatial Dropout Network (ASDN)

which learns how to occlude a given object such that it be-

2608

…

(b) Generated Masks(a) Pre-training via Searching

Figure 3: (a) Model pre-training: Examples of occlusions that are sifted to select the hard occlusions and used as ground-truth

to train the ASDN network (b) Examples of occlusion masks generated by ASDN network. The black regions are occluded

when passed on to FRCN pipeline.

comes hard for FRCN to classify. The second type of gen-

eration we consider in this paper is deformation. In this

case, we propose Adversarial Spatial Transformer Network

(ASTN) which learns how to rotate “parts” of the objects

and make them hard to recognize by the detector. By com-

peting against these networks and overcoming the obstacles,

the FRCN learns to handle object occlusions and deforma-

tions in a robust manner. Note that both the proposed net-

works ASDN and ASTN are learned simultaneously in con-

junction with the FRCN during training. Joint training pre-

vents the detector from overfitting to the obstacles created

by the fixed policies of generation.

Instead of creating occlusions and deformations on the

input images, we find that operating on the feature space

is more efficient and effective. Thus, we design our adver-

sarial networks to modify the features to make the object

harder to recognize. Note that these two networks are only

applied during training to improve the detector. We will

first introduce the ASDN and ASTN individually and then

combine them together in an unified framework.

4.2.1 Adversarial Spatial Dropout for Occlusion

We propose an Adversarial Spatial Dropout Network

(ASDN) to create occlusions on the deep features for fore-

ground objects. Recall that in the standard Fast-RCNN

pipeline, we can obtain the convolutional features for each

foreground object proposal after the RoI-pooling layer. We

use these region-based features as the inputs for our adver-

sarial network. Given the feature of an object, the ASDN

will try to generate a mask indicating which parts of the fea-

ture to dropout (assigning zeros) so that the detector cannot

recognize the object.

More specifically, given an object we extract the feature

X with size d× d× c, where d is the spatial dimension and

c represents the number of channels (e.g., c = 256, d = 6 in

AlexNet). Given this feature, our ASDN will predict a mask

M with d×d values which are either 0 or 1 after threshold-

ing. We visualize some of the masks before thresholding in

Fig. 3(b). We denote Mij as the value for the ith row and jth

column of the mask. Similarly, Xijk represents the value in

channel k at location i, j of the feature. If Mij = 1, we

drop out the values of all the channels in the corresponding

spatial location of the feature map X , i.e., Xijk = 0, ∀k.

Network Architecture. We use the standard Fast-

RCNN (FRCN) architecture. We initialize the network us-

ing pre-training from ImageNet [2]. The adversarial net-

work shares the convolutional layers and RoI-pooling layer

with FRCN and then uses its own separate fully connected

layers. Note that we do not share the parameters in our

ASDN with Fast-RCNN since we are optimizing two net-

works to do the exact opposite tasks.

Model Pre-training. In our experiment, we find it im-

portant to pre-train the ASDN for the task of creating occlu-

sions before using it to improve Fast-RCNN. Motivated by

the Faster RCNN detector [28], we apply stage-wise train-

ing here. We first train our Fast-RCNN detector without

ASDN for 10K iterations. As the detector now has a sense

of the objects in the dataset, we train the ASDN model for

creating the occlusions by fixing all the layers in the detec-

tor.
Initializing ASDN Network. To initialize the ASDN

network, given a feature map X with spatial layout d × d,

we apply a sliding window with size d
3
× d

3
on it. We repre-

sent the sliding window process by projecting the window
back to the image as 3(a). For each sliding window, we drop
out the values in all channels whose spatial locations are
covered by the window and generate a new feature vector
for the region proposal. This feature vector is then passed
through classification layers to compute the loss. Based on

the loss of all the d
3
× d

3
windows, we select the one with

the highest loss. This window is then used to create a single
d × d mask (with 1 for the window location and 0 for the
other pixels). We generate these spatial masks for n pos-
itive region proposals and obtain n pairs of training exam-

ples {(X1, M̃1), ..., (Xn, M̃n)} for our adversarial dropout
network. The idea is that the ASDN should learn to gen-
erate the masks which can give the detector network high
losses. We apply the binary cross entropy loss in training
the ASDN and it can be formulated as,

L = −
1

n

nX

p

dX

i,j

[M̃p
ijAij(X

p) + (1− M̃p
ij)(1−Aij(X

p))], (1)

2609

Fully

Connected
Layers

Softmax

Classification

Loss

Soft-L1

Bbox Reg.

Loss

×

Fully

Connected
Layers

Occlusion
Mask

Dropout

Values

×

Localisation
Network

Sampler

Ԧ� G

Grid
Generator

ASDN ASTN

RoI-Pooling
Feature

Figure 4: Network architecture for combining ASDN and ASTN network. First occlusion masks are created and then the

channels are rotated to generate hard examples for training.

where Aij(X
p) represents the outputs of the ASDN in

location (i, j) given input feature map Xp. We train the

ASDN with this loss for 10K iterations. We show that the

network starts to recognize which part of the objects are sig-

nificant for classification as shown in Fig. 3(b). Also note

that our output masks are different from the Attention Mask

proposed in [31], where they use the attention mechanism

to facilitate classification. In our case, we use the masks to

occlude parts to make the classification harder.

Thresholding by Sampling. The output generated by

ASDN network is not a binary mask but rather a continu-

ous heatmap. Instead of using direct thresholding, we use

importance sampling to select the top 1

3
pixels to mask out.

Note that the sampling procedure incorporates stochasticity

and diversity in samples during training. More specifically,

given a heatmap, we first select the top 1

2
pixels with top

probabilities and randomly select 1

3
pixels out of them to

assign the value 1 and the rest of 2

3
pixels are set to 0.

Joint Learning. Given the pre-trained ASDN and Fast-

RCNN model, we jointly optimize these two networks in

each iteration of training. For training the Fast-RCNN de-

tector, we first use the ASDN to generate the masks on

the features after the RoI-pooling during forward propaga-

tion. We perform sampling to generate binary masks and

use them to drop out the values in the features after the RoI-

pooling layer. We then forward the modified features to

calculate the loss and train the detector end-to-end. Note

that although our features are modified, the labels remain

the same. In this way, we create “harder” and more diverse

examples for training the detector.

For training the ASDN, since we apply the sampling

strategy to convert the heatmap into a binary mask, which

is not differentiable, we cannot directly back-prop the gra-

dients from the classification loss. Alternatively, we take

the inspirations from the REINFORCE [42] approach. We

compute which binary masks lead to significant drops in

Fast-RCNN classification scores. We use only those hard

example masks as ground-truth to train the adversarial net-

work directly using the same loss as described in Eq. 1.

4.2.2 Adversarial Spatial Transformer Network

We now introduce the Adversarial Spatial Transformer Net-

work (ASTN). The key idea is to create deformations on the

object features and make object recognition by the detector

difficult. Our network is built upon the Spatial Transformer

Network (STN) proposed in [14]. In their work, the STN is

proposed to deform the features to make classification eas-

ier. Our network, on the other hand, is doing the exact op-

posite task. By competing against our ASTN, we can train

a better detector which is robust to deformations.

STN Overview. The Spatial Transformer Network [14]

has three components: localisation network, grid generator

and sampler. Given the feature map as input, the locali-

sation network will estimate the variables for deformations

(e.g., rotation degree, translation distance and scaling fac-

tor). These variables will be used as inputs for the grid gen-

erator and sampler to operate on the feature map. The out-

put is a deformed feature map. Note that we only need to

learn the parameters in the localisation network. One of the

key contribution of STN is making the whole process dif-

ferentiable, so that the localisation network can be directly

optimized for the classification objective via back propaga-

tion. Please refer to [14] for more technical details.

Adversarial STN. In our Adversarial Spatial Trans-

former Network, we focus on feature map rotations. That is,

given a feature map after the RoI-pooling layer as input, our

ASTN will learn to rotate the feature map to make it harder

to recognize. Our localisation network is composed with

3 fully connected layers where the first two layers are ini-

tialized with fc6 and fc7 layers from ImageNet pre-trained

2610

network as in our Adversarial Spatial Dropout Network.

We train the ASTN and the Fast-RCNN detector jointly.

For training the detector, similar to the process in the

ASDN, the features after RoI-pooling are first transformed

by our ASTN and forwarded to the higher layers to compute

the SoftMax loss. For training the ASTN, we optimize it so

that the detector will classify the foreground objects as the

background class. Different from training ASDN, since the

spatial transformation is differentiable, we can directly use

the classification loss to back-prop and finetune the param-

eters in the localisation network of ASTN.

Implementation Details. In our experiments, we find

it very important to limit the rotation degrees produced by

the ASTN. Otherwise it is very easy to rotate the object up-

side down which is the hardest to recognize in most cases.

We constrain the rotation degree within 10◦ clockwise and

anti-clockwise. Instead of rotating all the feature map in the

same direction, we divide the feature maps on the channel

dimension into 4 blocks and estimate 4 different rotation

angles for different blocks. Since each of the channel corre-

sponds to activations of one type of feature, rotating chan-

nels separately corresponds to rotating parts of the object in

different directions which leads to deformations. We also

find that if we use one rotation angle for all feature maps,

the ASTN will often predict the largest angle. By using 4

different angles instead of one, we increase the complex-

ity of the task which prevents the network from predicting

trivial deformations.

4.2.3 Adversarial Fusion

The two adversarial networks ASDN and ASTN can also be

combined and trained together in the same detection frame-

work. Since these two networks offer different types of in-

formation. By competing against these two networks simul-

taneously, our detector become more robust.

We combine these two networks into the Fast-RCNN

framework in a sequential manner. As shown in Fig. 4, the

feature maps extracted after the RoI-pooling are first for-

warded to our ASDN which drop out some activations. The

modified features are further deformed by the ASTN.

5. Experiments

We conduct our experiments on PASCAL VOC 2007,

PASCAL VOC 2012 [4] and MS COCO [18] datasets. As

is standard practice, we perform most of the ablative stud-

ies on the PASCAL VOC 2007 dataset. We also report our

numbers on the PASCAL VOC 2012 and COCO dataset.

Finally, we perform a comparison between our method and

the Online Hard Example Mining (OHEM) [33] approach.

5.1. Experimental settings

PASCAL VOC. For the VOC datasets, we use the ‘train-

val’ set for training and ‘test’ set for testing. We follow

most of the setup in standard Fast-RCNN [6] for training.

We apply SGD for 80K to train our models. The learning

rate starts with 0.001 and decreases to 0.0001 after 60K it-

erations. We use the selective search proposals [40] during

training.

MS COCO. For the COCO dataset, we use the ‘train-

val35k’ set for training and the ‘minival’ set for testing.

During training the Fast-RCNN [6], we apply SGD with

320K iterations. The learning rate starts with 0.001 and de-

creases to 0.0001 after 280K iterations. For object propos-

als, we use the DeepMask proposals [24].

In all the experiments, our minibatch size for training

is 256 proposals with 2 images. We follow the Torch im-

plementation [44] of Fast-RCNN. With these settings, our

baseline numbers for are slightly better than the reported

number in [6]. To prevent the Fast-RCNN from overfitting

to the modified data, we provide one image in the batch

without any adversarial occlusions/deformations and apply

our approach on another image in the batch.

5.2. PASCAL VOC 2007 Results

We report our results for using ASTN and ASDN dur-

ing training Fast-RCNN in Table 1. For the AlexNet ar-

chitecture [16], our implemented baseline is 57.0% mAP.

Based on this setting, joint learning with our ASTN model

reaches 58.1% and joint learning with the ASDN model

gives higher performance of 58.5%. As both methods are

complementary to each other, combining ASDN and ASTN

into our full model gives another boost to 58.9% mAP.

For the VGG16 architecture [36], we conduct the same

set of experiments. Firstly, our baseline model reaches

69.1% mAP, much higher than the reported number 66.9%
in [6]. Based on this implementation, joint learning with

our ASTN model gives an improvement to 69.9% mAP and

the ASDN model reaches 71.0% mAP. Our full model with

both ASTN and ASDN improves the performance to 71.4%.

Our final result gives 2.3% boost upon the baseline.

To show that our method also works with very deep

CNNs, we apply the ResNet-101 [9] architecture in train-

ing Fast-RCNN. As the last two lines in Table.1 illustrate,

the performance of Fast-RCNN with ResNet-101 is 71.8%
mAP. By applying the adversarial training, the result is

73.6% mAP. We can see that our approach consistently im-

proves performances on different types of architectures.

5.2.1 Ablative Analysis

ASDN Analysis. We compare our Advesarial Spatial

Dropout Network with various dropout/occlusion strategy

in training using the AlexNet architecture. The first sim-

ple baseline we try is random spatial dropout on the feature

after RoI-Pooling. For a fair comparison, we mask the ac-

tivations of the same number of neurons as we do in the

ASDN network. As Table 2 shows, the performance of ran-

dom dropout is 57.3% mAP which is slightly better than

the baseline. Another dropout strategy we compare to is a

2611

Table 1: VOC 2007 test detection average precision (%). FRCN? refers to FRCN [6] with our training schedule.

method arch mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [6] AlexNet 55.4 67.2 71.8 51.2 38.7 20.8 65.8 67.7 71.0 28.2 61.2 61.6 62.6 72.0 66.0 54.2 21.8 52.0 53.8 66.4 53.9

FRCN? AlexNet 57.0 67.3 72.1 54.0 38.3 24.4 65.7 70.7 66.9 32.4 60.2 63.2 62.5 72.4 67.6 59.2 24.1 53.0 60.6 64.0 61.5

Ours (ASTN) AlexNet 58.1 68.7 73.4 53.9 36.9 26.5 69.4 71.8 68.7 33.0 60.6 64.0 60.9 76.5 70.6 60.9 25.2 55.2 56.9 68.3 59.9

Ours (ASDN) AlexNet 58.5 67.1 72.0 53.4 36.4 25.3 68.5 71.8 70.0 34.7 63.1 64.5 64.3 75.5 70.0 61.5 26.8 55.3 58.2 70.5 60.5

Ours (full) AlexNet 58.9 67.6 74.8 53.8 38.2 25.2 69.1 72.4 68.8 34.5 63.0 66.2 63.6 75.0 70.8 61.6 26.9 55.7 57.8 71.7 60.6

FRCN [6] VGG 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

FRCN? VGG 69.1 75.4 80.8 67.3 59.9 37.6 81.9 80.0 84.5 50.0 77.1 68.2 81.0 82.5 74.3 69.9 28.4 71.1 70.2 75.8 66.6

Ours (ASTN) VGG 69.9 73.7 81.5 66.0 53.1 45.2 82.2 79.3 82.7 53.1 75.8 72.3 81.8 81.6 75.6 72.6 36.6 66.3 69.2 76.6 72.7

Ours (ASDN) VGG 71.0 74.4 81.3 67.6 57.0 46.6 81.0 79.3 86.0 52.9 75.9 73.7 82.6 83.2 77.7 72.7 37.4 66.3 71.2 78.2 74.3

Ours (full) VGG 71.4 75.7 83.6 68.4 58.0 44.7 81.9 80.4 86.3 53.7 76.1 72.5 82.6 83.9 77.1 73.1 38.1 70.0 69.7 78.8 73.1

FRCN? ResNet 71.8 78.7 82.2 71.8 55.1 41.7 79.5 80.8 88.5 53.4 81.8 72.1 87.6 85.2 80.0 72.0 35.5 71.6 75.8 78.3 64.3

Ours (full) ResNet 73.6 75.4 83.8 75.1 61.3 44.8 81.9 81.1 87.9 57.9 81.2 72.5 87.6 85.2 80.3 74.7 44.3 72.2 76.7 76.9 71.4

Table 2: VOC 2007 test detection average precision (%). Ablative analysis on the Adversarial Spatial Dropout Network.FRCN? refers to

FRCN [6] with our training schedule.

method arch mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN? AlexNet 57.0 67.3 72.1 54.0 38.3 24.4 65.7 70.7 66.9 32.4 60.2 63.2 62.5 72.4 67.6 59.2 24.1 53.0 60.6 64.0 61.5

Ours (random dropout) AlexNet 57.3 68.6 72.6 52.0 34.7 26.9 64.1 71.3 67.1 33.8 60.3 62.0 62.7 73.5 70.4 59.8 25.7 53.0 58.8 68.6 60.9

Ours (hard dropout) AlexNet 57.7 66.3 72.1 52.8 32.8 24.3 66.8 71.7 69.4 33.4 61.5 62.0 63.4 76.5 69.6 60.6 24.4 56.5 59.1 68.5 62.0

Ours (fixed ASDN) AlexNet 57.5 66.3 72.7 50.4 36.6 24.5 66.4 71.1 68.8 34.7 61.2 64.1 61.9 74.4 69.4 60.4 26.8 55.1 57.2 68.6 60.1

Ours (joint learning) AlexNet 58.5 67.1 72.0 53.4 36.4 25.3 68.5 71.8 70.0 34.7 63.1 64.5 64.3 75.5 70.0 61.5 26.8 55.3 58.2 70.5 60.5

similar strategy we apply in pre-training the ASDN (Fig. 3).

We exhaustively enumerate different kinds of occlusion and

select the best ones for training in each iteration. The per-

formance is 57.7% mAP (Ours (hard dropout)), which is

slightly better than random dropout.

As we find the exhaustive strategy can only explore very

limited space of occlusion policies, we use the pre-trained

ASDN network to replace it. However, when we fix the pa-

rameters of the ASDN, we find the performance is 57.5%
mAP (Ours (fixed ASDN)) , which is not as good as the

exhaustive strategy. The reason is the fixed ASDN has not

received any feedback from the updating Fast-RCNN while

the exhaustive search has. If we jointly learn the ASDN

and the Fast-RCNN together, we can get 58.5% mAP, 1.5%
improvement compared to the baseline without dropout.

This evidence shows that joint learning of ASDN and Fast-

RCNN is where it makes a difference.

ASTN Analysis. We compared our Adversarial Spatial

Transformer Network with random jittering on the object

proposals. The augmentations include random changes of

scale, aspect ratio and rotation on the proposals during train-

ing the Fast-RCNN. With AlexNet, the performance of us-

ing random jittering is 57.3% mAP while our ASTN results

is 58.1%. With VGG16, we have 68.6% for random jitter-

ing and 69.9% for the ASTN. For both architectures, the

model with ASTN works better than random jittering.

5.2.2 Category-based Analysis

Figure 5 shows the graph of how performance of each cat-

egory changes with the occlusions and deformations. In-

(a) Ours (ASTN) (b) Ours (ASDN) (c) Ours (Full)

Figure 5: Changes of APs compared to baseline FRCN.

terestingly the categories that seemed to be helped by both

ASTN and ASDN seem to be quire similar. It seems that

both plant and bottle performance improves with ad-

versarial training. However, combining the two transforma-

tions together seems to improve performance on some cate-

gories which were hurt by using occlusion or deformations

alone. Specifically, categories like car and aeroplane

are helped by combining the two adversarial processes.

2612

Table 3: VOC 2012 test detection average precision (%). FRCN? refers to FRCN [6] with our training schedule.

method arch mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [6] VGG 65.7 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7

FRCN? VGG 66.4 81.8 74.4 66.5 47.8 39.3 75.9 69.1 87.4 44.3 73.2 54.0 84.9 79.0 78.0 72.2 33.1 68.0 62.4 76.7 60.8

Ours (full) VGG 69.0 82.2 75.6 69.2 52.0 47.2 76.3 71.2 88.5 46.8 74.0 58.1 85.6 80.3 80.5 74.7 41.5 70.4 62.2 77.4 67.0

bicycle (oth): ov=0.00 1−r=0.30 bird (sim): ov=0.00 1−r=0.54

boat (bg): ov=0.00 1−r=0.65 sheep (sim): ov=0.00 1−r=0.46

Figure 6: Some of the false positives for our approach.

These are top false positives for adversarial training but not

the original Fast-RCNN.

5.2.3 Qualitative Results

Figure 6 shows some of the false positives of our approach

with the diagnosing code [10]. These examples are hand-

picked such that they only appeared in the list of false

positives for adversarial learning but not the original Fast-

RCNN. These results indicate some of the shortcomings of

adversarial learning. In some cases, the adversary creates

deformations or occlusions which are similar to other object

categories and leading to over-generalization. For example,

our approach hides the wheels of the bicycle which leads to

a wheel chair being classified as a bike.

5.3. Results on PASCAL VOC 2012 and MS COCO

We show our results with VGG16 on the PASCAL VOC

2012 dataset in Table 3, where our baseline performance

is 66.4% .Our full approach with joint learning of ASDN

and ASTN gives 2.6% boost to 69.0% mAP. This again

shows that the performance improvement using VGG on

VOC2012 is significant. We also observe that our method

improves performance of all the categories except sofa in

VOC 2012. We believe this is probably because of larger

diversity in VOC 2012.

We finally report the results in MS COCO dataset. The

baseline method with VGG16 architecture is 42.7% AP50

on the VOC metric and 25.7% AP on the standard COCO

metric. By applying our method, we achieve 46.2% AP50

and 27.1% AP on the VOC and COCO metric respectively.

5.4. Comparisons with OHEM

Our method is also related to the Online Hard Exam-

ple Mining (OHEM) approach [33]. Our method allows us

to sample data-points which might not exist in the dataset,

whereas OHEM is bound by the dataset. However, OHEM

has more realistic features since they are extracted from real

images. For comparisons, our approach (71.4%) is better

than OHEM (69.9%) in VOC2007. However, our result

(69.0%) is not as good as OHEM (69.8%) in VOC2012.

Since these two approaches are generating or selecting dif-

ferent types of features in training, we believe they should

be complementary. To demonstrate this, we use an ensem-

ble of these two approaches and compare it with separate

ensembles of OHEM and Ours alone on VOC 2012. As a

result, the ensemble of two methods achieves 71.7% mAP,

while the ensemble of two OHEM models (71.2%) or two

of our models (70.2%) are not as good, indicating the com-

plementary nature of two approaches.

6. Conclusion

One of the long-term goals of object detection is to learn

object models that are invariant to occlusions and deforma-

tions. Current approaches focus on learning these invari-

ances by using large-scale datasets. In this paper, we ar-

gue that like categories, occlusions and deformations also

follow a long-tail distribution: some of them are so rare

that they might be hard to sample even in a large-scale

dataset. We propose to learn these invariances using adver-

sarial learning strategy. The key idea is to learn an adversary

in conjunction with original object detector. This adversary

creates examples on the fly with different occlusions and de-

formations, such that these occlusions/deformations make

it difficult for original object detector to classify. Instead of

generating examples in pixel space, our adversarial network

modifies the features to mimic occlusion and deformations.

We show in our experiments that such an adversarial learn-

ing strategy provides significant boost in detection perfor-

mance on VOC and COCO dataset.

Acknowledgement:This work is supported by the Intelligence Advanced

Research Projects Activity (IARPA) via Department of Interior/ Interior

Business Center (DoI/IBC) contract number D16PC00007. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright annotation thereon. Dis-

claimer: The views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA, DoI/IBC,

or the U.S. Government. AG was also supported by Sloan Fellowship.

2613

References

[1] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-

outside net: Detecting objects in context with skip

pooling and recurrent neural networks. arXiv preprint

arXiv:1512.04143, 2015. 2
[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 2, 4
[3] E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep gen-

erative image models using a laplacian pyramid of adversar-

ial networks. In NIPS, 2015. 1, 2
[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. IJCV, 2010. 2, 6
[5] S. Gidaris and N. Komodakis. Object detection via a multi-

region and semantic segmentation-aware cnn model. In

ICCV, 2015. 2
[6] R. Girshick. Fast r-cnn. In ICCV, 2015. 2, 3, 6, 7, 8
[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2
[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 1, 2
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 6
[10] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error

in object detectors. In ECCV, 2012. 8
[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. In CoRR, 2016. 2
[12] L. Huang, Y. Yang, Y. Deng, and Y. Yu. Densebox: Unifying

landmark localization with end to end object detection. In

CoRR, 2015. 2
[13] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. CVPR,

2017. 2
[14] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015. 5
[15] K. H. J. S. Jifeng Dai, Yi Li. R-FCN: Object detection via

region-based fully convolutional networks. NIPS, 2016. 2
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2, 6
[17] T. Lin, P. Dollr, R. Girshick, K. He, B. Hariharan, and S. Be-

longie. Feature pyramid networks for object detection. In

CoRR, 2017. 2
[18] T. Lin, M. Maire, S. Belongie, L. D. Bourdev, R. B. Girshick,

J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-

nick. Microsoft COCO: common objects in context. CoRR,

abs/1405.0312, 2014. 1, 2, 6
[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. Ssd: Single shot multibox detector. In

ECCV, 2016. 2
[20] I. Loshchilov and F. Hutter. Online batch selection

for faster training of neural networks. arXiv preprint

arXiv:1511.06343, 2015. 2
[21] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-

scale video prediction beyond mean square error. CoRR,

abs/1511.05440, 2015. 2
[22] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. CoRR, abs/1411.1784, 2014. 2
[23] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and

A. Efros. Context encoders: Feature learning by inpainting.

In CVPR, 2016. 2
[24] P. O. Pinheiro, R. Collobert, and P. Dollr. Learning to seg-

ment object candidates. In NIPS, 2015. 2, 6
[25] L. Pinto, J. Davidson, and A. Gupta. Supervision via compe-

tition: Robot adversaries for learning tasks. In ICRA, 2017.

2
[26] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. CoRR, abs/1511.06434, 2015. 1, 2
[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, 2015. 2
[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 2, 4
[29] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans.

CoRR, 2016. 2
[30] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. CoRR,

abs/1312.6229, 2013. 2
[31] S. Sharma, R. Kiros, and R. Salakhutdinov. Action recogni-

tion using visual attention. In CoRR, 2016. 5
[32] A. Shrivastava and A. Gupta. Contextual priming and feed-

back for faster r-cnn. In ECCV, 2016. 2
[33] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

CVPR, 2016. 2, 6, 8
[34] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Be-

yond skip connections: Top-down modulation for object de-

tection. In CoRR, 2017. 2
[35] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and

F. Moreno-Noguer. Fracking deep convolutional image de-

scriptors. arXiv preprint arXiv:1412.6537, 2014. 2
[36] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 6
[37] J. T. Springenberg. Unsupervised and semi-supervised learn-

ing with categorical generative adversarial networks. In

CoRR, 2015. 2
[38] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-

v4, inception-resnet and the impact of residual connections

on learning. In CoRR, 2016. 2
[39] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro. Mini-

batch primal and dual methods for svms. arXiv preprint

arXiv:1303.2314, 2013. 2
[40] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.

Selective search for object recognition. International Jour-

nal of Computer Vision, 2013. 3, 6
[41] X. Wang and A. Gupta. Unsupervised learning of visual rep-

resentations using videos. In ICCV, 2015. 2
[42] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. In Machine

learning, 1992. 5

2614

[43] S. Xie, R. Girshick, P. Dollr, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. arXiv

preprint arXiv:1611.05431, 2016. 2
[44] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross,

S. Chintala, and P. Dollár. A multipath network for object

detection. In BMVC, 2016. 6
[45] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang. Gated

bi-directional cnn for object detection. ECCV, 2016. 2

2615

