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Abstract

In recent years, there has been a renewed interest in

jointly modeling perception and action. At the core of this

investigation is the idea of modeling affordances1. How-

ever, when it comes to predicting affordances, even the state

of the art approaches still do not use any ConvNets. Why is

that? Unlike semantic or 3D tasks, there still does not exist

any large-scale dataset for affordances. In this paper, we

tackle the challenge of creating one of the biggest dataset

for learning affordances. We use seven sitcoms to extract a

diverse set of scenes and how actors interact with different

objects in the scenes. Our dataset consists of more than 10K

scenes and 28K ways humans can interact with these 10K

images. We also propose a two-step approach to predict

affordances in a new scene. In the first step, given a loca-

tion in the scene we classify which of the 30 pose classes

is the likely affordance pose. Given the pose class and the

scene, we then use a Variational Autoencoder (VAE) [23]

to extract the scale and deformation of the pose. The VAE

allows us to sample the distribution of possible poses at test

time. Finally, we show the importance of large-scale data in

learning a generalizable and robust model of affordances.

1. Introduction

One of the long-term goals of computer vision, as it in-

tegrates with robotics, is to translate perception into action.

While vision tasks such as semantic or 3D understanding

have seen remarkable improvements in performance, the

task of translating perception into actions has not seen any

major gains. For example, the state of the art approaches in

predicting affordances still do not use any ConvNets with

the exception of [12]. Why is that? What is common

across the tasks affected by ConvNets is the availability of

large scale supervisions. For example, in semantic tasks, the

supervision comes from crowd-sourcing tools like Amazon

Mechanical Turk; and in 3D tasks, supervision comes from

structured light cameras such as the Kinect. But no such

∗Indicates equal contribution.
1Affordances are opportunities of interaction in the scene. In other

words, it represents what actions can the object be used for.
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Figure 1. We propose to binge-watch sitcoms to extract one of the

largest affordance datasets ever. We use more than 100M frames

from seven different sitcoms to find empty scenes and same scene

with humans. This allows us to create a large-scale dataset with

scenes and their affordances.

datasets exist for supervising actions afforded by a scene.

Can we create a large-scale dataset that can alter the course

in this field as well?

There are several possible ways to create a large-scale

dataset for affordances: (a) First option is to label the data:

given empty images of room, we can ask mechanical turk-

ers to label what actions can be done at different loca-

tions. However, labeling images with affordances is ex-
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tremely difficult and an unscalable solution. (b) The second

option is to automatically generate data by doing actions

themselves. One can either use robots and reinforcement

learning to explore the world and the affordances. How-

ever, collecting large-scale diverse data is not yet scalable

in this manner. (c) A third option is to use simulation: one

such example is [12] where they use the block geometric

model of the world to know where human skeletons would

fit. However, this model only captures physically likely ac-

tions and does not capture the statistical probabilities behind

every action. For example, it allows predictions such as hu-

mans can sit on top of stoves; and for the open space near

doors it predicts walking as the top prediction (even though

it should be reaching the door).

In this paper, we propose another alternative: watch the

humans doing the actions and use those to learn affordances

of objects. But how do we find large-scale data to do that?

We propose to binge-watch sitcoms to extract one of the

largest affordance datasets ever. Specifically, we use every

episode and every frame of seven sitcoms 2 which amounts

to processing more than 100 Million frames to extract parts

of scenes with and without humans. We then perform auto-

matic registration techniques followed by manual cleaning

to transfer poses from scenes with humans to scenes with-

out humans. This leads to a dataset of 28882 poses in empty

scenes.

We then use this data to learn a mapping from scenes to

affordances. Specifically, we propose a two-step approach.

In the first step, given a location in the scene we classify

which of the 30 pose classes (learned from training data)

is the likely affordance pose. Given the pose class and the

scene, we then use the Variational Autoencoder (VAE) to

extract the scale and deformation of the pose. Instead of

giving a single answer or averaging the deformations, VAE

allows us to sample the distribution of possible poses at

test time. We show that training an affordance model on

large-scale dataset leads to a more generalizable and robust

model.

2. Related Work

The idea of affordances [14] was proposed by James J.

Gibson in late seventies, where he described affordances

as “opportunities for interactions” provided by the envi-

ronment. Inspired by Gibson’s ideas, our field has time

and again fiddled with the idea of functional recogni-

tion [38, 36]. In most cases, the common approach is to

first estimate physical attributes and then reason about af-

fordances. Specifically, manually-defined rules are used to

reason about shape and geometry to predict affordances [38,

40]. However, over years, the idea of functional recognition

2How I Met Your Mother, Friends, Two and a Half Men, Frasier, Sein-

field, The Big Bang Theory, Everybody Loves Raymond

took backstage because these approaches lacked the ability

to learn from data and handle the noisy input images.

On the other hand, we have made substantial progress

in the field of semantic image understanding. This is pri-

marily due to the result of availability of large scale train-

ing datasets [8, 31] and high capacity models like Con-

vNets [29, 28]. However, the success of ConvNets has not

resulted in significant gains for the field of functional recog-

nition. Our hypothesis is that this is due to the lack of large

scale training datasets for affordances. While it is easy to

label objects and scenes, labeling affordances is still manu-

ally intensive.

There are two alternatives to overcome this problem.

First is to estimate affordances by using reasoning on top

of semantic [6, 21, 4] and 3D [10, 2, 41, 15] scene under-

standing. There has been a lot of recent work which fol-

low this alternative: [18, 25] model relationship between

semantic object classes and actions; Yao et al. [42] model

relationships between object and poses. These relationships

can be learned from videos [18], static images [42] or even

time-lapse videos [7]. Recently, [45] proposed a way to

reason about object affordances by combining object cat-

egories and attributes in a knowledge base manner. Apart

from using semantics, 3D properties have also been used to

estimate affordances [19, 17, 11, 43, 5]. Finally, there have

been efforts to use specialized sensors such as Kinect to es-

timate geometry followed by estimating affordances as well

[22, 26, 27, 46].

While the first alternative tries to estimate affordances in

low-data regime, a second alternative is to collect data for

affordances without asking humans to label each and every

pixel. One possible way is to have robots themselves ex-

plore the world and collect data for how different objects

can used. For example, [34] uses self-supervised learning

to learn grasping affordances of objects or [1, 33] focus on

learning pushing affordances. However, using robots for

affordance supervision is still not a scalable solution since

collecting this data requires a lot of effort. Another pos-

sibility is to use simulations [32]. For example, Fouhey et

al. [12] propose a 3D-Human pose simulator which can col-

lect large scale data using 3D pose fitting. But this data only

captures physical notion of affordances and does not cap-

ture the statistical probabilities behind every action. In this

work, we propose to collect one of the biggest affordance

datasets using sitcoms and minimal human inputs. Our ap-

proach sifts through more than 100M frames to find high-

quality scenes and corresponding human poses to learn af-

fordance properties of objects.

3. Sitcom Affordance Dataset

Our first goal towards data-driven affordances is to col-

lect a large scale dataset for affordances. What we need is

an image dataset of scenes such as living rooms, bedrooms
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Figure 2. Some example images from Sitcom Affordance dataset. Note that our images are quite diverse and we have large samples of

possible actions per image.

etc and what actions can be performed in different parts of

the scene. In this paper, inspired by some recent work [20],

we represent the output space of affordances in terms of hu-

man poses. But where can we find images of the same scene

with or without people in it?

The answer to the above question lies in exploiting the

TV Sitcoms. In sitcoms, characters share a common envi-

ronment, such as a home or workplace. A scene with exact

configuration of objects appears again and again as multi-

ple episodes are shot in it. For example, the living room in

Friends appears in all the 10 seasons and 240 episodes and

each actor labels the action space in the scene one by one as

they perform different activities.

We use seven such sitcoms and process more than 100M

frames of video to create the largest affordance dataset. We

follow a three-step approach to create the dataset: (1) As a

first step, we mine the 100M frames to find empty scenes

or sub-scenes. We use an empty scene classifier in con-

junction with face and person detector to find these scenes;

(2) In the second step, we use the empty scenes to find the

same scenes but with people performing actions. We use

two strategies to search for frames with people performing

actions and transfer the estimated poses [3] to empty scenes

by simple alignment procedure; (3) In the final step, we per-

form manual filtering and cleaning to create the dataset. We

now describe each of these steps in detail.

Extracting Empty Scenes

We use a combination of three different models to extract

empty scenes from 100M frames: face detection, human

detection and scene classification scores. In our experi-

ment, we find face detection [30] is the most reliable cri-

teria. Thus, we first filter out scenes based on the size

of the largest face detected in the scenes. We also ap-

plied Fast-RCNN to detect humans [16] in the scene. We

reject the scenes where humans are detected. Finally,

we have also trained a CNN classifier for empty scenes.

The positive training data for this classifier are scenes in

SUN-RGBD [37] and MIT67 [35]; the negative data are

random video frames from the TV series and Images-of-

Groups [13]. The classifier is finetuned on PlaceNet [44].

After training this classifier, we apply it back on the TV

series training data and select 1000 samples with the high-

est prediction scores. We manually label these 1000 images

and use them to fine-tuned the classifier again. This “hard

negative” mining procedure turns out to be very effective

and improve the generalization power of the CNN across

all TV series.

People Watching: Finding Scenes with People

We use two search strategies to find scenes with people. Our

first strategy is to use image retrieval where we use empty

scenes as query images and all the frames in the TV-series

as retrieval dataset. We use cosine distance on the pool5

features extracted by ImageNet pre-trained AlexNet. In our

experiments, we find the pool5 features are robust to small

changes of the image, such as the decorations and number

of people in the room, while still be able to capture the spa-

tial information. This allows us to directly transfer human

skeletons from matching images to the query image. We

show some examples of data generated using this approach

in the top two rows of Fig. 3.

Besides global matching of frames across different

episodes of TV shows, we also transfer human poses within

local shots (short clips at most 10 seconds) of videos.

Specifically, given one empty frame we look into the video
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(a) Global Matching

(b) Local Matching

Matching Image Transferred Pose Matching Image Transferred Pose Matching Image Transferred Pose

Figure 3. We propose to use two approaches to transfer poses. In global matching approach, we match an empty scene to all the images in

the sitcom. Sometimes the matches occur in different seasons. Given these matches, we transfer poses to the image. In the local matching

approach, we use the next 5-10 sec of video to transfer poses via optical-flow registration scheme.

frames ranging from 5 seconds before this frame to 5 sec-

onds after it. We perform pose estimation on every frame.

We then compute the camera motions of each frame with re-

spect to the empty frame by accumulating the optical flows.

Given these motion information, we can map the detected

poses to the empty frame, as shown in the bottom two rows

in Fig. 3.

Manual Annotations

Source #Datapoints

HIMYM 3506

TBBT 3997

Friends 3872

TAAHM 3212

ELR 5210

Frasier 6018

Seinfeld 3067

Total 28882

Our goal is to use the

automated procedure above

to generate valid hypothesis

of possible poses in empty

scenes. However, the align-

ment procedure is not per-

fect by any means. Thus,

we also need human annota-

tors to manually adjust pose

joints by scaling and trans-

lating. In this way, the pose

in the empty scene can be

aligned with the human in

the image where the pose is transferred from. In cases

where the poses are not fitting with the scene, due to oc-

clusions or incorrect matching, we remove such poses. The

final dataset we obtain contains 28882 human poses inside

11449 indoor scenes. The detailed statistics of how many

poses for each TV series are summarized in Table 3.

4. VAEs for Estimating Affordances

Given an indoor scene and the location, we want to pre-

dict what is the most likely human pose. One naive ap-

proach is training a ConvNet with the image and the loca-

tion as input, predict the heat maps for each joint of the pose

as state-of-the-art pose estimation approaches [3]. How-

ever, our problem is very different from standard pose es-

timation, since we do not have the actual human which can

provide the pose structure and regularize the output.

We explore an alternative way: we decompose the pro-

cess of predicting poses into two stages: (i) categorical pre-

diction: we first cluster all the human poses in the dataset

into 30 clusters, and predict which pose cluster is most

likely given the location in the scene; (ii) given the pose

cluster center, we predict its scale as well as the deforma-

tions for pose joints such that it fits into the real scene.

4.1. Pose Classification

As a first step, given an input image and a location, we

first do a categorical prediction of human poses. But what

are the right categories? We use a data-driven vocabulary in

our case. Specifically, we use randomly sampled 10K poses

from the training videos. We then compute the distances

between each pair of poses using procrustes analysis over

the 2D joint coordinates, and cluster them into 30 clusters

using k-mediod clustering. We visualize the centers of the

clusters as Fig. 5.

In the first stage of prediction, we train a ConvNet which

uses the location and the scene as input and predict the

likely pose class. Note that multiple pose classes could be

reasonable in a particular location (e.g. one can stand be-

fore the chair or sit on the chair), thus we are not trying to

regress the exact pose class. Instead we predict a probability

distribution over all classes and select the most likely one.

The selected pose center can be further adjusted to fit in the

scene in the second stage.

Technical Details: The input to the ConvNet is the image

and the location where to predict likely pose. To represent

this point in the image, we crop a square patch using it as

the center and the side length is the height of the image

frame. We also crop another patch in a similar way except

that the length is half the height of the image. As illustrates

in Fig. 4 (a), the red dots on the input images represent the

location. The two cropped patches can offer different scales
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Figure 4. Our Affordance Prediction Model. The encoder and decoder in VAE share the weights which are highlighted as green. All fully

connected layers have 512 neurons unless it is specified in the figure.

Figure 5. Cluster centers of human poses in sitcom dataset. These

clusters are used as pose categories predicted by classification net-

work.

of information and we also take the whole image as input.

The 3 input images are all re-scaled to 227× 227.

Given the 3 input images, they are forwarded to 3 Con-

vNets which share the weights between them. We apply the

AlexNet architecture [28] for the ConvNet here and con-

catenate the 3 fc7 outputs. The concatenated feature is

further fully connected to 30 outputs, which represents 30

pose classes. During training, we apply SoftMax classifi-

cation loss and the AlexNet is pre-trained with ImageNet

dataset [9].

4.2. Scale and Deformation Estimation

Given the pose class and scene, we need to predict the

scale and the deformations of each joint to fit the pose into

the scene. However, the scale and deformations of the pose

are not deterministic and there could be ambiguities. For

example, given an empty floor and a standing pose class,

it could be a child standing there (which corresponds to

a smaller scale) or an adult standing there (which corre-

sponds to a larger scale). Thus instead of directly training

a ConvNet to regress the scale and deformations, we apply

the conditional Variational Auto-Encoder (VAE) [23, 39] to

generate the scale and deformations conditioned on the in-

put scene and pose class.

Formulations for the conditional VAE. We applied the

conditional VAE to model the scale and deformations of the

estimated pose class. For each sample, we define the de-

formations and scale as y, the conditioned input images and

pose class as x, and the latent variables sampled from a dis-

tribution Q as z. Then the standard variational equality can

be represented as,

logP (y|x)−KL[Q(z|x, y)||P (z|x, y)]

= Ez∼Q[logP (y|z, x)]−KL[Q(z|x, y)||P (z|x)], (1)

where KL represents the KL-divergence between the distri-

bution Q(z|x, y) and the distribution P (z|x). Note that in

VAE, we assume P (z|x) is a normal distribution N (0, 1).
The distribution Q is another normal distribution which

can be represented as Q(z|x, y) = Q(z|µ(x, y), σ(x, y)),
where µ(x, y) and σ(x, y) are estimated via the encoder in

VAE. The log-likelihood logP (y|z, x) is modeled by the

decoder in VAE. The details are explained as below.

Encoder. As Fig. 4(b) illustrates, the inputs of model

include 3 images which are obtained in the same way as

the classification network, a 30-d binary vector indicating

the pose class (only one dimension is activated as 1), and

a 36-d vector representing the ground truth scale and defor-

mations. The images are fed into the AlexNet model and we

extract the fc7 feature for each of them. The pose binary

vector and the vector of scale and deformations are both for-

warded though two fully connected layers. Each fully con-

nected layer has 512 neurons. The outputs for each compo-

nents are then concatenated together and fully connected to

the outputs. The dimension of the outputs is 30 × 2 which

are two vectors of mean µ(x, y) and variance σ(x, y) of the

distribution Q.

We calculate the ground truth scale for the height of

pose sh as the actual pose height divided by the normalized

height (ranging from 0 to 1) of cluster center. The ground

truth scale for the width sw is calculated in a similar way.

Given the ground truth (sh, sw), we can re-scale the cluster
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center and aligned it to the input location. The deformation

for each joint is the spatial distance (dx, dy) between the

scaled center and ground truth pose. Since we have 17 pose

joints (dX, dY ) = (dx1, dy1, ..., dx17, dy17), there are 34

outputs representing the deformations. Together with the

scale sh, sw, the outputs of the generator are 36 real num-

bers.

Decoder. As Fig. 4(c) shows, the decoder has a similar

architecture as the encoder. Instead of taking a vector of

scale and deformations as input, we replace it with the la-

tent variables z. The output of the network is changed to

a 36-d vector of scale and deformations whose groundtruth

is identical to the 36-d input vector of the encoder. Note

that we share the feature representations for the conditional

variables (images and classes) between the encoder and de-

coder.

Training. As indicated by Eq. 1, we have two losses

during training the VAE model. To maximize the log-

likelihood, we apply a Euclidean distance loss to minimize

distance between the estimated scale and deformations y∗

and the ground truths as,

L1 = ||y∗ − y||2. (2)

And the other loss is to minimize the KL-divergence be-

tween the estimated distribution Q and the normal distribu-

tion N (0, 1) as,

L2 = KL[Q(z|µ(x, y), σ(x, y))||N (0, 1)]. (3)

Note that the first loss L1 is applied on top of the de-

coder model, and its gradient is backpropagated though all

the layers. To do this, we follow the reparameterization

trick introduced in [24]: we represent the latent variables

as z = µ(x, y) + σ(x, y) · α, where α is a variable sampled

from N (0, 1). In this way, the latent variables z is differen-

tiable with respect to µ and σ.

4.3. Inference

Given the trained models, we want to tackle two tasks:

(i) generating poses on an empty location of a scene and (ii)

estimate if a pose fits the scene or not.

For the first task, given an image and a point represent-

ing the location in the image, we first perform pose classi-

fication and obtain the normalized center pose of the corre-

sponding class. The classification scores, together with the

latent variables z sampled from N (0, 1) and images are for-

warded to the VAE decoder model (Fig. 4 (c)). We scale the

normalized center with the inferred scale (s∗h, s
∗

w) and align

the pose with the input point. Then we adjust each joint of

the pose by adding the deformations (dX∗, dY ∗).
For the second task, we want to estimate whether a given

pose fits the scene or not. To do this, we first perform the

same estimation of the pose given an empty scene as the

first task, then we compute the euclidean distance D be-

tween the estimated pose and the given pose. To ensure the

robustness of the estimation, we repeat this procedure by

sampling different z for m = 10 times, and calculate the

average distance 1

m

Pm

1
Di as the final result. If the final

distance is less than a threshold δ, then the given pose is

taken as a reasonable pose.

5. Experiments and Results

We are going to evaluate our approach on two tasks: (i)

affordance prediction: given an input image and a location,

generate the likely human pose at that location; (ii) classify

whether a given pose in a scene is possible or not.

We train our models using data collected from the TV

series of “How I Met Your Mother”, “The Big Bang The-

ory”, “Two and A Half Man”, “Everyone Loves Raymond”,

“Frasier” and “Seinfeld”. The models are tested on the

frames collected from “Friends”. For training data, we have

manually filtered and labeled 25010 accurate poses over

10009 different scenes. For testing data, we have collected

3872 accurate poses over 1490 different scenes and we have

also artificially generated 9572 poses in the same scenes

which are either physically impossible or very unlikely to

happen in the real world.

During training, we initialize the AlexNet image feature

extractor with ImageNet pre-training and the other layers

are initialized randomly. We apply the Adam optimizer dur-

ing training with learning rate 0.0002 and momentum term

β1 = 0.5, β2 = 0.999. To show that large scale of data

matters, we perform the experiments on different size of the

dataset.

We also evaluate the performance of our approach as the

training dataset size increases. Specifically, we randomly

sample 2.5K and 10K of data for training, and compare

these models with our full model which uses 25K data for

training.

Baseline We compare our VAE approach to a heatmap re-

gression based baseline. Essentially, we represent the hu-

man skeletons as a 17-channel heatmap, one for each joint.

We train a three-tower AlexNet (upto conv5) architecture,

where each tower looks at a different scale of the image

around the given point. The towers have shared parameters

and are initialized with ImageNet. The outputs are concate-

nated across the towers and passed through a convolution

and deconvolution layer to produce a 17 channel heatmap,

which is trained with euclidean loss.

5.1. Generating poses in the scenes

As we mentioned in the approach, we generate the hu-

man pose via estimating the pose class and the scale as well

as deformations.

62601



(a) Predicted Poses

(b) Comparing to Ground Truth

Ours

GT

Ours

GT

Figure 6. Qualitative results of generating poses: We show qualitative results on scenes from Friends dataset. (a) As we can see the human

poses generated seem very reasonable. (b) We also compare the poses generated using our approach with the ground truth poses.

Qualitative results. We show our prediction results as

Fig. 6(a). We have shown that our model can generate very

reasonable poses including sitting on a coach, closing the

door and reaching to the table, etc. We also compare our

results with the ground truth as Fig. 6(b). We show that we

can generate reasonable results even though it can be very

different from the ground truth poses. For example, in the

3rd column of the 2nd row, we predict a pose sitting on a

bed while the ground truth is standing in front of the bed.

We have also visualized the results given different noise

z as inputs to the VAE Decoder during testing. For the

same scene and location, we can generate different poses

as Fig. 7.

Quantitative results. To show that the generated poses are

in reasonable, we first evaluate the performance of our pose

classification network. Note that there could be multiple

reasonable poses in a given location, thus we show our 30-

class classification accuracies given top 1 to top 5 guesses.

We test our model on the 3872 samples from “Friends”, the

results is shown in Table 1. We compare models trained on

three different sizes of our dataset (2.5K, 10K and 25K). We

show that the more data we have, the higher accuracies we

can get. For the heatmap baseline, we use the inner product

of the predicted heatmap to assign the output to the cluster

centers. We obtain the top-5 assignments and standard eval-

uation as above for classification performance. As the num-

bers show, our approach clearly outperforms this heatmap

based baseline.

Human evaluation. We also perform human evaluation on

our approach. Given the ground truth pose and predicted
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Figure 7. Affordance results for VAE with different noise inputs. Each column includes two predictions results for the same inputs. Given

the human pose class, we show how VAE can be used to sample multiple scale and deformations.

Figure 8. Negative samples added in the test dataset. 71% of the test data is such images and 29% is positive examples.

Method Top-1 Top-2 Top-3 Top-4 Top-5

HeatMap (Baseline) 8.4 % 19.9% 30.1% 39.1% 47.3%

Training with 2.5K 11.7% 21.9% 29.7% 36.1% 41.8%

Training with 10K 13.3% 23.7% 32.3% 39.7% 46.8%

Training with 25K 14.9% 26.0% 36.0% 43.6% 50.9%

Table 1. Classification results on the test set.

Figure 9. PR curve for our second experiment: given an image

and pose, we produce a score on how probable it is. We use these

scores to compute the recall-precision graph.

pose in the same location of the same image, we ask human

which one is more realistic. We find that 46% of the time

the turkers think our prediction is more realistic. Note that

a random guess is 50%, which means our prediction results

are almost as real as the ground truth and the turkers can not

tell which is generated by our model.

5.2. Classifying given poses in the scenes

Given a pose in a location of the scene, we want to esti-

mate how likely the pose is using our model. We perform

our experiments on 3872 positive samples from “Friends”

and 9572 negative samples in the same scenes. We show

some of the negative samples as Fig. 8. Note that although

we use negative data in testing, but there is no negative data

involved in training. We show the Precision-Recall curve as

Fig. 9. Among all of our approaches, we find that training

with 25K data points give best results, which is consistent

with the first task. For the heatmap baseline, we again score

each sample as the inner product of predicted heatmap with

a heatmap representation of the labeled pose. We observe

that the baseline does better than our approach in high-recall

regimes, which can be explained by the fact that training

with euclidean loss generates an averaged-out output, which

is less likely to miss a pose.

6. Conclusion

In this paper, we present one of the biggest affordance

dataset. We use 100 Million frames from seven sitcoms to

extract diverse set of scenes and how actors interact with

different objects in those scenes. Our dataset consist of

more than 10K scenes and 28K ways humans can interact

with these 10K images. We also propose a two step ap-

proach to predict affordance pose given an input image and

the location. In the first step, we classify which of the 30

pose classes is the likely affordance pose. Given the pose

class and the scene,we then use Variational Autoencoder

(VAE) to extract the scale and deformation of the pose. VAE

allows us to sample the distribution of possible poses at test

time. Our results indicate that the poses generated by using

our approach are quite realistic.
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