
 

 

 

 

 

Abstract 

 

Effectively describing and recognizing leaf shapes under 

arbitrary deformations, particularly from a large database, 

remains an unsolved problem. In this research, we 

attempted a new strategy of describing shape by walking 

along a bunch of chords that pass through the shape to 

measure the regions trespassed. A novel chord bunch walks 

(CBW) descriptor is developed through the chord walking 

that effectively integrates the shape image function over the 

walked chord to reflect the contour features and the inner 

properties of the shape. For each contour point, the chord 

bunch groups multiple pairs of chord walks to build a 

hierarchical framework for a coarse-to-fine description. 

The proposed CBW descriptor is invariant to rotation, 

scaling, translation, and mirror transforms. Instead of 

using the expensive optimal correspondence based 

matching, an improved Hausdorff distance encoded 

correspondence information is proposed for efficient yet 

effective shape matching. In experimental studies, the 

proposed method obtained substantially higher accuracies 

with low computational cost over the benchmarks, which 

indicates the research potential along this direction. 

 

1. Introduction 

The human vision system is efficient and has the strength 

of recognizing objects only by their shapes. For machine 

vision, shape is originally represented as a binary mask or 

the contour is further extracted from the binary pattern after 

the object is segmented from the image. The task of shape 

analysis is to capture the geometrical information that is 

independent of the transformational (scaling, rotation, 

mirror, articulation, etc.) effects for the ultimate goal of 

object recognition. However, from the available binary 

mask or contour representation of the shape to the 

successful recognition of the object, there exist many 

challenges such as rigid and non-rigid deformation of the 

object, noises, partial occlusion, intra-class variations, and 

efficient demands of various real time applications.  

Developing a method to address all the above issues may 

be unrealistic. For example, part-based algorithm is much 

effective for handling articulation deformation [31]. It is 

however highly sensitive to segmentation errors especially 

for noisy data. Those methods that can deal with partial 

occlusion may not be suitable for real time application due 

to their expensive computing cost. Therefore, developing a 

method which can balance the demands of many aspects 

instead of satisfying all the demands is achievable.   

Automatic plant leaf identification is a significant   

applications of computer vision and has received 

considerable studies [1][3][5][6][9][10][37][38] in recent 

years. However due to the small interclass difference (see 

Fig. 5 and Fig. 6), the large intra-class variations (see Fig. 

7) and particularly the natural self-overlap (see the middle 

leaf image shown in the first row of Fig. 1) of the leaf 

shapes, the issue of effectively and efficiently recognizing 

the leaf shapes is still not well-addressed.  For example, we 

try the state-of-the-art approaches, shape contexts [15], 

inner distance shape contexts [9], and height function [36] 

respectively to distinguish the leaf shapes shown in the first 

row of Fig. 1 and they all consider that the middle one is 

more similar to the right one than the left one. 

 
Fig. 1. Three leaf images (the left two leaves belong to the same 

species) and their corresponding outer contours. If only from their 

outer contours, the middle one which is self-overlapped may be 

identified as the species of the right one. 

 

This work aims to develop a shape description and 

matching method for effectively and efficiently recognizing 

leaf shape. A hierarchical framework, using chord bunch 
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walks (CBW) descriptors, is proposed. In this framework, 

the chord integrals over the shape region, termed the chord 

walks, are used to capture the inner structural information 

of the shape, and the angles formed by the chord pair walk 

are included for reflecting the boundary properties. The 

multiple chord pair walks emanated from a common 

contour point are grouped to provide a coarse-to-fine 

description for the shape. The proposed CBW descriptors 

are invariant to rotation, scaling, translation, and mirror 

transforms and possess the potential to handle the self-

overlapped leaf shapes. The experimental study 

demonstrates its better performance over the state-of-the-

art approaches.  

2. Related Work 

Many shape descriptors have been proposed and can be 

categorized into global approaches and local approaches. 

The form one extracts the contour features, usually 

represented as a 1-D function, or the shape region features, 

usually represented as a 2-D function and summary them to 

yield a feature vector, or a sequence of features as a whole 

shape description. A shape distance can then be measured 

in a norm metric, e.g.  ܮଶ distance. The classical descriptor 

for this group is the Zernike moments (ZM) [2] generated 

by projecting the shape image function on a set of 

orthogonal basis functions defined in the interior of a unit 

circle. Yap et al. [12] proposed a novel set of 2D transforms, 

termed polar harmonic transforms (PHTs), for rotation 

invariant features extraction. Like the Zernike moments, 

PHTs are based on a set of orthogonal projection bases. 

However its computing complexity is significantly lower 

than that of the Zernike moments. Recently, the well-known 

Radon transform and its generalization, Trace transform, 

have been extensively used for shape description and 

matching [7][11][18][29][30][33]. These methods finely 

capture the inner structural information via line integrals 

over the shape region. More recently, Hong and Soatto [34] 

develop an invariant and robust shape descriptor using a 

series of isotropic kernels.  

The above mentioned methods derive the shape 

descriptors from the whole shape region. There are also 

another group of global methods extract the features only 

from the contour. The popular ones are various spectral 

methods, like Fourier descriptor [8][21] and wavelet 

descriptor [22]. Recently, Hu et al. [3] propose a novel 

descriptor, termed, multiscale distance matrix (MDM) [3], 

which uses the distances between the contour points at 

multiple scales to build a matrix for reflecting the spatial 

relationship of the contour points, where the distance 

between the contour points can be Euclidean or other metric 

such as inner distance [9]. To provide a more effective 

while efficient method for shape retrieval, the more recent 

work, hierarchical string cuts [10], is proposed to extract a 

group of geometrical features, termed string cuts, for 

characterizing the spatial configuration of the curve 

segments relative to their strings.  

For local approaches, a descriptor is extracted for each 

visual primitive such as point, contour fragments and 

polygon’s edge of the shape. The local descriptors 

associated with the primitives of the compared shapes are 

used for building correspondence between them and the 

resulted matching cost is taken for the shape distance 

measure. Shape contexts [15] builds a histogram for each 

contour point to encode the information of the relative 

spatial distribution (distance and orientation) of all the 

contour points to it. The inner-distance shape contexts [9] 

replaces the Euclidean distance with the inner-distance, 

defined as the length of the shortest path between landmark 

points within the shape silhouette, for effectively capturing 

the partial structure of the shape. Distance sets [16] 

proposes a rich local descriptor for an image point using the 

spatial configuration of feature points surrounding that 

point, where the spatial arrangement is characterized by the 

set of the distance between the that point with the feature 

points of its neighbourhood. Height function [36] uses the 

height values (perspective distance) from all the contour 

sample points to the tangent line across a given contour 

point to yield local descriptor for capturing the geometric 

relationships of the contour points to the given point.    

The above methods focus on extracting the spatial 

arrangement information of the contour points of the shape. 

There are also many methods that pay attentions on 

characterizing the curvature property or bend potential at 

the shape contours. Alajlan et al. [17] propose to use the 

area of the triangles formed by the contour points to 

measure the convexity/concavity of each point at different 

scales. Integral invariants [13] introduces a class of 

functionals of integral operators conducted on the shape for 

making the resulted descriptors robust to high-frequency 

noise and small deformations. It has been effectively 

applied to leaf identification [19]. Contour flexibility [23] 

makes effort to represent the deformable potential at each 

contour point and argues that both local and global features 

can be finely extracted by this descriptor. Many other 

similar methods can be found in [24][25][27][28]. 

3. The Proposed Method 

We first define chord walk pair for encoding the local 

discriminative information of the shape and then introduce 

the chord bunch walks to present a coarse to fine description 

for the shape. The invariances derived from the chord bunch 

walks are presented and discussed. They are finally used for 

shape distance measure. 

3.1. Chord Pair Walk 

Given a binary shape image ݂ሺݔ,  ሻ,  the shape regionsݕ

(denoted as ܦ) are formed by a subset of pixels in the image 

plane ℝଶ. Let Ω	be the outer contour of the shape enclosing 

all pixels in ܦ, which can be represented as an arc-length 

6120



 

 

 

 

parameterization form [23]: ݖሺݐሻ = ൫̅ݔሺݐሻ, ,ሻ൯ݐതሺݕ ݐ ∈ [Ͳ,ͳሻ , 

where ሺ̅ݔ, തሻݕ ∈ Ω . Since Ω  is a closed contour, we have ݖሺݐ + ͳሻ = ݐሺݖ ሻ andݐሺݖ − ͳሻ =  .ሻݐሺݖ

For a contour point ݌ =  ሻ, we walk along a pair ofݐሺݖ

chords of ݌݌ᇱሬሬሬሬሬሬറ and ݌݌ᇱᇱሬሬሬሬሬሬሬറ whose end points are ݌ᇱ = ݐሺݖ +  ሻݏ

and ݌ᇱᇱ = ݐሺݖ − ݏ ሻ respectively, whereݏ ∈ ሺͲ, ଵଶ]. The paths 

of walks sometimes fall inside the shape region ܦ , and 

sometimes fall outside the shape region ܦ. We record the 

lengths of walking inside ܦ ( መ݈௧௦ and መ݈௧ି ௦) and the lengths of 

walking outside D ( ሙ݈௧௦ and ሙ݈௧ି ௦ ), which can be 

mathematically expressed as 

۔ۖەۖ
ۓ መ݈௧௦ = න ݂ሺ̅ݔሺݐሻ + ߬ cos ,௧௦ߠ ሻݐതሺݕ + ߬ sin ௧௦ሻ݀߬௟ೞߠ

଴መ݈௧ି ௦ = න ݂ሺ̅ݔሺݐሻ + ߬ cos ௧ିߠ ௦, ሻݐതሺݕ + ߬ sin ௧ିߠ ௦ሻ݀߬௟షೞ
଴

				ሺͳሻ 

and 

۔ۖەۖ
ۓ ሙ݈௧௦ = න ൫ͳ − ݂ሺ̅ݔሺݐሻ + ߬ cos ,௧௦ߠ ሻݐതሺݕ + ߬ sin ௧௦ሻ൯݀߬௟ೞߠ

଴ሙ݈௧ି ௦ = න ൫ͳ − ݂ሺ̅ݔሺݐሻ + ߬ cos ௧ିߠ ௦, ሻݐതሺݕ + ߬ sin ௧ିߠ ௦ሻ൯݀߬௟షೞ
଴

, 
	ሺʹሻ 

where ݈௦  and ݈ି௦ ௧௦ߠ ,  and ߠ௧ି ௦  are the lengths and 

orientations of the chord pair ݌݌ᇱሬሬሬሬሬሬറ and ݌݌ᇱᇱሬሬሬሬሬሬሬറ, respectively.  

The above defined መ݈௧௦  and መ݈௧ି ௦  are the integrals of the 

shape image function over the chord pairs ݌݌ᇱሬሬሬሬሬሬറ  and ݌݌ᇱᇱሬሬሬሬሬሬሬറ  
while ሙ݈௧௦  and ሙ݈௧ି ௦  are the integrals of the complement 

function of the shape image over the chord ݌݌ᇱሬሬሬሬሬሬറ and ݌݌ᇱᇱሬሬሬሬሬሬሬറ. 

Then we use them to generate a quintuplet as  

௧ܹ௦ = ൫	 መ݈௧ି ௦, ሙ݈௧ି ௦, sinሺߠ௧ି ௦ − ௧௦ሻߠ , መ݈௧௦, ሙ݈௧௦൯.																													ሺ͵ሻ 

We call it chord pair walk. A graphical illustration of the 

chord pair walk is given in Fig. 2.  

 

 

Fig. 2. An example illustration of the concept of chord walk pair. 

Left: a pair of chords emanated from a contour point are put on the 

shape image plane for walking through. Right: the obtained chord 

walk pair (the portions in bold represent the paths of the chord 

walking inside the shape region while the remains are the paths of 

chord walking outside the shape region). 

 

 

The chord pair walk ௧ܹ௦ is a local descriptor to capture 

the geometrical features of the neighborhood of the contour 

point ݌ =  ሻ. Its first two elements  and last two elementsݐሺݖ

reflect the property of the left neighborhood and the right 

neighborhood of the contour point ݌, respectively, and its 

middle element sinሺߠ௧ି ௦ − ௧௦ሻߠ measures the curvature 

property at the contour point in which the value of sinሺߠ௧ି ௦ − < ௧௦ሻ beingߠ Ͳ, < Ͳ and = Ͳ indicates the convex, 

concave and flat properties respectively. The chord pair 

walk ௧ܹ௦ captures the rich geometrical information around 

the contour point ݌ including not only the contour features, 

but also the structure information of the inner region. This 

desirable characteristic make the proposed chord pair walk 

descriptor obviously outperform those approaches such as 

integral invariants [13], triangle features [6][7], arch height 

[25], and contour flexibility [23] which only capture the 

curvature feature or the bendable property of the contour. 

3.2. Chord Bunch Walks 

In the previous section, for a given contour point ݌  ሻ, we start from it to walk towards its right neighborݐሺݖ=

contour point ݌ᇱ = ݐሺݖ + ሻݏ  and its left neighbor contour 

point ݌ᇱᇱ = ݐሺݖ −  ሻ, respectively and obtain a chord pairݏ

walk descriptor ௧ܹ௦ for capturing the geometrical features 

of its neighborhood. A single chord pair walk may be not 

discriminative enough, while a group of chord pair walks 

can largely improve the discriminative ability of the 

descriptor. Varying the parameter ݏ  and let it take the 

values ʹିଵ, ⋯ , ʹି௄ , we can obtain ܭ  chord pair walks 

emanating from the common point ݌ and group them to 

form a chord bunch walks (CBW) defined as  ෩ܹ௧ሺ௄ሻ = ራ{ ௧ܹ௦, ݏ = ʹି௞}.																																														ሺͶሻ௄
௞ୀଵ  

An example illustration of the concept of CBW is shown in 

Fig. (3). 

Now, for each contour point ݌ =  ሻ, we have built aݐሺݖ

CBW descriptor to encode the multiscale shape geometrical 

information associated with it. In fact, the CBW descriptor 

is obtained by grouping the chord pair walks of different 

size ݏ. Further, observing the Fig. 3, we can find that the 

whole geometrical structure of the chord bunch varies with 

its located contour point which indicates that the spatial 

relationships between the chord walk pairs in the chord 

bunch are also useful for shape discrimination. To include 

this valuable information to the CBW descriptor, we further 

extract the spatial relationship features from the chord 

bunch as follows. 

For two adjacent chord pair walks , { ௧ܹ௦, ݏ = ʹି௞}  and { ௧ܹ௦, ݏ = ʹିሺ௞ାଵሻ}, in the chord bunch, a pair of  angles ߴ௧,௞ሺோሻ
 

and ߴ௧,௞ሺ௅ሻ
 between them can be obtained by  ߴ௧,௞ሺோሻ = ௧ଶషೖߠ − ௧ଶషሺೖశభሻߠ , ௧,௞ሺ௅ሻߴ = ௧ିߠ ଶషሺೖశభሻ − ௧ିߠ ଶషೖ . ሺͷሻ
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Fig. 3. An example illustration of the concept of chord bunch walks. The upper figure: the chord bunches of size 4=ܭ emanated from 

different contour points are put on the image plane for walking through (the chord pair walks are marked by the same color). The figure 

below: the obtained chord bunch walk descriptors. 

 

Since there are total ܭ chord pair walks in CBW, ܭ − ͳ 

angle pairs are available. In Fig. 4, we give an example to 

illustrate these angle pairs and use them to generate a vector 

as ߜ௧௄ = ራቄsin൫ ௧,௞ሺோሻߴ − ௧,௞ሺ௅ሻ൯ቅ௄ିଵߴ
௞ୀଵ ,																																										ሺ͸ሻ 

which is used to reflect the whole spatial arrangement of the 

chord bunch. Then the CBW descriptor defined in Eq. (4) 

can be further extended by  ෩ܹ௧ሺ௄ሻ = ൭ራ{ ௧ܹ௦, ݏ = ʹି௞}௄
௞ୀଵ ൱ ራ ൭ራ൛sin൫ ௧,௞ሺோሻߴ − ௧,௞ሺ௅ሻ൯ൟ௄ିଵߴ

௞ୀଵ ൱. ሺ͹ሻ 
 

 
Fig. 4. An example illustration of the angle pairs  ߴ௧,௞ሺோሻ

 and ߴ௧,௞ሺ௅ሻ
  

derived from the chord bunch shown on the top left of Fig. 3. 
 

At this time, we have built a descriptor ෩ܹ௧ሺ௄ሻ
 of  ͷܭ −͵ + ܭ − ͳ = ͸ܭ − Ͷ	  dimentions for each contour point ݌ =    .ሻݐሺݖ

3.3. Invariance and Normalization 

A good descriptor is expected to be translation, scale, 

rotation, and mirror invariant. In the following, we discuss 

the invariant properties of the proposed CBW descriptor. 

Since a translation of the shape function ݂ሺݔ,  ሻ results inݕ

the same translation for all the points of the shape region, 

including the contour points. Thus the proposed CBW 

descriptor has the intrinsic invariance to translation.  

When the shape		݂ሺݔ,  the length ,ߠ ሻ is rotated by angleݕ

features 	 መ݈௧ି ௦ , ሙ݈௧ି ௦, መ݈௧௦  and 	 ሙ݈௧௦   of the chord pair walk ௧ܹ௦ are 

invariant and only its direction angles ߠ௧௦  and ߠ௧ି ௦  are 

changed by ߠ௧௦ + ௧௦ߠ and ߠ − ௧ିߠ respectively. So, the angle ߠ ௦ −  ௧௦ is invariant and ௧ܹ௦ is accordingly invariant. Theߠ

angle pair ߴ௧,௞ሺோሻ
 and  ߴ௧,௞ሺ௅ሻ

 defined in Eq. (5) are likewise 

invariant to the rotation. So, the CBW descriptor is 

inherently invariant to rotation. For the scaling, all the angle 

related features in Eq. (3) and Eq. (5) are invariant, and only 

the length features መ݈௧௦, ሙ݈௧௦, መ݈௧ି ௦, ሙ݈௧ି ௦ are changed. We derive the 

normalized version ݈ ሶመ௧௦ of መ݈௧௦ to scaling as  ݈ ሶመ௧௦ = 	መ݈௧௦ − min଴ஸ୲ழଵ{	 መ݈௧௦}max଴ஸ୲ழଵ{	 መ݈௧௦} − min଴ஸ୲ழଵ{ መ݈௧௦}.																																														ሺͺሻ	
The other three features ሙ݈௧௦, መ݈௧ି ௦, ሙ݈௧ି ௦ can be normalized to be 

scale invariant in the same way.   
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For the mirror transform, without losing generality, we 

assume that the shape is reflected about the ݕ-axis, i.e., its 

image function and contour parameter equation are changed 

into ݂ሺሶ ,ݔ ሻݕ = ݂ሺ−ݔ, ሻݕ  and ሻݐሶሺݖ = ൫−̅ݔሺͳ − ,ሻݐ തሺͳݕ − ݐ,ሻ൯ݐ ∈ [Ͳ,ͳሻ , respectively.  The chord pair walk ௧ܹ௦ =൫	 መ݈௧ି ௦ , ሙ݈௧ି ௦ , sinሺߠ௧ି ௦ − ௧௦ሻߠ , መ݈௧௦, ሙ݈௧௦൯ will be changed by  ሶܹ ௧௦ = ൫	 መ݈ଵି௧௦ , ሙ݈ଵି௧௦ , sinሺߨ − ଵି௧௦ߠ − ߨ + ଵି௧ି௦ߠ ሻ , መ݈ଵି௧ି௦ , ሙ݈ଵି௧ି௦ ൯ 

=൫	 መ݈ଵି௧௦ , ሙ݈ଵି௧௦ , sinሺߠଵି௧ି௦ − ଵି௧௦ߠ ሻ , መ݈ଵି௧ି௦ , ሙ݈ଵି௧ି௦ ൯.																	ሺͻሻ 

Namely, the parametrized contour is flipped and in each 

chord pair walk, the first two elements are swapped with the 

last two elements, and the middle element is invariant.  

Next, we check what happens to the angle pair  ߴ௧,௞ሺோሻ
 and ߴ௧,௞ሺ௅ሻ

 defined in Eq. (5). From their definitions, we can 

conclude that their mirror transformed versions are  ߴሶ௧,௞ሺோሻ = ߨ − ଵି௧ିଶషೖߠ − ߨ + ଵି௧ିଶషሺೖశభሻߠ = ଵି௧ିଶషሺೖశభሻߠ − =ଵି௧ିଶషೖߠ ଵି௧,௞ሺ௅ሻߴ
 

and  ߴሶ௧,௞ሺ௅ሻ = ߨ − ଵି௧ଶషሺೖశభሻߠ − ߨ + ଵି௧ଶషೖߠ = ଵି௧ଶషೖߠ − ଵି௧ଶషሺೖశభሻߠ
= ଵି௧,௞ሺோሻߴ . 

So, from Eq. (6), we have 

ሶ௧௄ߜ = ራ൛sin൫ ሶ௧,௞ሺோሻߴ − ሶ௧,௞ሺ௅ሻ൯ൟ௄ିଵߴ
௞ୀଵ = ራ൛sin൫ ଵି௧,௞ሺ௅ሻߴ − ଵି௧,௞ሺோሻߴ ൯ൟ௄ିଵ

௞ୀଵ  

																																					= ଵି௧௄ߜ− .																																																		ሺͳͲሻ 

Namely, the mirror transform only changes the sign of ߜ௧௄.    

Then we can conduct following normalizations: ௧ܹ௦ = ൫max൫መ݈௧ି ௦, መ݈௧௦൯ , max൫ሙ݈௧ି ௦, ሙ݈௧ି ௦൯, sinሺߠ௧ି ௦− ௧௦ሻߠ , min൫ መ݈௧ି ௦, መ݈௧௦൯ , min൫ ሙ݈௧ି ௦, ሙ݈௧ି ௦൯൯ 

  ሺͳͳሻ 

and  ߜ௧௄ = ራ൛หsin൫ ௧,௞ሺோሻߴ − ௧,௞ሺ௅ሻ൯หൟ௄ିଵߴ
௞ୀଵ .																																											ሺͳʹሻ 

For removing the effect of flipping the contour, we treat the 

contour as a set of points and ignore the order relationship 

of the contour points. Through the above processes, the 

CBW has become completely invariant to scaling, rotation, 

translation and mirror transforms. 

3.4. Implementation and Time Complexity 

Given a binary digital image ܫே×ே	of an object, like those 

approaches in [3][9][13][17][20][36], we adopt the sample 

scheme of uniform spacing and sampling its outer contour 

into a sequence of T points: ݌௧ሺݔ௧ , ,௧ሻݕ ݐ = ͳ, ⋯ , ܶ, where ܶ = ʹ௄ାଵ  and K 	 is a given integer, ݐ  is the index of the 

sample point according to the order along the contour	 in  

counter-clockwise direction,  ሺݔ௧,  ௧ሻ are the coordinates ofݕ

the sample point	݌௧  and we have ݌௧ା் = ௧݌ . 

For each contour point ݌௧，we group ܭ  chord pairs 

,௧ା௦തതതതതതതത݌௧݌} ௧ି௦തതതതതതതത}௦ୀଶభ,⋯,ଶ಼݌௧݌  and for each chord ݌௧݌௧ା௦തതതതതതതത,  we 

uniformly sample it into ܸ − ͳ  points {݌௜ᇱሺݔ௜ᇱ, ,௜ᇱሻݕ ݅ =ͳ, ⋯ , ܸ − ͳ}, where ܸ = maxሺ|ݔ௧ − ,|௧ା௦ݔ ௧ݕ| −  ,௧ା௦|ሻݕ
namely, the chord  ݌௧݌௧ା௦തതതതതതതത is segmented into V parts of equal 

length. Let ݌௧ሺݔ௧ , ௧ሻݕ  be ݌଴ᇱ ሺݔ଴ᇱ , ଴ᇱݕ ሻ  and ݌௧ା௦ሺݔ௧ା௦, ௧ା௦ሻݕ  be ݌௏ᇱ ሺݔ௏ᇱ , ௏ᇱݕ ሻ. Since a line segment ݌௜ᇱ݌௜ିଵᇱ  is fallen in the shape 

region, if and only if ݂ሺݔ௜ᇱ, ௜ିଵᇱݔ௜ᇱሻ݂ሺݕ , ௜ିଵᇱݕ ሻ = ͳ,	the variable መ݈௧௦ defined in Eq. (1) can be calculated by መ݈௧௦ = ቆ∑ ݂ሺݔ௜ᇱ, ௜ିଵᇱݔ௜ᇱሻ݂ሺݕ , ௜ିଵᇱݕ ሻ௏௜ୀଵ ܸ ቇ ݈,																																ሺͳ͵ሻ 

where ݈  is the length of the chord  ݌௧݌௧ା௦തതതതതതതത  and can be  

calculated by the Euclidean distance between the point ݌௧ 

and the point ݌௧ା௦. Another variable ሙ݈௧௦ defined in Eq. (2) can 

be simply calculated by ݈ − መ݈௧௦ . Since ͳ ≤ ܸ ≤ ܰ , 

calculating Eq. (13) requires time ܱሺܰሻ. While calculating 

other variable ሙ݈௧௦  and ߠ௧௦  only requires time ܱሺͳሻ . So, 

calculating a chord pair walk defined in Eq. (3) requires  

time ܱሺܰሻ . The time complexity of calculating the chord 

bunch walks defined in Eq. (4) is ܱሺܰܭሻ. Since calculating 

Eq. (5) only requires time ܱሺͳሻ and time ܱሺܭሻ is enough 

for calculating Eq. (6), calculating the extended version of 

CBW descriptor defined in Eq. (7) requires time ܱሺܰܭ ሻܭ+ = ܱሺܰܭሻ. So, the time cost of calculating the CBW for 

all the T contour points is ܱሺܶܰܭሻ . Additional cost for 

normalizing the CBW of each contour point using Eqs. (8), 

(11) and (12) is ܱሺܶܭሻ. So, the cost of calculating the final 

version of CBW for all the contour points is still ܱሺܶܰܭሻ. 

Since ܭ = logଶ ܶ − ͳ, it can be rewritten as ܱሺܶܰ logଶ ܶሻ. 

3.5. Shape Dissimilarity Measure 

We have built a CBW descriptor ෩ܹ௧ሺ௄ሻ
 for each contour 

point ݌௧ , ݐ = ͳ,ʹ, ⋯ , ܶ = ͳ+ܭʹ
. It is natural to conduct point 

matching, namely matching the contour point of one shape 

to the one of another shape by comparing their 

corresponding CBW descriptors for shape dissimilarity 

measure. The cost of comparing the CBW descriptors of 

two points is measured using the ܮଵ distance between them. 

Many methods try to find an optimal correspondence 

between the contour points of the compared shapes for the 

shape distance measure. A limitation of this scheme is its 

expensive computational cost (usually more than ܱሺܶଷሻ , 

where  ܶ is the number of the contour points). In additional, 

optimal correspondence based shape dissimilarity measure 

does not always work well for those shapes (e.g. compound 

leaf shapes) whose local details are hard to be matched in 

pairs. Here, we propose an improved Hausdorff distance for 

an economical shape dissimilarity measure.  

Given two point sets ܲ = ,ଵ݌} ,ଶ݌ ⋯ , {ெ݌  and ܳ ,ଵݍ}= ,ଶݍ ⋯ ,   .and ܰ are their sizes respectively ܯ ே}, whereݍ

the Hausdorff distance between them is defined as  ܪሺܲ, ܳሻ = max൫ℎሺܲ, ܳሻ, ℎሺܳ, ܲሻ൯,																																ሺͳͶሻ			
where 
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ℎሺܲ, ܳሻ = max௣೔∈௉ ൬min௤ೕ∈ொ൫݀ሺ݌௜ , 			ሺͳͷሻ																																			௝ሻ൯൰ݍ
and ݀ሺ݌௜ , ௝ሻݍ  is a norm metric, for example ܮଵ  distance. 

This is the definition of the original version of Hausdorff 

distance. Dubuisson and Jain [14] proposed a modified 

version by changing  the definition of ℎሺܲ, ܳሻ  as ℎሺܲ, ܳሻ = ଵெ ∑ min	௤ೕ∈ொ ݀ሺ݌௜ , ௝ሻ௣೔∈௉ݍ .																																				ሺͳ͸ሻ  

Unlike those one-to-one correspondence based distance 

measures, Hausdorff distance is a local correspondence 

matching scheme, so there exists the case of multiple points  

in one set to be matched to the same point in another set. To 

enhance the performance the Hausdorff distance, we 

proposed an improved version in which the global 

correspondence are somewhat considered.  

For each point ݍ௞ ∈ ܳ , those points ݌௜ ∈ ܲ, ݅ = ͳ, ⋯ ,  ܯ

who are mapped to it are collected to form a set  ߪሺݍ௞ሻ = :௜݌} ௜ሻ݌ሺߨ = ௞ݍ , ݅ = ͳ, ⋯ , 	,{ܯ
where ߨሺ݌௜ሻ is defined as ߨሺ݌௜ሻ = arg min௤ೕ∈ொ൫݀ሺ݌௜ , 	.௝ሻ൯ݍ

Let തܳ = ൛ݍ௝: หߪሺݍ௝ሻห > ͳ, ݆ = ͳ, ⋯ , ܰൟ be the set of the 

points from the set ܳ that are matched by multiple points 

from set ܲ  and  ߱൫ݍ௝൯ = ଵหఙሺ௤ೕሻห ∑ ݀ሺ݌௜ , ௝ሻ௣೔∈ఙሺ௤ೕሻݍ  be the 

average cost over all the mappings to the point	ݍ௝ 	from the 

set ܲ,	where	หߪሺݍ௝ሻห is the cardinality of the set ߪሺݍ௞ሻ.	Then 

an extra cost of considering the case of multiple mappings 

to a same point is	defined as  ߳ሺܲ, ܳሻ = ෍ ቀ൫หߪሺݍ௝ሻห − ͳ൯ ∙ ߱൫ݍ௝൯ቁ௤ೕ∈ொത .																						ሺͳ͹ሻ	
The above defined extra cost ߳ሺܲ, ܳሻ encodes some global 

correspondence information and is used to modify the Eq. 

(16) by ℎሺܲ, ܳሻ = ଵெ ൬߳ሺܲ, ܳሻ + ∑ min௤ೕ∈ொ ݀ሺ݌௜ , ௝ሻ௣೔∈௉ݍ ൰.												ሺͳͺሻ		
Then we use the Eq. (14) and Eq. (18) to measure the 

dissimilarity between two shapes. 

4. Experimental Results 

To evaluate the effectiveness of the proposed CBW 

approach, an experimental study has be conducted on two 

public available leaf datasets, MEW2012 and ICL leaf 

datasets and the its performances (both accuracy and 

computation speed) are compared against six state-of-the-

art methods. Among them, the Shape Context [15] and 

Inner Distance Shape Context [9] are classical shape 

analysis approaches, which are widely used benchmarks for 

performance comparison. The Height Function [36], MDM 

[3] and HSC [10] are recently proposed contour based 

shape analysis methods with state-of-the-art performances 

on the MPEG-7 CE-1 database and leaf databases. 

4.1. MEW2012 Leaf Dataset 

Middle European Woody plants (MEW2012) [37] is a 

public available leaf dataset which contains native or 

frequently cultivated trees and shrubs of the central Europe 

Region. There are a total of 9745 leaf images which belong 

to 153 species with at least 50 samples in each one. One 

typical sample for each category is shown in Fig. 5. It can 

be seen that so many species are in the dataset and very 

minor differences between them make the retrieval task 

very challenging. 

Mean average precision (MAP)1[4] is a standard measure 

for evaluating the performance of information retrieval 

systems, which is widely used in evaluating systems for 

image retrieval [5][6][32][35], speech index [40], and video  

retrieval [26][39]. Each leaf image in the dataset is taken as 

a query to retrieval the similar ones from all the samples in    

 

 

Fig. 5. 153 typical samples from the MEW2012 leaf dataset [37], one sample is shown for each species. 

                                                           
1 https://en.wikipedia.org/wiki/Information_retrieval. 
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Fig. 6. 220 typical samples from the ICL leaf dataset [3], one sample is shown for each species. 

the dataset. The MAP scores obtained by the proposed 

method and six state-of-the-art approaches are summarized 

in Table 1. We also record the computation time of 

matching one query with all the 9745 samples including the 

feature extraction time for the query shape, and the average 

retrieval time for all the comparative methods are reported 

in this table. 

 
Table 1. MAP score on the MEW2012 leaf dataset. 

Algorithm MAP Score 

(%) 

Average Retrieval 

Time (s) 

IDSC [9] 45.36 85.23 

SC+DP [15] 47.94 91.47 

MDM-CD-RM [3] 39.14 1.56 

MDM-ID-RA [3] 33.71 1.89 

Height Function  [36] 49.76 97.81 

HSC [10] 54.98 0.17 

Proposed CBW  62.05 6.59 

 

It can be seen that in this challenging dataset, the 

proposed method achieves the best MAP score of 62.05% 

which is 7.07% higher than the second best method HSC 

and is more than 16% over the other compared methods. 

These exciting results demonstrate that the proposed CBW 

has the powerful ability to distinguish plant species by leaf 

shape features. Comparing the retrieval speed of the 

proposed method with the other methods, we can find that 

the proposed method is more than 12 times faster than the 

methods IDSC [9], SC+DP [15], and Height Function [36]. 

Although the proposed method is slower than the three 

other methods, it better balances the effectiveness and 

efficiency for the retrieval task.  

4.2. ICL Leaf Dataset  

To further examine the potential application ability of the 

proposed CBW method to plant leaf identification. Another 

public leaf dataset called ICL dataset [3] which is built by 

Intelligent Computing Laboratory (ICL) at the Institute of 

Intelligent Machines, Chinese Academy of Sciences, is 

used. This dataset is very large. Currently, it contains 16851 

samples from 220 species with each individual species 

having from 26 to 1078 samples. To the best of our 

knowledge, it may be the largest dataset currently available 

for research. One typical samples for each species are 

shown in Fig. 6. Example leaf shapes are also given in Fig. 

7 for showing the rich intra-class varies. All the leaves of 

the ICL dataset are grown in China which is different from 

MEW2012 dataset whose leaves are from middle Europe. 

So, there are many different species between the MEW2012 

dataset and the ICL dataset. In particular, there exists 11 

species of compound leaves which contain multiple leaflets 

in the ICL leaf dataset (see the first row of Fig. 8, and the 

numbers of their samples are 63, 97, 49, 69, 90, 41, 48, 54, 

26, 62, and 55 respectively).  

 

 

Fig. 7. Example leaves from the ICL leaf dataset for showing intra-

class varies including natural deformation and self-intersections.  
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Fig. 8. The average MAP scores (%) of the proposed CBW method 

and the other three compared methods on retrieving compound 

leaves in the ICL leaf dataset.  

Many studies [3][25][38] have been done on the ICL 

dataset. However, they only chose part of leaf samples (no 

more than 6000) for testing and some of them include 

pretreatment by cutting off the footstalks from all the leaf 

samples (called clean leaf samples) in the dataset. To 

maintain the challenges of the original ICL dataset, all the 

samples in the ICL dataset are taken for testing and no 

pretreatment is done in our experiment. Since the 

computational costs of the point-based matching methods, 

IDSC+DP [9], SC+DP [25], and Height Function [36], are 

too high. The fastest method of them also requires more 

than 24 days to finish all the retrieval tasks (16851 times of 

retrieval). So we have to omit them in this experiment. The 

MAP scores of the remaining methods are summarized in 

Table 2.  

 
Table 2. MAP score on the ICL leaf dataset. 

Algorithm MAP Score 

(%) 

Average 

Retrieval Time 

(s) 

IDSC+DP [9] ~ ~ 

SC+DP [15] ~ ~ 

MDM-CD-RM [3] 37.45 3.10 

MDM-ID-RA [3] 34.18 3.92 

Height Function  [36] ~ ~ 

HSC [10] 51.65 0.26 

Proposed CBW  55.02 9.63 

 

As can be observed, the proposed CBW method 

consistently keeps the leading position among all the 

competing methods. In this challenge dataset, the proposed 

CBW method achieves 55.02% of MAP score which is 

3.37%, 17.57%, and 20.84% higher than HSC [10], MDM-

CD-RM [3], and MDM-CD-RA [3] methods. We are also 

concerned with the retrieval results of the compound leaves. 

So, we particularly show the average MAP scores of all the 

compound leaf species in Fig. 8, where the reported MAP 

score for each species is the average of the MAP scores of 

all the samples included. As can be observed that almost for 

all the compound leaf species the proposed CBW method 

achieves the best MAP scores among all the competing 

methods and only for the sixth species (from left to right in 

Fig. 8), the proposed method is no more than 1.0% lower 

than the MDM-CD-RM [3] method. While comparing the 

average MAP scores over all the species of all the 

competing methods, the proposed method achieves 76.3% 

of MAP score which is 6.8%, 21.3%, and 33.0% higher than 

HSC [10], MDM-CD-RM [3], and MDM-ID-RA [3], 

respectively. These comparative results clearly indicate the 

outstanding performance of the proposed method.  

It is worth mentioning that the proposed CBW method 

report very low MAP scores (no more than 40%) on the 

fifth compound leaf species relative to the other compound 

species. We check the ICL dataset and find that among all 

the 90 samples of this species, the footstalks of the 46 

samples are kept, while the footstalks of the other 44 

samples are removed. This situation is really a great 

challenge because the serious occlusion occurred. Although 

only 37.3% MAP score is achieved for the proposed method, 

it is still more than 2.7% over the other methods. 

We also report the retrieval speed of the proposed 

method and the other three compared methods in Table 2.  

It can be seen that the method HSC [10] works much faster 

than the proposed method and the two versions of MDM 

method [3], and the proposed method has the same order of 

retrieval speed as the two versions of MDM method [3]. 

Considering the balance between the effectiveness and 

efficiency, the proposed method is however desirable for 

leaf image retrieval. 

5. Conclusion 

We have presented a novel approach, termed chord 

bunch walks, for shape description and matching. Each 

chord pair walk integrates the shape image function over 

the walked chord to capture the contour features and reflect 

the inner properties of the shape. The chord bunch walks 

are used to set up a hierarchical framework for providing a 

coarse-to-fine shape description. It has several desirable 

properties: (1) Invariance with respect to the group of 

transformation including translation, rotation, scaling, and 

reflection; (2) Effectively recognizing the self-overlapped 

leaf shapes; (3) Finely characterizing the local shape 

geometric properties at multiple scales which is useful to 

identify the leaf shapes under large intra-class variants and 

small interclass difference. The substantially higher 

accuracies with low computational cost over the state-of-

the-art methods on two challenging leaf shape image 

datasets indicate the research potential along this direction. 
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