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Abstract

The chest X-ray is one of the most commonly accessi-

ble radiological examinations for screening and diagnosis

of many lung diseases. A tremendous number of X-ray

imaging studies accompanied by radiological reports are

accumulated and stored in many modern hospitals’ Pic-

ture Archiving and Communication Systems (PACS). On

the other side, it is still an open question how this type

of hospital-size knowledge database containing invaluable

imaging informatics (i.e., loosely labeled) can be used to fa-

cilitate the data-hungry deep learning paradigms in build-

ing truly large-scale high precision computer-aided diagno-

sis (CAD) systems.

In this paper, we present a new chest X-ray database,

namely “ChestX-ray8”, which comprises 108,948 frontal-

view X-ray images of 32,717 unique patients with the text-

mined eight disease image labels (where each image can

have multi-labels), from the associated radiological reports

using natural language processing. Importantly, we demon-

strate that these commonly occurring thoracic diseases can

be detected and even spatially-located via a unified weakly-

supervised multi-label image classification and disease lo-

calization framework, which is validated using our proposed

dataset. Although the initial quantitative results are promis-

ing as reported, deep convolutional neural network based

“reading chest X-rays” (i.e., recognizing and locating the

common disease patterns trained with only image-level la-

bels) remains a strenuous task for fully-automated high pre-

cision CAD systems.

1 Introduction

The rapid and tremendous progress has been evidenced

in a range of computer vision problems via deep learning

and large-scale annotated image datasets [25, 37, 13, 27].

Drastically improved quantitative performances in object

recognition, detection and segmentation are demonstrated in

Figure 1. Eight common thoracic diseases observed in chest X-rays

that validate a challenging task of fully-automated diagnosis.

comparison to previous shallow methodologies built upon

hand-crafted image features. Deep neural network rep-

resentations further make the joint language and vision

learning tasks more feasible to solve, in image captioning

[47, 23, 32, 46, 22], visual question answering [2, 45, 49, 53]

and knowledge-guided transfer learning [4, 33], and so

on. However, the intriguing and strongly observable per-

formance gaps of the current state-of-the-art object detec-

tion and segmentation methods, evaluated between using

PASCAL VOC [13] and employing Microsoft (MS) COCO

[27], demonstrate that there is still significant room for per-

formance improvement when underlying challenges (rep-

resented by different datasets) become greater. For exam-

ple, MS COCO is composed of 80 object categories from

200k images, with 1.2M instances (350k are people) where

every instance is segmented and many instances are small

objects. Comparing to PASCAL VOC of only 20 classes

and 11,530 images containing 27,450 annotated objects with

bounding-boxes (BBox), the top competing object detection

approaches achieve in 0.413 in MS COCO versus 0.884 in

PASCAL VOC under mean Average Precision (mAP).

Deep learning yields similar rises in performance in the

medical image analysis domain for object (often human

anatomical or pathological structures in radiology imaging)
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detection and segmentation tasks. Recent notable work in-

cludes (but do not limit to) an overview review on the future

promise of deep learning [14] and a collection of important

medical applications on lymph node and interstitial lung dis-

ease detection and classification [36, 42]; cerebral microb-

leed detection [11]; pulmonary nodule detection in CT im-

ages [39]; automated pancreas segmentation [35]; cell im-

age segmentation and tracking [34], predicting spinal radi-

ological scores [20] and extensions of multi-modal imaging

segmentation [29, 16]. The main limitation is that all pro-

posed methods are evaluated on some small-to-middle scale

problems of (at most) several hundred patients. It remains

unclear how well the current deep learning techniques will

scale up to tens of thousands of patient studies.

In the era of deep learning in computer vision, re-

search efforts on building various annotated image datasets

[37, 13, 27, 2, 32, 53, 22, 24] with different characteristics

play indispensably important roles on the better definition

of the forthcoming problems, challenges and subsequently

possible technological progresses. Particularly, here we fo-

cus on the relationship and joint learning of image (chest X-

rays) and text (X-ray reports). The previous representative

image caption generation work [47, 23] utilize Flickr8K,

Flickr30K [51] and MS COCO [27] datasets that hold 8,000,

31,000 and 123,000 images respectively and every image is

annotated by five sentences via Amazon Mechanical Turk

(AMT). The text generally describes annotator’s attention

of objects and activity occurring on an image in a straight-

forward manner. Region-level ImageNet pre-trained con-

volutional neural networks (CNN) based detectors are used

to parse an input image and output a list of attributes or

“visually-grounded high-level concepts” (including objects,

actions, scenes and so on) in [23, 49]. Visual question an-

swering (VQA) requires more detailed parsing and complex

reasoning on the image contents to answer the paired natural

language questions. A new dataset containing 250k natural

images, 760k questions and 10M text answers [2] is pro-

vided to address this new challenge. Additionally, databases

such as “Flickr30k Entities” [32], “Visual7W” [53] and “Vi-

sual Genome” [24, 22] (as detailed as 94,000 images and

4,100,000 region-grounded captions) are introduced to con-

struct and learn the spatially-dense and increasingly diffi-

cult semantic links between textual descriptions and image

regions through the object-level grounding.

Though one could argue that the high-level analogy ex-

ists between image caption generation, visual question an-

swering and imaging based disease diagnosis [41, 40], there

are three factors making truly large-scale medical image

based diagnosis (e.g., involving tens of thousands of pa-

tients) tremendously more formidable. 1, Generic, open-

ended image-level anatomy and pathology labels cannot be

obtained through crowd-sourcing, such as AMT, which is

prohibitively implausible for non-medically trained annota-

tors. Therefore we exploit to mine the per-image (possi-

bly multiple) common thoracic pathology labels from the

image-attached chest X-ray radiological reports using Nat-

ural Language Processing (NLP) techniques. Radiologists

tend to write more abstract and complex logical reasoning

sentences than the plain describing texts in [51, 27]. 2, The

spatial dimensions of an chest X-ray are usually 2000×3000
pixels. Local pathological image regions can show hugely

varying sizes or extents but often very small comparing to

the full image scale. Fig. 1 shows eight illustrative examples

and the actual pathological findings are often significantly

smaller (thus harder to detect). Fully dense annotation of

region-level bounding boxes (for grounding the pathologi-

cal findings) would normally be needed in computer vision

datasets [32, 53, 24] but may be completely nonviable for

the time being. Consequently, we formulate and verify a

weakly-supervised multi-label image classification and dis-

ease localization framework to address this difficulty. 3,

So far, all image captioning and VQA techniques in com-

puter vision strongly depend on the ImageNet pre-trained

deep CNN models which already perform very well in a

large number of object classes and serves a good baseline

for further model fine-tuning. However, this situation does

not apply to the medical image diagnosis domain. Thus we

have to learn the deep image recognition and localization

models while constructing the weakly-labeled medical im-

age database.

To tackle these issues, we propose a new chest X-ray

database, namely “ChestX-ray8”, which comprises 108,948

frontal-view X-ray images of 32,717 (collected from the

year of 1992 to 2015) unique patients with the text-mined

eight common disease labels, mined from the text radi-

ological reports via NLP techniques. In particular, we

demonstrate that these commonly occurred thoracic dis-

eases can be detected and even spatially-located via a uni-

fied weakly-supervised multi-label image classification and

disease localization formulation. Our initial quantitative re-

sults are promising. However developing fully-automated

deep learning based “reading chest X-rays” systems is still

an arduous journey to be exploited. Details of accessing the

ChestX-ray8 dataset can be found in our website 1.

1.1 Related Work

There have been recent efforts on creating openly avail-

able annotated medical image databases [48, 50, 36, 35]

with the studied patient numbers ranging from a few hun-

dreds to two thousands. Particularly for chest X-rays, the

largest public dataset is OpenI [1] that contains 3,955 ra-

diology reports from the Indiana Network for Patient Care

and 7,470 associated chest x-rays from the hospitals picture

archiving and communication system (PACS). This database

is utilized in [41] as a problem of caption generation but

no quantitative disease detection results are reported. Our

1https://www.cc.nih.gov/drd/summers.html
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newly proposed chest X-ray database is at least one order

of magnitude larger than OpenI [1] (Refer to Table 1). To

achieve the better clinical relevance, we focus to exploit

the quantitative performance on weakly-supervised multi-

label image classification and disease localization of com-

mon thoracic diseases, in analogy to the intermediate step

of “detecting attributes” in [49] or “visual grounding” for

[32, 53, 22].

2 Construction of Hospital-scale Chest X-ray

Database
In this section, we describe the approach for build-

ing a hospital-scale chest X-ray image database, namely

“ChestX-ray8”, mined from our institute’s PACS system.

First, we short-list eight common thoracic pathology key-

words that are frequently observed and diagnosed, i.e., At-

electasis, Cardiomegaly, Effusion, Infiltration, Mass, Nod-

ule, Pneumonia and Pneumathorax (Fig. 1), based on radi-

ologists’ feedback. Given those 8 text keywords, we search

the PACS system to pull out all the related radiological re-

ports (together with images) as our target corpus. A vari-

ety of Natural Language Processing (NLP) techniques are

adopted for detecting the pathology keywords and removal

of negation and uncertainty. Each radiological report will

be either linked with one or more keywords or marked

with ’Normal’ as the background category. As a result, the

ChestX-ray8 database is composed of 108,948 frontal-view

X-ray images (from 32,717 patients) and each image is la-

beled with one or multiple pathology keywords or “Normal”

otherwise. Fig. 2 illustrates the correlation of the resulted

keywords. It reveals some connections between different

pathologies, which agree with radiologists’ domain knowl-

edge, e.g., Infiltration is often associated with Atelectasis

and Effusion. To some extend, this is similar with under-

standing the interactions and relationships among objects or

concepts in natural images [24].

2.1 Labeling Disease Names by Text Mining

Overall, our approach produces labels using the reports

in two passes. In the first iteration, we detected all the dis-

ease concept in the corpus. The main body of each chest

X-ray report is generally structured as “Comparison”, “In-

dication”, “Findings”, and “Impression” sections. Here, we

focus on detecting disease concepts in the Findings and Im-

pression sections. If a report contains neither of these two

sections, the full-length report will then be considered. In

the second pass, we code the reports as “Normal” if they

do not contain any diseases (not limited to 8 predefined

pathologies).

Pathology Detection: We mine the radiology reports

for disease concepts using two tools, DNorm [26] and

MetaMap [3]. DNorm is a machine learning method for

disease recognition and normalization. It maps every men-

tion of keywords in a report to a unique concept ID in the

Systematized Nomenclature of Medicine Clinical Terms

Figure 2. The circular diagram shows the proportions of images

with multi-labels in each of 8 pathology classes and the labels’

co-occurrence statistics.

(or SNOMED-CT), which is a standardized vocabulary of

clinical terminology for the electronic exchange of clinical

health information.

MetaMap is another prominent tool to detect bio-

concepts from the biomedical text corpus. Different from

DNorm, it is an ontology-based approach for the detec-

tion of Unified Medical Language System R© (UMLS R©)

Metathesaurus. In this work, we only consider the seman-

tic types of Diseases or Syndromes and Findings (namely

‘dsyn’ and ‘fndg’ respectively). To maximize the recall

of our automatic disease detection, we merge the results

of DNorm and MetaMap. Table 1 (in the supplemen-

tary material) shows the corresponding SNOMED-CT con-

cepts that are relevant to the eight target diseases (these

mappings are developed by searching the disease names in

the UMLS R©terminology service 2, and verified by a board-

certified radiologist.

Negation and Uncertainty: The disease detection algo-

rithm locates every keyword mentioned in the radiology re-

port no matter if it is truly present or negated. To eliminate

the noisy labeling, we need to rule out those negated patho-

logical statements and, more importantly, uncertain men-

tions of findings and diseases, e.g., “suggesting obstructive

lung disease”.

Although many text processing systems (such as [6]) can

handle the negation/uncertainty detection problem, most of

them exploit regular expressions on the text directly. One

of the disadvantages to use regular expressions for nega-

tion/uncertainty detection is that they cannot capture vari-

2https://uts.nlm.nih.gov/metathesaurus.html
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... clear of focal airspace disease , pneumothorax , or pleural effusion

prep of (CCProcessed)

prep of (CCProcessed)

prep of

conj or

conj or

Figure 3. The dependency graph of text: “clear of focal airspace

disease, pneumothorax, or pleural effusion”.

ous syntactic constructions for multiple subjects. For exam-

ple, in the phrase of “clear of A and B”, the regular expres-

sion can capture “A” as a negation but not “B”, particularly

when both “A” and “B” are long and complex noun phrases

(“clear of focal airspace disease, pneumothorax, or pleural

effusion” in Fig. 3).

To overcome this complication, we hand-craft a number

of novel rules of negation/uncertainty defined on the syn-

tactic level in this work. More specifically, we utilize the

syntactic dependency information because it is close to the

semantic relationship between words and thus has become

prevalent in biomedical text processing. We defined our

rules on the dependency graph, by utilizing the dependency

label and direction information between words.

As the first step of preprocessing, we split and tokenize

the reports into sentences using NLTK [5]. Next we parse

each sentence by the Bllip parser [7] using David Mc-

Closkys biomedical model [28]. The syntactic dependen-

cies are then obtained from “CCProcessed” dependencies

output by applying Stanford dependencies converter [8] on

the parse tree. The “CCProcessed” representation propa-

gates conjunct dependencies thus simplifies coordinations.

As a result, we can use fewer rules to match more com-

plex constructions. For an example as shown in Fig. 3, we

could use “clear → prep of → DISEASE” to detect three

negations from the text 〈neg, focal airspace disease〉, 〈neg,

pneumothorax〉, and 〈neg, pleural effusion〉.

Furthermore, we label a radiology report as “normal” if

it meets one of the following criteria:

• If there is no disease detected in the report. Note that

here we not only consider 8 diseases of interest in this

paper, but all diseases detected in the reports.

• If the report contains text-mined concepts of “normal”

or “normal size” (CUIs C0205307 and C0332506 in

the SNOMED-CT concepts respectively).

2.2 Quality Control on Disease Labeling

To validate our method, we perform the following exper-

iments. Given the fact that no gold-standard labels exist for

our dataset, we resort to some existing annotated corpora as

an alternative. Using the OpenI API [1], we retrieve a total

of 3,851 unique radiology reports where each OpenI report

is assigned with its key findings/disease names by human

annotators [9]. Given our focus on the eight diseases, a sub-

set of OpenI reports and their human annotations are used as

Item # OpenI Ov. ChestX-ray8 Ov.

Report 2,435 - 108,948 -

Annotations 2,435 - - -

Atelectasis 315 122 5,789 3,286

Cardiomegaly 345 100 1,010 475

Effusion 153 94 6,331 4,017

Infiltration 60 45 10,317 4,698

Mass 15 4 6,046 3,432

Nodule 106 18 1,971 1,041

Pneumonia 40 15 1,062 703

Pneumothorax 22 11 2,793 1,403

Normal 1,379 0 84,312 0

Table 1. Total number (#) and # of Overlap (Ov.) of the corpus in

both OpenI and ChestX-ray8 datasets.

Disease
MetaMap Our Method

P / R / F P / R / F

Atelectasis 0.95 / 0.95 / 0.95 0.99 / 0.85 / 0.91

Cardiomegaly 0.99 / 0.83 / 0.90 1.00 / 0.79 / 0.88

Effusion 0.74 / 0.90 / 0.81 0.93 / 0.82 / 0.87

Infiltration 0.25 / 0.98 / 0.39 0.74 / 0.87 / 0.80

Mass 0.59 / 0.67 / 0.62 0.75 / 0.40 / 0.52

Nodule 0.95 / 0.65 / 0.77 0.96 / 0.62 / 0.75

Normal 0.93 / 0.90 / 0.91 0.87 / 0.99 / 0.93

Pneumonia 0.58 / 0.93 / 0.71 0.66 / 0.93 / 0.77

Pneumothorax 0.32 / 0.82 / 0.46 0.90 / 0.82 / 0.86

Total 0.84 / 0.88 / 0.86 0.90 / 0.91 / 0.90

Table 2. Evaluation of image labeling results on OpenI dataset.

Performance is reported using P, R, F1-score.

the gold standard for evaluating our method. Table 1 sum-

marizes the statistics of the subset of OpenI [1, 19] reports.

Table 2 shows the results of our method using OpenI, mea-

sured in precision (P), recall (R), and F1-score. Higher pre-

cision of 0.90, higher recall of 0.91, and higher F1-score

of 0.90 are achieved compared to the existing MetaMap ap-

proach (with NegEx enabled). For all diseases, our method

obtains higher precisions, particularly in “pneumothorax”

(0.90 vs. 0.32) and “infiltration” (0.74 vs. 0.25). This in-

dicates that the usage of negation and uncertainty detection

on syntactic level successfully removes false positive cases.

More importantly, the higher precisions meet our expecta-

tion to generate a Chest X-ray corpus with accurate seman-

tic labels, to lay a solid foundation for the later processes.

2.3 Processing Chest X-ray Images

Comparing to the popular ImageNet classification prob-

lem, significantly smaller spatial extents of many diseases

inside the typical X-ray image dimensions of 3000 × 2000
pixels impose challenges in both the capacity of comput-

ing hardware and the design of deep learning paradigm. In

ChestX-ray8, X-rays images are directly extracted from the

DICOM file and resized as 1024×1024 bitmap images with-

out significantly losing the detail contents, compared with
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image sizes of 512 × 512 in OpenI dataset. Their intensity

ranges are rescaled using the default window settings stored

in the DICOM header files.

2.4 Bounding Box for Pathologies

As part of the ChestX-ray8 database, a small number

of images with pathology are provided with hand labeled

bounding boxes (B-Boxes), which can be used as the ground

truth to evaluate the disease localization performance. Fur-

thermore, it could also be adopted for one/low-shot learn-

ing setup [15], in which only one or several samples are

needed to initialize the learning and the system will then

evolve by itself with more unlabeled data. We leave this as

future work.

In our labeling process, we first select 200 instances for

each pathology (1,600 instances total), consisting of 983

images. Given an image and a disease keyword, a board-

certified radiologist identified only the corresponding dis-

ease instance in the image and labeled it with a B-Box. The

B-Box is then outputted as an XML file. If one image con-

tains multiple disease instances, each disease instance is la-

beled separately and stored into individual XML files. As

an application of the proposed ChestX-ray8 database and

benchmarking, we will demonstrate the detection and local-

ization of thoracic diseases in the following.

3 Common Thoracic Disease Detection and

Localization

Reading and diagnosing Chest X-ray images may be an

entry-level task for radiologists but, in fact it is a complex

reasoning problem which often requires careful observation

and good knowledge of anatomical principles, physiology

and pathology. Such factors increase the difficulty of de-

veloping a consistent and automated technique for reading

chest X-ray images while simultaneously considering all

common thoracic diseases.

As the main application of ChestX-ray8 dataset, we

present a unified weakly-supervised multi-label image clas-

sification and pathology localization framework, which can

detect the presence of multiple pathologies and subse-

quently generate bounding boxes around the corresponding

pathologies. In details, we tailor Deep Convolutional Neural

Network (DCNN) architectures for weakly-supervised ob-

ject localization, by considering large image capacity, vari-

ous multi-label CNN losses and different pooling strategies.

3.1 Unified DCNN Framework

Our goal is to first detect if one or multiple pathologies

are presented in each X-ray image and later we can lo-

cate them using the activation and weights extracted from

the network. We tackle this problem by training a multi-

label DCNN classification model. Fig. 4 illustrates the

DCNN architecture we adapted, with similarity to sev-

eral previous weakly-supervised object localization meth-

ods [30, 52, 12, 18]. As shown in Fig. 4, we perform

the network surgery on the pre-trained models (using Im-

ageNet [10, 38]), e.g., AlexNet [25], GoogLeNet [44],

VGGNet-16 [43] and ResNet-50 [17], by leaving out the

fully-connected layers and the final classification layers. In-

stead we insert a transition layer, a global pooling layer, a

prediction layer and a loss layer in the end (after the last con-

volutional layer). In a similar fashion as described in [52],

a combination of deep activations from transition layer (a

set of spatial image features) and the weights of prediction

inner-product layer (trained feature weighting) can enable

us to find the plausible spatial locations of diseases.

Multi-label Setup: There are several options of image-

label representation and the choices of multi-label classi-

fication loss functions. Here, we define a 8-dimensional

label vector y = [y1, ..., yc, ..., yC ], yc ∈ {0, 1}, C = 8
for each image. yc indicates the presence with respect to

according pathology in the image while a all-zero vector

[0, 0, 0, 0, 0, 0, 0, 0] represents the status of “Normal” (no

pathology is found in the scope of any of 8 disease cate-

gories as listed). This definition transits the multi-label clas-

sification problem into a regression-like loss setting.

Transition Layer: Due to the large variety of pre-trained

DCNN architectures we adopt, a transition layer is usu-

ally required to transform the activations from previous lay-

ers into a uniform dimension of output, S × S × D,S ∈
{8, 16, 32}. D represents the dimension of features at spa-

tial location (i, j), i, j ∈ {1, ..., S}, which can be varied in

different model settings, e.g., D = 1024 for GoogLeNet and

D = 2048 for ResNet. The transition layer helps pass down

the weights from pre-trained DCNN models in a standard

form, which is critical for using this layers’ activations to

further generate the heatmap in pathology localization step.

Multi-label Classification Loss Layer: We first experi-

ment 3 standard loss functions for the regression task instead

of using the softmax loss for traditional multi-class classifi-

cation model, i.e., Hinge Loss (HL), Euclidean Loss (EL)

and Cross Entropy Loss (CEL). However, we find that the

model has difficulty learning positive instances (images with

pathologies) and the image labels are rather sparse, mean-

ing there are extensively more ‘0’s than ‘1’s. This is due to

our one-hot-like image labeling strategy and the unbalanced

numbers of pathology and “Normal” classes. Therefore, we

introduce the positive/negative balancing factor βP , βN to

enforce the learning of positive examples. For example, the

weighted CEL (W-CEL) is defined as follows,

LW–CEL(f(~x), ~y) =

βP

∑

yc=1

− ln(f(xc)) + βN

∑

yc=0

− ln(1− f(xc)), (1)

where βP is set to
|P |+|N |

|P | while βN is set to
|P |+|N |

|N | . |P |

and |N | are the total number of ‘1’s and ‘0’s in a batch of

image labels.
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Figure 4. The overall flow-chart of our unified DCNN framework and disease localization process.

3.2 Weakly-Supervised Pathology Localization

Global Pooling Layer and Prediction Layer: In our

multi-label image classification network, the global pool-

ing and the predication layer are designed not only to be

part of the DCNN for classification but also to generate the

likelihood map of pathologies, namely a heatmap. The lo-

cation with a peak in the heatmap generally corresponds to

the presence of disease pattern with a high probability. The

upper part of Fig. 4 demonstrates the process of producing

this heatmap. By performing a global pooling after the tran-

sition layer, the weights learned in the prediction layer can

function as the weights of spatial maps from the transition

layer. Therefore, we can produce weighted spatial activation

maps for each disease class (with a size of S × S × C) by

multiplying the activation from transition layer (with a size

of S × S × D) and the weights of prediction layer (with a

size of D × C).

The pooling layer plays an important role that chooses

what information to be passed down. Besides the conven-

tional max pooling and average pooling, we also utilize the

Log-Sum-Exp (LSE) pooling proposed in [31]. The LSE

pooled value xp is defined as

xp =
1

r
· log





1

S
·

∑

(i,j)∈S

exp(r · xij)



 , (2)

where xij is the activation value at (i, j), (i, j) is one loca-

tion in the pooling region S, and S = s× s is the total num-

ber of locations in S. By controlling the hyper-parameter

r, the pooled value ranges from the maximum in S (when

r → ∞) to average (r → 0). It serves as an adjustable op-

tion between max pooling and average pooling. Since the

LSE function suffers from overflow/underflow problems,

the following equivalent is used while implementing the

LSE pooling layer in our own DCNN architecture,

xp = x∗ +
1

r
· log





1

S
·

∑

(i,j)∈S

exp(r · (xij − x∗)



 , (3)

where x∗ = max{|xij |, (i, j) ∈ S}.

Bounding Box Generation: The heatmap produced

from our multi-label classification framework indicates the

approximate spatial location of one particular thoracic dis-

ease class each time. Due to the simplicity of intensity dis-

tributions in these resulting heatmaps, applying an ad-hoc

thresholding based B-Box generation method for this task is

found to be sufficient. The intensities in heatmaps are first

normalized to [0, 255] and then thresholded by {60, 180} in-

dividually. Finally, B-Boxes are generated to cover the iso-

lated regions in the resulting binary maps.

4 Experiments

Data: We evaluate and validate the unified disease clas-

sification and localization framework using the proposed

ChestX-ray8 database. In total, 108,948 frontal-view X-ray

images are in the database, of which 24,636 images contain

one or more pathologies. The remaining 84,312 images are

normal cases. For the pathology classification and localiza-

tion task, we randomly shuffled the entire dataset into three
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subgroups for CNN fine-tuning via Stochastic Gradient De-

scent (SGD): i.e. training (70%), validation (10%) and test-

ing (20%). We only report the 8 thoracic disease recognition

performance on the testing set in our experiments. Further-

more, for the 983 images with 1,600 annotated B-Boxes of

pathologies, these boxes are only used as the ground truth to

evaluate the disease localization accuracy in testing (not for

training purpose).

CNN Setting: Our multi-label CNN architecture is im-

plemented using Caffe framework [21]. The ImageNet

pre-trained models, i.e., AlexNet [25], GoogLeNet [44],

VGGNet-16 [43] and ResNet-50 [17] are obtained from the

Caffe model zoo. Our unified DCNN takes the weights from

those models and only the transition layers and prediction

layers are trained from scratch.

Due to the large image size and the limit of GPU mem-

ory, it is necessary to reduce the image batch size to load

the entire model and keep activations in GPU while we in-

crease the iter size to accumulate the gradients for more it-

erations. The combination of both may vary in different

CNN models but we set batch size × iter size = 80 as

a constant. Furthermore, the total training iterations are cus-

tomized for different CNN models to prevent over-fitting.

More complex models like ResNet-50 actually take less it-

erations (e.g., 10000 iterations) to reach the convergence.

The DCNN models are trained using a Dev-Box linux server

with 4 Titan X GPUs.

Multi-label Disease Classification: Fig. 5 demonstrates

the multi-label classification ROC curves on 8 pathology

classes by initializing the DCNN framework with 4 dif-

ferent pre-trained models of AlexNet, GoogLeNet, VGG

and ResNet-50. The corresponding Area-Under-Curve

(AUC) values are given in Table 4. The quantitative per-

formance varies greatly, in which the model based on

ResNet-50 achieves the best results. The “Cardiomegaly”

(AUC=0.8141) and “Pneumothorax” (AUC=0.7891) classes

are consistently well-recognized compared to other groups

while the detection ratios can be relatively lower for

pathologies which contain small objects, e.g., “Mass”

(AUC=0.5609) and “Nodule” classes. Mass is difficult to

detect due to its huge within-class appearance variation. The

lower performance on “Pneumonia” (AUC=0.6333) is prob-

ably because of lack of total instances in our patient popu-

lation (less than 1% X-rays labeled as Pneumonia). This

finding is consistent with the comparison on object detec-

tion performance, degrading from PASCAL VOC [13] to

MS COCO [27] where many small annotated objects appear.

Next, we examine the influence of different pooling

strategies when using ResNet-50 to initialize the DCNN

framework. As discussed above, three types of pooling

schemes are experimented: average looping, LSE pooling

and max pooling. The hyper-parameter r in LSE pool-

ing varies in {0.1, 0.5, 1, 5, 8, 10, 12}. As illustrated in Fig.

Figure 5. A comparison of multi-label classification performance

with different model initializations.

6, average pooling and max pooling achieve approximately

equivalent performance in this classification task. The per-

formance of LSE pooling start declining first when r starts

increasing and reach the bottom when r = 5. Then it

reaches the overall best performance around r = 10. LSE

pooling behaves like a weighed pooling method or a tran-

sition scheme between average and max pooling under dif-

ferent r values. Overall, LSE pooling (r = 10) reports the

best performance (consistently higher than mean and max

pooling).

Figure 6. A comparison of multi-label classification performance

with different pooling strategies.

Last, we demonstrate the performance improvement by

using the positive/negative instances balanced loss functions

(Eq. 1). As shown in Table 4, the weighted loss (W-

CEL) provides better overall performance than CEL, espe-

cially for those classes with relative fewer positive instances,

e.g. AUC for “Cardiomegaly” is increased from 0.7262 to

0.8141 and from 0.5164 to 0.6333 for “Pneumonia”.

Disease Localization: Leveraging the fine-tuned DCNN

2103



Setting Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

Initialization with different pre-trained models

AlexNet 0.6458 0.6925 0.6642 0.6041 0.5644 0.6487 0.5493 0.7425

GoogLeNet 0.6307 0.7056 0.6876 0.6088 0.5363 0.5579 0.5990 0.7824

VGGNet-16 0.6281 0.7084 0.6502 0.5896 0.5103 0.6556 0.5100 0.7516

ResNet-50 0.7069 0.8141 0.7362 0.6128 0.5609 0.7164 0.6333 0.7891

Different multi-label loss functions

CEL 0.7064 0.7262 0.7351 0.6084 0.5530 0.6545 0.5164 0.7665

W-CEL 0.7069 0.8141 0.7362 0.6128 0.5609 0.7164 0.6333 0.7891

Table 3. AUCs of ROC curves for multi-label classification in different DCNN model setting.

T(IoBB) Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

T(IoBB) = 0.1

Acc. 0.7277 0.9931 0.7124 0.7886 0.4352 0.1645 0.7500 0.4591

AFP 0.0823 0.0487 0.0589 0.0426 0.0691 0.0630 0.0691 0.0264

T(IoBB) = 0.25 (Two times larger on both x and y axis than ground truth B-Boxes)

Acc. 0.5500 0.9794 0.5424 0.5772 0.2823 0.0506 0.5583 0.3469

AFP 0.1666 0.1534 0.1189 0.0914 0.0975 0.0741 0.1250 0.0487

T(IoBB) = 0.5

Acc. 0.2833 0.8767 0.3333 0.4227 0.1411 0.0126 0.3833 0.1836

AFP 0.2703 0.2611 0.1859 0.1422 0.1209 0.0772 0.1768 0.0772

T(IoBB) = 0.75

Acc. 0.1666 0.7260 0.2418 0.3252 0.1176 0.0126 0.2583 0.1020

AFP 0.3048 0.3506 0.2113 0.1737 0.1310 0.0772 0.2184 0.0873

T(IoBB) = 0.9

Acc. 0.1333 0.6849 0.2091 0.2520 0.0588 0.0126 0.2416 0.0816

AFP 0.3160 0.3983 0.2235 0.1910 0.1402 0.0772 0.2317 0.0904

Table 4. Pathology localization accuracy and average false positive number for 8 disease classes.

models for multi-label disease classification, we can cal-

culate the disease heatmaps using the activations of the

transition layer and the weights from the prediction layer,

and even generate the B-Boxes for each pathology candi-

date. The computed bounding boxes are evaluated against

the hand annotated ground truth (GT) boxes (included in

ChestX-ray8). Although the total number of B-Box anno-

tations (1,600 instances) is relatively small compared to the

entire dataset, it may be still sufficient to get a reasonable

estimate on how the proposed framework performs on the

weakly-supervised disease localization task. To examine the

accuracy of computerized B-Boxes versus the GT B-Boxes,

two types of measurement are used, i.e, the standard Inter-

section over Union ratio (IoU) or the Intersection over the

detected B-Box area ratio (IoBB) (similar to Area of Preci-

sion or Purity). Due to the relatively low spatial resolution

of heatmaps (32 × 32) in contrast to the original image di-

mensions (1024 × 1024), the computed B-Boxes are often

larger than the according GT B-Boxes. Therefore, we define

a correct localization by requiring either IoU > T (IoU)
or IoBB > T (IoBB). Refer to the supplementary ma-

terial for localization performance under varying T (IoU).
Table 4 illustrates the localization accuracy (Acc.) and Av-

erage False Positive (AFP) number for each disease type,

with T (IoBB) ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Please refer

to the supplementary material for qualitative exemplary dis-

ease localization results for each of 8 pathology classes.

5 Conclusion

Constructing hospital-scale radiology image databases

with computerized diagnostic performance benchmarks has

not been addressed until this work. We attempt to build

a “machine-human annotated” comprehensive chest X-ray

database that presents the realistic clinical and methodolog-

ical challenges of handling at least tens of thousands of pa-

tients (somewhat similar to “ImageNet” in natural images).

We also conduct extensive quantitative performance bench-

marking on eight common thoracic pathology classifica-

tion and weakly-supervised localization using ChestX-ray8

database. The main goal is to initiate future efforts by pro-

moting public datasets in this important domain. Building

truly large-scale, fully-automated high precision medical di-

agnosis systems remains a strenuous task. ChestX-ray8 can

enable the data-hungry deep neural network paradigms to

create clinically meaningful applications, including com-

mon disease pattern mining, disease correlation analysis, au-

tomated radiological report generation, etc. For future work,

ChestX-ray8 will be extended to cover more disease classes

and integrated with other clinical information, e.g., follow-

up studies across time and patient history.
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