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Abstract

In recent years, Deep Neural Networks (DNN) based
methods have achieved remarkable performance in a wide
range of tasks and have been among the most powerful
and widely used techniques in computer vision. However,
DNN-based methods are both computational-intensive and
resource-consuming, which hinders the application of these
methods on embedded systems like smart phones. To alle-
viate this problem, we introduce a novel Fixed-point Fac-
torized Networks (FFN) for pretrained models to reduce
the computational complexity as well as the storage re-
quirement of networks. The resulting networks have only
weights of -1, 0 and 1, which significantly eliminates the
most resource-consuming multiply-accumulate operations
(MACs). Extensive experiments on large-scale ImageNet
classification task show the proposed FFN only requires
one-thousandth of multiply operations with comparable ac-
curacy.

1. Introduction

Deep neural networks (DNNs) have recently been set-
ting new state of the art performance in many fields in-
cluding computer vision, speech recognition as well as nat-
ural language processing. Convolutional neural networks
(CNNs), in particular, have outperformed traditional ma-
chine learning algorithms on computer vision tasks such
as image recognition, object detection, semantic segmenta-
tion as well as gesture and action recognition. These break-
throughs are partially due to the added computational com-
plexity and the storage footprint, which makes these mod-
els very hard to train as well as to deploy. For example,
the Alexnet [20] involves 61M floating point parameters
and 725M high precision multiply-accumulate operations
(MACs). Current DNNs are usually trained offline by uti-
lizing specialized hardware like NVIDIA GPUs and CPU
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clusters. But such an amount of computation may be unaf-
fordable for portable devices such as mobile phones, tablets
and wearable devices, which usually have limited comput-
ing resources. What’s more, the huge storage requirement
and large memory accesses may hinder efficient hardware
implementation of neural networks, like FPGAs and neural
network oriented chips.

To speed-up test-phase computation of deep models, lots
of matrix and tensor factorization based methods are inves-
tigated by the community recently [5} [15} [32] 21} [18l 30].
However, these methods commonly utilize full-precision
weights, which are hardware-unfriendly especially for em-
bedded systems. Moreover, the low compression ratios hin-
der the applications of these methods on mobile devices.

Fixed-point quantization can partially alleviate these two
problems mentioned above. There have been many stud-
ies working on reducing the storage and the computational
complexity of DNNs by quantizing the parameters of these
models. Some of these works [3} |6 I8, 22 24] quantize
the pretrained weights using several bits (usually 3~12
bits) with a minimal loss of performance. However, in
these kinds of quantized networks one still needs to employ
large numbers of multiply-accumulate operations. Others
[230 11} 14 2 1170 [12] 25]] focus on training these networks
from scratch with binary (+1 and -1) or ternary (+1, O and -
1) weights. These methods do not rely on pretrained models
and may reduce the computations at training stage as well
as testing stage. But on the other hand, these methods could
not make use of the pretrained models very efficiently due
to the dramatic information loss during the binary or ternary
quantization of weights.

In this paper, we propose a unified framework called
Fixed-point Factorized Network (FFN) to simultaneously
accelerate and compress DNN models with only minor per-
formance degradation. Specifically, we propose to first di-
rectly factorize the weight matrix using fixed-point (+1, 0
and -1) representation followed by recovering the (pseudo)
full precision submatrices. We also propose an effective and
practical technique called weight balancing, which makes

4012



our fine-tuning (retraining) much more stable. We demon-
strate the effects of the direct fixed-point factorization, full
precision weight recovery, weight balancing and whole-
model performance of AlexNet [20], VGG-16 [29], and
ResNet-50 [[10] on ImageNet classification task. The main
contributions of this paper can be summarized as follows:

e We propose the FFEN framework based on direct fixed-
point factorization for DNN acceleration and compres-
sion, which is much more flexible and accurate.

e Based on fixed point factorization, we propose a novel
full precision weight recovery method, which makes it
possible to make full use of the pretrained models even
for very deep architectures like deep residual networks
(ResNets) [10].

e We investigate the weight imbalance problem gen-
erally existing in matrix/tensor decomposition based
DNN acceleration methods. Inspired by weights ini-
tialization methods, we present an effective weight bal-
ancing technique to stabilize the fine-tuning stage of
DNN models.

2. Related Work

CNN acceleration and compression are widely studied in
recent years. We mainly list works that are closely related
with ours, i.e., the matrix decomposition based methods and
fixed-point quantization based methods.

Deep neural networks are usually over-parameterized
and the redundancy can be removed using low-rank ap-
proximation of filter matrix as shown in the work of [5].
Since then, many low-rank based methods have been pro-
posed. Jaderberg [[LS]] proposed to use filter low-rank ap-
proximation and data reconstruction to lower the approxi-
mation error. Zhang et al. [32]] presented a novel nonlin-
ear data reconstruction method, which allows asymmetric
reconstruction to prevent error accumulation across layers.
Their method achieved high speed-up on VGG-16 model
with minor increase on top-5 error for ImageNet [27]] classi-
fication. Low-rank tensor decomposition methods like CP-
decomposition [21]], Tucker decomposition [18] and Block
Term Decomposition (BTD) [30]] are also investigated and
showed high speed-up and energy reduction.

Fixed-point quantization based methods are also inves-
tigated by several recent works. Soudry et al. developed
the Expectation Backpropagation (EBP) [1] method, which
is a variational Bayes method to binarize both weights and
neurons and achieved good results for fully connected net-
works on MNIST dataset. In the work of BinaryConnect
[4], the authors proposed to use binary weights for forward
and backward computation while keep a full-precision ver-
sion of weights for gradients accumulation. Good results
have been achieved on small datasets like MNIST, CIFA-10

and SVHN. Binary-Weight-Network (BWN) and XNOR-
net were proposed in a more recent work [25]], which was
among the first ones to evaluate the performance of bi-
narization on large-scale datasets like ImageNet [27] and
yielded good results. These methods train neural networks
from scratch and can barely benefit from pretrained net-
works. Hwang et al. [13]] found a way by first quantize
pretrained weights using a reduced number of bits, followed
by retraining. However, their method achieved good results
only for longer bits on small datasets and heavily relied on
carefully choosing the step size of quantization using ex-
haustive search. The scalability on large-scale datasets re-
mained unclear.

Besides low-rank based and fixed-point quantization
based methods mentioned above, there have been other ap-
proaches. Han et al. [9] utilized network pruning to remove
low-saliency parameters and small-weight connections to
reduce parameter size. Product quantization was investi-
gated in the work of [31] to compress and speed-up DNNs at
the same time. Teacher-student architectures [[11} [26] were
also well studied and achieved promising results.

Unlike previous works, we explore fixed-point factor-
ization on weight matrix. It is nontrivial to utilize fixed-
point factorization of weight matrices. One may argue to
use full precision matrix decomposition like SVD, followed
by fixed point quantization of the decomposed submatrices.
However, this kind of method has an obvious shortcoming:
the matrix approximation is optimized for the full preci-
sion submatrices, but not for the fixed-point representation,
which is our main target. On the contrary, in our proposed
FFN architecture, we directly factorize weight matrix into
fixed-point format in an end-to-end way.

3. Approaches

Our method exploits the weight matrix approximation
method for deep neural network acceleration and compres-
sion. Unlike many previous low-rank based matrix decom-
position methods which use floating point values for the fac-
torized submatrices, our method aims at fixed-point factor-
ization directly.

To more efficiently make use of the pretrained weights, a
novel pseudo full-precision weight matrix recovery method
is introduced in addition to the direct fix-point factorization.
Thus the information of the pretrained models is divided
into two parts: the first one is the fixed-point factorized
submatrices and the second one resides in the pseudo full-
precision weight matrices, which on the other hand, will
be transferred to the fixed-point weight matrices during the
fine-tuning stage.

Moreover, we find that fine-tuning becomes much harder
after decomposition, which is also observed in the work of
[32], i.e., a small learning rate results in poor local optimum
while a large learning rate may discard the initialization in-
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formation. Based on our empirical results and theoretical
analysis, we propose the weight balancing technique, which
makes the fine-tuning more efficient and has an important
role in our whole framework.

We will present our novel fixed-point factorization,
pseudo full-precision weight recovery and weight balancing
methods at length in section[3.1] [3.2] and [3.3| respectively.

3.1. Fixed-point Factorization of Weight Matrices

A general deep neural network usually has multiple fully
connected layers and / or convolutional layers. For the fully
connected layers, the output signal vector s, is computed
as:

So = ¢(W3i + b) (1)

where s; is the input signal vector and W and b are the
weight matrix and the bias term respectively. For a con-
volutional layer with n filters of size w x h X ¢ where w,
h and c are the kernel width and height and the number of
input feature maps, if we reshape the kernel and the input
volume at every spatial positions, the feedforward pass of
the convolution can also be expressed by equation[I] Thus
our decomposition is conducted on the weight matrix W.

In this subsection we propose to directly factorize the
weight matrices into fixed-point format. More specifically,
in our framework, full precision weight matrix W € R™*"
of a given pretrained model is approximated by a weighted
sum of outer products of several (k) vector pairs with only
ternary (+1, O and -1) entries, which is referred to as the
semidiscrete decomposition (SDD) in the following format:

minimize | W —XDY" ||%
X,D,Y
k - 2
(iimize W=D diziw [
where X € {—1,0,+1}™**and Y € {-1,0,+1}"** and
D € Rf_Xk is a nonnegative diagonal matrix. Note that
throughout this paper, we utilize the symbol k to represent
the dimension of the SDD decomposition.

One advantage of fixed-point factorization method over
direct fixed-point quantization is that there is much more
room for us to control the approximation error. Consider
the decomposition on weight matrix W € R™*™, we can
choose different £ to approximate W as accurate as possi-
ble. (Note that k can be larger than both m and n). This also
makes it possible to choose different £ for different layers
according to the redundancy of that layer. Thus our fixed-
point decomposition method can be much more flexible and
accurate than direct quantization method.

Because of the ternary constraints in[2] the computation
of SDD is a NP-hard problem. Kolda and O’Leary [19] pro-
posed to obtain an approximate local solution by greedily

Algorithm 1 Improved SDD decomposition

Input: weight matrix W € R™*"
Input: non-negative integer k
Output: X € {+1,0, —1}mx**k
Output: Y € {+1,0, —1}"*k
Output: diagonal matrix D € RF**
I: di+0fori=1,---,k
2 Select Y € {—1,0, 1}**
3: while not converge do
fori=1,--- ,kdo
ReW =3, djzjy;
Set y; to the i-th column of Y’
while not converge do
compute z; € {—1,0,1}™ given y; and R
compute y; € {—1,0,1}" given z; and R
10: end while

B A

11: Set d; to the average of RoxiyiT over the non-zero
locations of z;y]
12: Set x; as the i-th column of X , y; the ¢-th column

of Y and d; the i-th diagonal value of D
13:  end for
14: end while

(+1,-1,0)
| [
1,101 ]

Figure 1. New layers used in our FFN architecture to replace the
original convolutional layers.

finding the best next d;x;y;. To further reduce the approxi-
mation error of the decomposition, we refine their algorithm
as in Algorithm[I] by iteratively minimizing the residual er-
ror.

Once the decomposition is done, we can replace the orig-
inal weights W with the factorized ones, i.e., the X, Y and
D. More formally, for convolutional layers, the original
layer is replaced by three layers: the first one is a convo-
Iutional layer with k filters of size w X h X ¢, which are
all with ternary values; The second layer is a “channel-wise
scaling layer”, i.e., each of the k feature maps is multiplied
by a scaling factor; The last layer is another convolutional
layer with n filters of size 1 x 1 x k, which also have ternary
values. Figure [T)illustrates the architecture of our new lay-
ers in FFN network.

3.2. Full-precision Weight Recovery

Our fixed-point factorization method is much more ac-
curate than direct binarization or ternarization method and
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many other fixed-point quantization methods. But there is
still the need of fine-tuning to restore the precision of DNN
models. Like most of current fixed-point quantization based
accelerating methods, we want to use the quantized weights
(the X,Y in our case) during the forward and backward
propagation while use the full-precision weights for gra-
dient accumulation. However, after factorization, the full-
precision weights are lost, i.e., the original W cannot be
used for gradient accumulation any longer. A simple so-
lution is to use the floating point version of X and Y as
full-precision weights to accumulate gradients. But this is
far from satisfactory, as can be seen from section[d.1.2]

In this subsection, we present our novel full-precision
weight recovery method based on the pretrained weights to
make the fine-tuning stage much easier. Our motivation is
very simple, we recovery the full-precision version of X
and Y, indicated by X and Y, which can better approxi-
mate W. Note that at the same time, we must make sure
that X and Y will be quantized into X and Y in quantiza-
tion stage. We can treat our full-precision weight recovery
method as an inversion of current fixed-point quantization
methods. In fixed-point quantization based DNN acceler-
ation and compression methods, we quantize each element
of the full-precision weight matrices into the nearest fixed-
point format value. While in our method, we have got the
fixed-point version of the weights through fixed-point de-
composition, and we need to determine from which value
the fixed-point element is quantized. We turn this problem
into an optimization problem as follows:

minimize || W — XDY7 ||

X5 — X,;| < 05,4, 3)
Vij = Yij| < 0.5,9i,j

subject to

Here the two constraints are introduced to ensure that
the X and Y will be quantized to X and Y. The problem
can be efficiently solved by alternative method. Note we
constraint X and Y to be always between -1.5 and 1.5 to
alleviate overfitting and during fine-tuning, we also clip the
weights within [-1.5, 1.5] interval as well.

During fine-tuning stage, we quantize the full-precision
weights of X and Y according to the following equation
(before weight balancing described in the next subsection):

-1 —-15< Aij < —0.5

The quantized weights are used to conduct forward and
backward computation and the full-precision weights X
and Y are used to accumulate gradients. Both X and Y
will change during fine-tuning because of the updates of X
and Y, for example, some elements of X and Y will turn

from O to 1 and so on. We argue that, for example, both
0.499 and 0.001 will be quantized to 0 according to Equa-
tiond] But at fine-tuning stage, 0.499 has higher probability
than 0.001 to turn to 1. And this kind of information resides
in the full-precision weight matrices and is transferred to
the quantized weights during fine-tuning. Note that the full-
precision weights won’t be retained after fine-tuning, and
there are only the quantized weights X and Y for predic-
tion.

3.3. Weight Balancing

So far, we have presented our fixed-point decomposition
and full-precision weight recovery to improve the test-phase
efficiency of deep neural networks. However, there is still
a problem to be considered, which we refer to as weight
imbalance.

Weight imbalance is a common problem of decomposi-
tion based methods, not just existing in our framework (as
also noticed in [32]]). This problem is caused by the non-
uniqueness of the decomposition.

Considering a L layers neural network, the forward com-
putation is in the following format:

S04 — g0 4 5
a1+ = g(z(+D)) )

During back-propagation, the error term and the gradients
of weights for each layer are as follows:

5 = (W)T5HD) o ¢/ (0) ©)

Vipw = 6D (aM)T ()

Here the “e” denotes the element-wise product operator.
Note that for layer [, the inputs, outputs and the error term
are represented as a¥, ot and §). From Equation
we can see that the gradients Vyy ;) is proportional to
this layer’s input a(!) and the next layer’s error term §(:+1).
While from Equation [§] we can see that the next layer’s er-
ror term 61 is proportional to the next layer’s weights
W(H—l)_

Suppose we have a weight matrix W, which is factor-
ized into the product of two matrices W = PQ), i.e., the
original layer with parameter W is replaced by two layers
with parameter Q and P, as shown in Figure If let
P’ = P/a and Q' = a * @, the decomposition becomes
W = P'Q’ as shown in Figure 2(b)] Figure 2] shows that
@ has been enlarged by a-times while the gradients have
become 1/« of the original. And what happened to P is
opposite to (). The consequence (suppose « > 1) is that
during back-propagation, P changes frequently while () al-
most stays untouched. At this time, one has to search for
different learning rates for each layer. However, finding ap-
propriate learning rates for every layer is quite a hard job
especially for very deep neural networks.
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(a) Forward and backward propagation

(b) Propagation after setting Q' = a * Q and P’ = P/«

Figure 2. Illustration of the cause of weight imbalance problem existing in decomposition based methods.

In our framework, the weight matrix W € R™*™ is re-
placed by X DY”, where the X € R™** and Y € R"*¥
is in the range of [-1.5, 1.5] while D is at the scale of about
0.00001 to 0.01. And for convolutional layers, X usually
has much more elements than ¥~ because of the w x h spa-
tial size of filters in X. To balance the weights into their
appropriate scales, and inspired by the normalized weight
initialization method proposed in [7], we develop the fol-
lowing weight balancing approaches:

First, we want to find the scaling factor A x and Ay for
X and Y, which are proportional to the square root of the
sum of the number of their rows and columns.

Second, we try to make the balanced D close to identity
matrix by setting the mean value of the elements along the
diagonal to one. Because for fully-connected layer, D is a
element-wise scaling factor and for convolutional layers, D
is a channel-wise scaling factor. Thus making D close to
one will not affect the calculation of gradients much.

This can be expressed by the equation |§| where X,V
and D represent the balanced version of weight matrices.
And the ¢ is introduced to make sure that the scaling factor
Ax and Ay are proportional to the square root of the sum
number of rows and columns.

- . mtk
— —_¢
}f—)\y*Y— n+k*Y (8)
D=5
XAy
mean(D) =

Once we have got the scaling factors of Ax, Ap and Ay,
we can use the balanced weights X, DandY during back-
propagation. Note that we also need to scale the quantiza-
tion function accordingly in the following form where A can
be A\x and Ay respectively:

+1 %\ 0.5 A <Ay <1.5xA
—1sxA —15%xA<A; <—-05xA

3.4. Fine-tuning

Thanks to the full-precision weight recovery strategy and
weight balancing method proposed in this paper, we can

easily fine-tune the factorized network to restore accuracy.
Specifically, we keep the balanced pseudo full-precision
weight matrices (X and Y) as reference. During fine-tuning
stage, we quantize X and Y according to equation (9| and
the quantized weights are used in the forward and back-
ward computation. While the gradients are accumulated by
the full-precision weights, i.e., X and }7, to make improve-
ments. The full-precision weight recovery and weight bal-
ancing are introduced to facilitate convergence of the fine-
tuning stage. However, at test time, we only need the fixed
point X, Y and the diagonal floating-point D for prediction.

3.5. Complexity Analysis

In this section, we will analyze the computing com-
plexity of our framework for convolutional layers, which
dominates the operations of convolutional neural networks.
Fully-connected layers can be analyzed in a similar way.

For convolutional layers, the width and height of output
feature maps are denoted as W’ and H’. Considering con-
volution with kernel of size w x h X ¢ X n, the computation
of the original layer is given by:

Crut = Caga = W' s« H x (wxhxcxn) (10)
In our FEN architecture, the computation turns to be:

C’mul:W/*H/*k
Coga =1 —a)« W' xH x(wxh*xc+n)xk (11)
~(1—a)«W xH x(w*hxcx*n)

Here, the o denotes the sparsity of weight matrix for this
layer. For a common convolutional layer, the w x h x cx n
is usually thousands of times of k, thus the number of mul-
tiply operation can be dramatically reduced. The ¢, n and
k are usually at the same scale, making the addition oper-
ation about (1 — «) times of the original. In our experi-
ments, we find that « is around 0.5. Thus our method only
requires about half of operations compared to that using bi-
nary weights. We refer to section 4.3]for more detail.
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Table 1. Results of different settings on AlexNet .

Model Top-1 Acc. (%) | Top-5 Acc. (%)
AlexNet [20] 57.1 80.2
FFN-SDD 32.9 57.0
FFN-Recovered 57.0 80.1
FFN-W/O-FWR 53.4 77.2
FFN-W/O-WB 51.9 76.6
FFN 55.5 79.0

4. Experiments

In this section, we comprehensively evaluate our method
on ILSVRC-12 [27] image classification benchmark, which
has 1.2M training examples and 50K validation examples.
We firstly examine the effects of each individual compo-
nent in FFN, i.e., fixed-point factorization, full-precision
weight recovery, and weight balancing. The whole-model
ILSVRC-12 [27] classification performance is also evalu-
ated based on AlexNet [20], VGG-16 [29], and ResNet-
50 [10], demonstrating the effectiveness of our FFN frame-
work.

4.1. Effectiveness of Each Part

In this subsection we thoroughly analyze the effective-
ness of each part in our unified FFN framework.

4.1.1 Fixed-point Factorization

In theory, our method can approximate weight matrix W as
accurate as possible by choosing large k, i.e., the dimension
of SDD decomposition. We can also utilize different k£ for
different layers. Thus our method can be much more accu-
rate and flexible than the direct fixed-point quantization. In
this section, we evaluate the weight matrix approximation
error and classification accuracy under different &.

We use the second convolutional layer of AlexNet for
demonstration, which is the most time-consuming layer
during the test phase. There are two groups in this layer,
each is of size 5 X 5 x 48 x 128. We choose the same k for
these two groups and evaluate the average of weight ma-
trix approximation error. Here, weight matrix approximate
error is defined as:

W - XDYT |3

(12)
W 1%

r

Figure [3] illustrates the approximation error and the ac-
curacy on ImageNet classification task. From Figure[3] we
can see that as k increases, the approximation error tends to
zero and the accuracy stays closer to the original AlexNet.

The classification accuracy after all layers are processed
is given in the second row of Table [I] (denoted as FFN-
SDD), demonstrating that our fixed-point factorized method
can produce a good initialization.
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Figure 3. Weight approximation error and classification accuracy
on ImageNet when choosing different k for the second convolu-
tional layer of AlexNet.

4.1.2 Full-precision Weight Recovery

In this subsection, we evaluate the effect of our full-
precision weight recovery method. During the fine-tuning
stage, gradients are accumulated by the full-precision
weights, thus the initial values may affect the evolution of
learning process. To show that the pseudo full-precision
weights recovered by our method can actually represent the
original weights, we evaluate the performance of recovered
weights on AlexNet. The results are given in the third row
of Table[I| (FFN-Recovered). Both the top-1 and top-5 clas-
sification accuracy are very close to the original AlexNet
model.

To further demonstrate the effectiveness of the weight re-
covery strategy, we also compare with FFN model without
full-precision weight recovery (FFN-W/O-FWR, weight
balancing method is incorporated) in Table [I] Without
full-precision weight recovery, the top-5 accuracy decreases
1.8% compared to FFN.

4.1.3 Weight Balancing

Weight balancing is introduced to make the fine-tuning
stage more reliable. In Table [T} we report the best re-
sults achieved without weight balancing (FFN-W/O-WB)
compared with that of using weight balancing (FFN) on
AlexNet. The weight balancing scheme greatly helps the
fine-tuning stage, leading to 3.6%/2.4% improvement in the
top-1/top-5 classification accuracy.

To further illustrate the gradients imbalance problem as
well as to show the effectiveness of our novel weight bal-
ancing method, we extract the gradients of the second con-
volutional layer of AlexNet, as shown in Figure E} The left
and right columns represent the gradient distribution before
and after applying our weight balancing method. From Fig-
ure [ we discover that after decomposition, the gradients
of the three new layers differ significantly from each other,
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Figure 4. Gradient distribution of the second convolutional layer of AlexNet before (first column) and after (second column) weight

balancing. Three rows correspond to X, D and Y respectively.

while after weight balancing, most gradients lie within the
interval [-0.1, 0.1] for all layers. Using weight balancing
method allows to use the same learning rate for all layers,
which is very important for fine-tuning, especially for very
deep networks.

4.2. Whole-model Performance on ILSVRC-12

In this subsection, we evaluate the performance of our
FFN on ImageNet classification task. We report top-1 and
top-5 accuracy using the 224x224 center crop. Experi-
ments are conducted on three commonly used CNN mod-
els, i.e., AlexNet [20], VGG-16 [29] and ResNet-50 [10].
All of these models are downloaded from Berkeley’s Caffe
model zoo [16] without any change and are also used as
baselines for comparison. Our accelerating strategy is to ap-
proximate the original weight matrices using the proposed
fixed-point decomposition, full-precision weight recovery
and weight balancing method. After that, fine-tuning (re-
training) the whole network for the ImageNet classification
task is needed to retain accuracy.

4.2.1 AlexNet

Alexnet was proposed in [20] and was the winner of
ILSVRC 2012 [27] image classification task. This network
has 61M parameters and more than 95% of them reside
in the fully-connected layers. Thus we choose relatively

smaller decomposition dimension k for fully-connected lay-
ers for a higher compression rate. Specifically, for the con-
volutional layers with 4-D weights of size w X h X ¢ X n, we
choose decomposition dimension k£ = min(w+hx*c,n). And
for the last three fully-connected layers, & is set to 2048,
3072 and 1000 respectively. The resulting architecture has
60M parameters, of which mostly are -1, 0, or 1. At fine-
tuning stage, images are resized to 256 x 256 pixel size as
the same with original Alexnet.

We also compare our method with the following ap-
proaches, whose results on ImageNet dataset are publicly
available. Note that the BWN [25]] method only report their
results on AlexNet with batch normalization [14], so in or-
der to compare with their results, we also report our results
using batch normalization with the same settings as in [25].

e BWN: [25]: Binary-weight-network, using binary
weights and floating point scaling factors;

e BC: [4]: BinaryConnect, using binary weights, re-
ported by [25];

e LDR [24]: Logarithmic Data Representation, 4-bit
logarithmic activation and 5-bit logarithmic weights.

The results are listed in Table 2l The suffix BN indicates
that batch normalization [14]] is used. From the results, we
can see that without batch normalization, our method only
has a 1.2% drop in the top-5 accuracy. Our method can
outperform the best results by 2.2 percentages on top-5 ac-
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Table 2. Comparison on AlexNet (Suffix BN indicates using batch

normalization [[14]]).

Table 4. Comparison on ResNet-50.

Model Top-1 Acc. (%) | Top-5 Acc. (%)
ResNet-50 [10] 75.2 922
FFN 72.7 90.9

Model Top-1 Acc. (%) | Top-5 Acc. (%)
AlexNet [20] 57.1 80.2
AlexNet-BN [28] 60.1 81.9
BC-BN [4] 354 61.0
BWN-BN [25] 56.8 79.4
LDR [24] - 75.1
FFN 55.5 79.0
FFN-BN 59.1 81.6
Table 3. Comparison on VGG-16.
Model Top-1 Acc. (%) | Top-5 Acc. (%)
VGG-16 [29] 71.1 89.9
LDR [24] - 89.0
FFN 70.8 90.1

curacy if batch normalization is incorporated.

422 VGG-16

VGG-16 [29] uses much wider and deeper structure
than AlexNet, with 13 convolutional layers and 3 fully-
connected layers. We use the same rules to choose the de-
composition dimension £ and we set £ = 3138, 3072, 1000
for three fully-connected layers respectively, resulting in ap-
proximately the same number of parameters as the original
VGG-16 model. During fine-tuning, we resize images to
256 pixels at the smaller dimension.

The results are illustrated in Table Bl We can see that
after quntization, our method even outperform the original
VGG-16 model by 0.2% on top-5 accuracy.

4.2.3 ResNet-50

To further evaluate the effectiveness of our FFN frame-
work, we also conduct experiments on the more challenging
deep neural network, i.e., ResNet-50. Residual Networks
(ResNets) were proposed in [[10] which won the 1st place in
the ILSVRC 2015 classification, detection and localization
tasks. For simplicity, we choose the 50-layer architecture,
which is the smallest ResNets that outperforms all previous
models.

The ResNet-50 architecture has a global average pool-
ing layer before the 1000-way fully-connected layer, thus
the fully-connected layer has much fewer parameters than
that in AlexNet [20] and VGG-16 [29]]. To make the num-
ber of parameters the same as the original ResNet-50, we
have to choose relatively smaller k for all convolutional lay-
ers. Specifically, for a convolutional layer with kernel size
wX hxcxn,wesetk = %, i.e., for each layer, we
keep the same number of parameters as the original layer.
Even though, our method can still achieve promising per-
formance, i.e., with 1.3% drop in the top-5 accuracy as is
shown in Table |4 Choosing higher £ for convolutional lay-

Table 5. Operations and storage requirements. Mul and Add rep-
resent the number of multiply and addition operation. Bytes indi-
cates the number of byte needed to store the weights. All numbers
are accounted for convolutional layers and fully-connected layers.

[ Model [ AlexNet | VGG-16 | ResNet-50 |
Mul 725M 15471M 4212M
Original Add 725M 15471M 4212M
Bytes 244M 528M 97.3M
Mul 0.66M 13.5M 10.6M
Binary Add 725M 15471M 4212M
Bytes 7. M 16.6M 3.1M
Mul 0.66M 11.7M 4.4M
FFN Add 392M 8631IM 1907M
Bytes 11.5M 25.8M 4.9M

ers as is done for AlexNet and VGG-16 may further reduce
the classification error.

4.3. Efficiency Analysis

In this section, the computational complexity and storage
requirement of the proposed FFN are analyzed and com-
pared to the original networks and networks using binary
weights. Our architecture use ternary weights, and we em-
pirically find that about a half of weights are zeros. Thus the
computational complexity is about a half of binary based
method like BC [4]. The disadvantage of using ternary
weights is that it needs a little more storage than binary
weights. Specifically, our ternary method has about 1.5-
bit weight representation, because of the sparsity. Table [3]
shows the computation and storage on AlexNet, VGG-16
and ResNet-50 in detail.

5. Conclusion

We introduce a novel fixed-point factorized framework,
named FFN, for deep neural networks acceleration and
compression. To make full use of the pretrained models,
we propose a novel full-precision weight recovery method,
which makes the fine-tuning more efficient and effective.
Moreover, we present a weight balancing technique to sta-
bilize fine-tuning stage. Extensive experiments on AlexNet,
VGG-16 and ResNet-50 show that the proposed FFN only
requires one-thousandth of multiply operations with com-
parable accuracy.
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