
G2DeNet: Global Gaussian Distribution Embedding Network and Its

Application to Visual Recognition∗

Qilong Wang1, Peihua Li1, Lei Zhang2

1Dalian University of Technology, 2Hong Kong Polytechnic University

qlwang@mail.dlut.edu.cn, peihuali@dlut.edu.cn, cslzhang@comp.polyu.edu.hk

Abstract

Recently, plugging trainable structural layers into deep

convolutional neural networks (CNNs) as image represen-

tations has made promising progress. However, there has

been little work on inserting parametric probability dis-

tributions, which can effectively model feature statistics,

into deep CNNs in an end-to-end manner. This paper pro-

poses a Global Gaussian Distribution embedding Network

(G2DeNet) to take a step towards addressing this prob-

lem. The core of G2DeNet is a novel trainable layer of a

global Gaussian as an image representation plugged into

deep CNNs for end-to-end learning. The challenge is that

the proposed layer involves Gaussian distributions whose

space is not a linear space, which makes its forward and

backward propagations be non-intuitive and non-trivial. To

tackle this issue, we employ a Gaussian embedding strat-

egy which respects the structures of both Riemannian man-

ifold and smooth group of Gaussians. Based on this strat-

egy, we construct the proposed global Gaussian embedding

layer and decompose it into two sub-layers: the matrix par-

tition sub-layer decoupling the mean vector and covariance

matrix entangled in the embedding matrix, and the square-

rooted, symmetric positive definite matrix sub-layer. In this

way, we can derive the partial derivatives associated with

the proposed structural layer and thus allow backpropaga-

tion of gradients. Experimental results on large scale region

classification and fine-grained recognition tasks show that

G2DeNet is superior to its counterparts, capable of achiev-

ing state-of-the-art performance.

1. Introduction

Modeling activations of convolutional layers or fully-

connected layers of pre-trained deep convolutional neural

networks (CNNs) as image representations has been very

∗P. Li, to whom correspondence should be addressed, was supported

by National Natural Science Foundation of China (No. 61471082). L.

Zhang was supported by National Natural Science Foundation of China

(No. 61672446). We thank NVIDIA corporation for donating GPU.

successful in a variety of computer vision tasks, such as ob-

ject recognition [25], image retrieval [9] and texture classifi-

cation [6]. However, these methods handle feature learning,

image modeling and loss function (e.g., classifier) in sep-

arate stages. Recent researches have shown it is meaning-

ful and helpful to plug modeling methods into deep CNN

architectures as structural layers in an end-to-end manner

[14, 24, 1, 37]. Compared with [9, 6], the end-to-end ap-

proaches can jointly leverage the power of learning features,

representing images and training classifiers [1, 29].

To represent images, the probability distributions are

widely used as they generally have capability to model

abundant statistics of features, producing fixed size repre-

sentations regardless of varying feature sizes [28, 32, 33,

40]. Unfortunately, there has been little work attempting

to plug trainable probability distribution modeling layers

into deep CNNs. Oliva et al. [29] make an effort to pro-

pose a deep mean maps (DMMs) method, which can plug a

family of non-parametric distributions into deep CNNs. By

exploiting the mean of random Fourier features [31] to ap-

proximate the mean map embeddings of distributions [11],

the DMMs layer is decomposed into common operations of

convolution, pixel-wise cosine and average pooling so that

forward and backward propagations can be easily accom-

plished. It is reported that the DMMs layer improves the

existing CNNs on several real-world datasets. However, the

DMMs method does not consider special characteristics of

individual distributions, for example, exponential distribu-

tions have specific geometric structures.

Although the DMMs method has been studied, combin-

ing parametric probability distributions modeling into deep

CNNs still is an open problem. In this paper, we take a step

forward towards addressing this problem. Specifically, as

in [28, 33, 40], we use global Gaussians as image repre-

sentations and propose a global Gaussian embedding layer

to combine them in deep CNN architectures. In contrast to

DMMs [29], we explicitly take advantage of the geometry

of Gaussians by considering their parameters (i.e., the mean

vectors and covariance matrices) rather than using approxi-

mated embeddings of distributions in DMMs. This renders

2730

X Y Z

……

()f Z

()

1
()

2

T T

MPL

T T

sym

f
N

N

= +

+

X AX XA

AX 1b B

1

2()ESRLf =Y Y

BP for convolutional layers

()

1

2

,
1


T

T

 +
 
 

Σ μμ μ
μ Σ

μ


()f∂

∂

Z

Y()f∂

∂

Z

X

Figure 1. Overview of the proposed Global Gaussian Distribution embedding Network (G2DeNet). The core of G2DeNet is a novel layer

of global Gaussians as image representations, inserted after the last convolutional layer in a deep CNN in an end-to-end manner. By first

identifying a Gaussian as the square root of an SPD matrix based on Lie group theory, we decompose the layer into two sub-layers and

develop a method to compute partial derivatives using matrix variations and SVD. For detailed mathematical notations, refer to Section 3.

our method more challenging since we need to consider the

Riemannian structure of Gaussians as well as its forward

and backward propagations in the deep CNNs.

To include Gaussian representation as a layer in the

deep CNNs, we first exploit a Gaussian embedding strategy

based on Lie group theory, where a Gaussian distribution

is uniquely transformed to a square-rooted symmetric pos-

itive definite (SPD) matrix. To make our global Gaussian

embedding layer trainable, we decompose it into two con-

secutive sub-layers: the matrix partition sub-layer and the

square-rooted SPD matrix sub-layer. The first sub-layer de-

couples the mean vector and covariance matrix entangled in

the embedding matrix so that it can be explicitly written as a

function of features, while the second one is to compute the

square root of an SPD matrix through the singular value de-

composition (SVD). Then, we develop a method to compute

the partial derivatives associated with the two sub-layers

based on the theory of matrix variations. In this way, we can

perform forward and backward propagations through the

global Gaussian embedding layer. For convenience, here-

after, the proposed network is called Global Gaussian Dis-

tribution embedding Network (G2DeNet), whose overview

is illustrated in Figure 1. At the core of G2DeNet is a train-

able layer of a global Gaussian as an image representation,

inserted after the last convolutional layer in the deep CNNs.

The contributions of this paper lie in three folds: (1) we

propose a novel trainable structural layer, which can plug

global Gaussian distributions into deep CNNs for powerful

image representation. To our best knowledge, this is the first

attempt to plug a parametric probability distribution into

CNN architectures in an end-to-end form. (2) Technically,

to make possible the forward and backward propagations

on Gaussian manifold, we exploit a Gaussian embedding

strategy based on Lie group theory and develop a structural

backpropagation method. (3) The experiments are exten-

sively conducted on large scale MS-COCO [23] and chal-

lenging fine-grained benchmarks [39, 27, 20], demonstrat-

ing superiority of the proposed method.

2. Related Work

Ionescu et al. [14] establish the theory and practice of

global, structured matrix backpropagation in an end-to-end

training framework. In particular, they propose theorems

on variations of SVD or eigenvalue decomposition (EIG)

and instantiate the DeepO2P model for region classifica-

tion. At the heart of DeepO2P is a trainable O2P layer

plugged into the deep CNN architecture performing second-

order pooling of convolutional features. The O2P layer

in DeepO2P leads to second-order, non-central moments

which are SPD matrices and whose geometry is handled us-

ing Log-Euclidean metrics [2], resulting in backpropagation

of logarithm of SPD matrices. The structural matrix back-

propagation theory [14] motivates the backpropagation of

our proposed method on Gaussian manifold. However, dif-

ferent from DeepO2P, we attempt to insert a trainable Gaus-

sian distribution layer, where the geometry of Gaussians

is quite different from the geometry involved in DeepO2P.

Specifically, we introduce a Gaussian embedding strategy

based on Lie group theory, which uniquely maps a Gaussian

to a square-rooted SPD matrix. Note that the second-order

moments can be seen as Gaussians of zero-mean. In Sec-

tion 4.1, we show that our G2DeNet outperforms DeepO2P

by a margin while preserving a comparable complexity.

The bilinear CNN (BCNN) [24] model inserts a trainable

bilinear pooling layer after the last convolutional layer in

CNN architectures. This layer computes the outer products

of features from two CNN models, and then performs sum-

pooling and normalization. When the two CNN models are

different, BCNN captures correlations of different sources

of features. If the two CNN models are identical, the

outer products plus sum-pooling leads to second-order, non-

central moments, as in DeepO2P; differently, BCNN per-

forms power normalization followed by ℓ2-normalization

for the resulting SPD matrices rather than matrix logarithm

used in DeepO2P. In contrast to BCNN, our purpose is

to propose image representations by parametric, Gaussian

2731

distributions for end-to-end learning while respecting their

structures of manifold and Lie group, which is distinct from

BCNN in theory and implementation of both the forward

and backward propagations. In addition, comparisons in

Section 4.2 show that the proposed G2DeNet is superior to

BCNN in exactly the same experimental settings.

The other related works include NetVLAD [1] and Fish-

erNet [37]. They both concern insertion into the CNN archi-

tectures of a trainable layer consisting of features encoding

and pooling to form an orderless image representation. The

NetVLAD accomplishes the trainable layer of the general-

ized vector of locally aggregated descriptors (VLAD) [17].

The FisherNet proposes a method to implement the Fisher

vector (FV) [32] in an end-to-end learning manner. Regard-

ing implementation, both of the two methods decompose

(after appropriate modifications or simplifications) the in-

serted layers into typical operations of convolution, soft-

max and pooling so that off-the-shelf implementation of

layers can be conveniently used. Different from them, in our

G2DeNet, the trainable layer is concerned with the Gaus-

sian distribution which involves structural backpropagation

on manifold, and the commodity operations in the classical

CNN cannot be simply used.

3. Global Gaussian Distribution Embedding

Network

In this section, we will introduce our global Gaussian

distribution embedding network. To make Gaussian be in-

tegrated into CNN architectures, we first map a Gaussian

to a square rooted SPD matrix. Then, we propose a novel

global Gaussian embedding layer and develop a structural

backpropagation method for our global Gaussian embed-

ding layer. Finally, we give a brief introduction of G2DeNet

based on other Gaussian embedding methods.

3.1. Gaussian Embedding

In this paper, we use global Gaussians as image represen-

tations. Suppose we have a set of � �-dimensional features

X = [x1, . . . ,x�]� ∈ ℝ
�×�, where � indicates matrix

transpose. The Gaussian distribution of these features can

be estimated as follows:

�(x) =
1

(2�)
�

2 ∣Σ∣
1

2

exp
(

−
1

2
(x− �)�Σ−1(x− �)

)

,

where � = 1
�

∑�
�=1 x� and Σ = 1

�

∑�
�=1(x� − �)(x� −

�)� are respectively mean vector and covariance matrix,

and ∣ ⋅ ∣ indicates matrix determinant. The Gaussian distri-

bution � (�,Σ) is determined by parameters � and Σ.

We denote by �(�) the space of �−variate Gaussians. It

has long been known [35] that this space is a Riemannian

manifold having geometric structure. A recent work [22]

has made advance, showing that �(�) can be endowed with

a Lie group structure, i.e., it is not only a Riemannian man-

ifold but is a smooth group. This paper exploits the em-

bedding method in [22] to identify a Gaussian as a square-

rooted SPD matrix. Let ��+(�+1) be the set of all positive

definite upper triangular matrices of order � + 1 which is a

Lie group, and Σ−1 = LL� be the Cholesky decomposi-

tion of the inverse of Σ, where L is a lower triangular matrix

of order � with positive diagonals. Through

�(� (�,Σ)) = H�,J
△
=

[

J �

0� 1

]

, (1)

a Gaussian � (�,Σ) is uniquely mapped to the matrix

H�,J ∈ ��+(� + 1), where J = L−� . However, the

embedding form (1) does not suit for backpropagation due

to the Cholesky decomposition and matrix inverse.

The matrix H�,J can be further mapped to a unique

SPD matrix based on matrix polar decomposition and Lie

group isomorphism. Let H�,J = S�,JQ�,J be the left po-

lar decomposition of H�,J, where S�,J and Q�,J be an

(�+ 1)× (�+ 1) SPD matrix and an orthogonal matrix of

determinant one, respectively. The mapping can be written

as

�(H�,J) = S�,J =

[

Σ+ ��
�

�

�
� 1

]
1

2

, (2)

and Q�,J is the closest orthogonal matrix to H�,J, i.e.,

Q�,J = min
R∈�(�+1)

∥H�,J −R∥� ,

where � indicates the Frobenius norm and �(�+1) denotes

the set of (� + 1) × (� + 1) orthogonal matrices. Through

the above consecutive mappings, our introduced Gaussian

embedding can be represented as follows:

(� ∘ �)(� (�,Σ)) =

[

Σ+ ��
�

�

�
� 1

]
1

2

. (3)

Most works study Gaussian embedding based on the

structure of Riemannian manifold of Gaussians. Nakayama

et al. [28] embed Gaussians in a flat manifold by taking

an affine coordinate system. In [8], Gaussian is mapped

to a unique positive definite lower triangular affine trans-

form (PDLTAT) matrix whose space forms an affine group.

The methods in Calvo et al. [4] and Lovri’c et al. [26] re-

spectively embed the space of Gaussian in the Siegel group

and the Riemannian symmetric space, identifying a Gaus-

sian as a unique SPD matrix. Note that, different from the

aforementioned methods which only consider the Rieman-

nian manifold structure of �(�), our introduced embedding

method (3) makes use of the Lie group structure, i.e., the

geometric structure of Riemannian manifold and the alge-

braic structure of smooth group. The Gaussian embedding

strategy (3) is not only suitable for backpropagation but also

produces better performances as compared in Section 4.3.2.

2732

3.2. Global Gaussian Embedding Layer

Next, we will construct our global Gaussian embedding

layer according to the embedding form (3). To facilitate

implementation of this layer, we decompose it into two sub-

layers: matrix partition sub-layer and square rooted SPD

matrix sub-layer, as illustrated in Figure 1.

3.2.1 Matrix Partition Sub-layer

We denote Y = ����(X)
△
=

[

Σ+ ��
�

�

�
� 1

]

. Obviously

the mean vector � and covariance matrix Σ are entangled.

The purpose of this sub-layer is to decouple Y and explic-

itly write it as the function of input features X. We first

note that there exists the identity Σ = 1
�
X�X − ��

� .

After some elementary manipulations, we have

Y =����(X) (4)

=
1

�
AX�XA� +

2

�

(

AX�1b�
)

���
+B.

In the above equation, A =

[

I

0�

]

where I is the � × �

identity matrix and 0 is �−dimensional zero vector, b =
[0, . . . , 0, 1] is (�+1)−dimensional vector with all elements

being zero except the last one which is equal to one, 1 is

�−dimensional vector with all elements being one, and fi-

nally B =

[

O 0

0� 1

]

where O is � × � zero matrix. The

notation P��� = 1
2 (P + P�) denotes the symmetrization

of P. After such manipulations, the derivative of Y with

respect to X is straightforward.

3.2.2 Square-rooted SPD Matrix Sub-layer

The purpose of this sub-layer is to compute the square root

of SPD matrix Y, i.e., Z = �����(Y)
△
= Y

1

2 . It is well-

known that an SPD matrix is diagonalizable by SVD and the

diagonal elements are positive real numbers. Specifically,

Y has SVD

Y = UΛU� , (5)

where Λ = diag(�1, ⋅ ⋅ ⋅ , ��+1) is the diagonal ma-

trix of the eigenvalues �� in decreasing order and U =
[u1 ⋅ ⋅ ⋅ u�+1] is an orthogonal matrix whose columns

consist of normalized eigenvectors u� corresponding to the

eigenvalues ��. As such the square root of Y can be com-

puted conveniently as follows:

Z = �����(Y) = UΛ
1

2U� , (6)

where Λ
1

2 = diag(�
1

2

1 , ⋅ ⋅ ⋅ , �
1

2

�+1) is computed as element-

wise square root of the eigenvalues. Combining matrix

partition sub-layer (4) with square-rooted SPD matrix sub-

layer (6), we can accomplish the Gaussian embedding

(3). Next, we will show backpropagation for the proposed

global Gaussian embedding layer.

3.3. Backpropagation for Global Gaussian Embed-
ding Layer

To implement backpropagation for global Gaussian em-

bedding layer, we need to compute
∂�(Z)
∂X

, where �(Z) de-

notes a sub-network of G2DeNet whose input and output

are Z and loss function, respectively. In this paper,
∂�(Z)
∂X

can be achieved by two steps. In the first step, we compute
∂�(Z)
∂Y

. For brevity, we use � instead of �(Z) in the follow-

ing.

Compute ∂�
∂Y

Note that Y is an SPD matrix, and its SVD

can be written as Y = UΛU� . The chain rule of this step

is given by

∂�

∂Y
: �Y =

∂�

∂U
: �U+

∂�

∂Λ
: �Λ, (7)

where U : V = tr(U�V) denotes the trace of U�V, and

�U denotes the variation of U. By taking variation of Y we

have �Y = �UΛU� +U�ΛU� +UΛ�U� . Note that U

is orthogonal, and after some manipulations, we can derive

�U = 2U(K� ⊙ (Λ�U� �YU)���),

�Λ = (U� �YU)����, (8)

where (⋅)���� indicates matrix diagonalization, ⊙ is the

Hadamard product, and K is a square matrix with its ele-

ment K�� = 1/(�2
� − �2

�) if � ∕= � and K�� = 0 otherwise.

Substituting Eq. (8) into Eq. (7), we achieve

∂�

∂Y
= U

(

2Λ
(

K� ⊙
(

U� ∂�

∂U

))

���
+
(∂�

∂Λ

)

����

)

U� .

(9)

The derivation of Eq. (9) is first given in [14, Prop. 1] and

readers may refer to [15] for more details.

We proceed to compute ∂�
∂U

and ∂�
∂Λ

. Here the chain rule

is give by

∂�

∂Z
: �Z =

∂�

∂U
: �U+

∂�

∂Λ
: �Λ. (10)

We substitute the variation �Z = 2(�UΛ−
1

2U�)��� +
1
2UΛ−

1

2 �ΛU� into the above equation and can derive

∂�

∂U
= 2

(∂�

∂Z

)

���
UΛ

1

2 ,
∂�

∂Λ
=

1

2
Λ−

1

2U� ∂�

∂Z
U. (11)

Compute ∂�
∂X

In the second step, we compute the par-

tial derivative associated with the matrix partition sub-layer.

The chain rule involved is

∂�

∂X
: �X =

∂�

∂Y
: �Y. (12)

2733

Method Gaussian Embedding

Nakayama et al. [28] z = [���(Σ+��
�),��]�

Calvo et al. [4] or Lovrić et al. [26] Z =
[

Σ+��
�

�

�
� 1

]

[4, 26] + Log-Euclidean [2] Z = log
[

Σ+��
�

�

�
� 1

]

Ours Z =
[

Σ+��
�

�

�
� 1

]
1

2

Table 1. Comparison of different Gaussian embedding methods.

��� indicates the vectorization operation of a matrix.

We take the variation of Y with respect to X and substitute

it into Eq. (12). After some arrangements, we achieve

∂�

∂X
=

2

�

(

XA� + 1b�
)(∂�

∂Y

)

���
A. (13)

In summary, for the proposed global Gaussian embed-

ding layer, the forward propagation can be performed via

Eqs. (4) and (6), while the backpropagation can be achieved

by Eq. (13), Eq. (9) and Eq. (11). Our layer can be plugged

into various CNN architectures (e.g., AlexNet [21] and

VGG-VD-Net [34]) in an end-to-end manner. In practice,

we insert our layer after the last convolutional layer (with

ReLU operation).

3.4. G2DeNet Based Other Embedding Methods

Finally, we introduce three other embedding methods

which can be used in our G2DeNet methodology. The com-

parison of embedding forms of different Gaussian embed-

ding methods are listed in Table 1.

The backpropagation rule for [28] is given by

∂�

∂X
=

1

�

(

2X
(

���

(

∂�

∂z

)

1:�2

)

���
+1

(

∂�

∂z

)�

�2+1:�2+�

)

(14)

where y1:� denotes the vector formed by entries 1, . . . , � in

vector y and ���(y) denotes reshaping of vector y to a

square matrix which has the same number of elements in y.

The partial derivative associated with [4, 26] is

∂�

∂X
=

2

�

(

XA� + 1b�
)(∂�

∂Z

)

���
A. (15)

The derivation of backpropagation formulas for [4, 26] plus

Log-Euclidean framework [2] is similar to those described

in Section 3.3. The partial derivatives ∂�
∂X

and ∂�
∂Y

are the

same as Eq. (13) and Eq. (9), respectively, but ∂�
∂U

and ∂�
∂Λ

take different forms as follows:

∂�

∂U
= 2

(∂�

∂Z

)

���
U log(Λ),

∂�

∂Λ
= Λ−1U� ∂�

∂Z
U.

(16)

4. Experiments

In this section, we conduct two parts of experiments to

evaluate our method: large-scale region classification on

MS-COCO 2014 dataset [23] and challenging fine-grained

recognition on Birds-200-2011 [39], FGVC-Aircraft [27]

and FGVC-Cars [20]. We also verify the effects of different

training methods and Gaussian embedding strategies on the

proposed method. We implement our G2DeNet by using

the MatConvNet package [38], and run the programs on a

PC equipped with a single NVIDIA Titan X GPU and 64G

RAM. As suggested in [14], we use SVD rather than EIG

for computing square-rooted SPD matrix because SVD is

numerically more stable, and implement the global Gaus-

sian embedding layer on CPU in double precision due to

limited support of current GPU library for SVD or EIG, and

less accurate gradients of the structured layer induced by

the single precision. For numerical stability, we add a small

positive number 1e-3 throughout the paper to the diagonal

entries of covariance matrices. More implementation de-

tails are described in the following subsections.

4.1. Region Classification on MS-COCO

The MS-COCO dataset used for region classification

task includes more than 890k segmented instances from 80

classes, divided into about 600k training instances and 290k

validation ones. In this part of experiments, we mainly com-

pare our G2DeNet with its counterpart DeepO2P [14]. For

fair comparison, we exploit identical experimental settings

with [14] and use the code released by the authors 1, where

we replace the global O2P layer with the proposed global

Gaussian embedding layer.

We implement G2DeNet which indicates the proposed

layer is directly connected to a softmax layer, and G2DeNet-

FC indicating the proposed layer connects to two fully-

connected layers followed by a softmax layer, as in

AlexNet. Both of the two networks are initialized with

AlexNet model pre-trained on ImageNet dataset [7]. We

also implement G2DeNet-FC with random initialization

(training from scratch), which is called G2DeNet-FC (S).

We compare them with the corresponding counterparts

which use the global O2P layer. As in DeepO2P, the

cropped images are resized to have the largest sides of 200

pixels, and translation jittering and random, horizontal flip-

ping are used. We perform training using stochastic gra-

dient descent with a momentum of 0.9 and a batch size of

100. The G2DeNet, G2DeNet-FC and G2DeNet-FC (S) are

trained with 15, 20 and 50 epoches where learning rates are

set as ones in DeepO2P. The classification errors of various

methods on the validation set are reported for comparison.

The convergence curve of the proposed G2DeNet-FC is

1The code is available at http://www.maths.lth.se/

matematiklth/personal/sminchis/code/

2734

http://www.maths.lth.se/matematiklth/personal/sminchis/code/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/

Training epoch
0 5 10 15 20

O
b
je

c
ti
v
e

10
-0.4

10
-0.3

10
-0.2

10
-0.1

10
0

10
0.1

10
0.2

train

val

Training epoch
0 5 10 15 20

E
rr

o
r

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

val

train

Figure 2. Convergence curve of our G2DeNet-FC on MS-COCO.

AlexNet-FC
DeepO2P

[14]

DeepO2P-FC

(S) [14]

DeepO2P-FC

[14]

Err. 25.3 28.6 28.9 25.2
DMMs-FC

[29]
G2DeNet

(Ours)

G2DeNet-FC

(S) (Ours)

G2DeNet-FC

(Ours)

Err. 24.6 24.4 22.6 21.5

Table 2. Classification errors (%) on the MS-COCO benchmark.

The results for all the methods indicated by ‘AlexNet-FC’ or

‘DeepO2P’are duplicated from [14].

illustrated in Figure 2. We achieve the lowest classification

error 21.5% at epoch 20. We note that classification error

of G2DeNet-FC tends to descend after the final epoch, and

so more training epoches may bring further improvement.

The training and test time of G2DeNet-FC are about 3 hours

and 30 minutes per epoch, respectively. Our G2DeNet-FC

shares similar time complexity with DeepO2P-FC.

Comparison results on MS-COCO are listed in Table 2.

The AlexNet-FC method indicates the fine-tuned AlexNet

where the last layer is replaced by 80-way softmax layer.

We also implement the DMMs method [29] by inserting

a DMMs layer of 4,096 frequencies into AlexNet with the

same settings as G2DeNet-FC, which is called DMMs-FC.

According to Table 2, we have the following discourse:

(1) our G2DeNet-FC achieves the best results, improving

both DeepO2P-FC and DMMs-FC methods by a large mar-

gin (3.7% and 3.1%); (2) G2DeNet always outperforms

DeepO2P in same settings under different scenarios, which

we attribute to the superiority of the proposed global Gaus-

sian embedding layer over the O2P layer; (3) our G2DeNet-

FC also is far superior to AlexNet-FC, demonstrating ap-

propriate insertion of a probability distribution as an image

representation into deep CNNs is very beneficial.

4.2. Fine-grained Recognition

The second part of experiments is conducted on three

fine-grained image benchmarks, on which the recognition

task is challenging due to large intra-class variation and

small inter-class differences. We mainly compare with

BCNN [24], one of the counterparts of our G2DeNet,

which is a state-of-the-art fine-grained recognition method.

Specifically, we compare with BCNN [D,D] where the two

CNN models involved are identical (i.e., VGG-VD16) and

most of the best results are achieved. Note that in this case

the bilinear pooling method shares the same CNN model,

and leads to the second-order, non-central moment of con-

volutional features. For fair comparison, we adopt exactly

the same experimental settings with BCNN wherever possi-

ble, e.g., two-stage training manner, hyper-parameters, data

processing and SVM training and test 2. To implement our

method, we replace the bilinear layer with the proposed

global Gaussian embedding layer.

4.2.1 Birds-200-2011

The Birds-200-2011 [39] is a challenging dataset, including

11,788 images from 200 bird species. The fixed training

and test split is provided to evaluate different methods. On

this dataset, the part annotations (Parts) and the bounding

boxes (BBox) usually are considered to develop recognition

methods in training or test. Following the protocols used in

BCNN, we evaluate our G2DeNet in two cases, i.e., training

and testing G2DeNet with or without bounding boxes.

The results of different methods are listed in Table 3.

We first compare our G2DeNet with FC-CNN, FV-CNN

and BCNN in the same experimental settings. The FC-

CNN extracts the outputs of the penultimate fully connected

layer as image representations. The FV-CNN [6] performs

encoding and pooling of features from the last convolu-

tional layer with Fisher vector (FV) [32] method, achieving

promising results on many image recognition tasks. The

BCNN obtains state-of-the-art performance by pooling of

outer products of the outputs from the last convolutional

layer (with the ReLU operation) of two CNN models [24].

These representations are fed to one-vs-all SVM classifiers

for training and test. In the case of no bounding boxes,

our G2DeNet outperforms FC-CNN, FV-CNN and BCNN

by 16.7%, 12.4% and 3.1%, respectively. When bounding

boxes are used, the performance of all methods can be im-

proved and G2DeNet is still better than FC-CNN, FV-CNN

and BCNN by 11.2%, 10.1% and 2.5%, respectively. The

significant improvements over the three methods show the

superiority of our global Gaussian embedding layer.

We also compare with six recently proposed methods,

which, to our best knowledge, reported the previous best re-

sults without exploiting extra training data 3. RAID-G [40]

presented a robust infinite dimensional Gaussian descrip-

tor based on pretrained VGG-VD19 model (no finetuning),

getting 82.1% in accuracy without parts and BBoxes. PG-

Alignment [18] generated parts for bird images by using

co-segmentation and alignment in an unsupervised manner.

2We use the source code released by the authors of [24], available at

https://bitbucket.org/tsungyu/bcnn-package.
3One very recent work reported an accuracy of 92.3% by using large scale

additional annotation bird images from the web [19].

2735

https://bitbucket.org/tsungyu/bcnn-package

Methods
Train Test

Pre-trained CNN models Accuracy (%)
BBox Parts BBox Parts

PG-Alignment [18] ✓ ✓ VGG-VD19 82.8

RAID-G [40] VGG-VD19 82.1

ST-CNN [16] Inception+BN 84.1

PD+FC+SWFV-CNN [42] VGG-VD16 84.5

SPDA-CNN+ensemble [41] ✓ ✓ ✓ VGG-VD16 + AlexNet 85.1

PN-CNN [3] ✓ ✓ ✓ ✓ AlexNet 85.4

FC-CNN [D] (w/ ft) VGG-VD16 70.4

FC-CNN [D] (w/ ft) ✓ ✓ VGG-VD16 76.4

FV-CNN [D] (w/ ft) [6] VGG-VD16 74.7

FV-CNN [D] (w/ ft) [6] ✓ ✓ VGG-VD16 77.5

BCNN [D,D] (w/ ft) [24] VGG-VD16 84.0

BCNN [D,D] (w/ ft) [24] ✓ ✓ VGG-VD16 84.8

BCNN [D,M] (w/ ft) [24] ✓ ✓ VGG-VD16 + VGG-M 85.1

G2DeNet (Ours) VGG-VD16 87.1

G2DeNet (Ours) ✓ ✓ VGG-VD16 87.6

Table 3. Classification accuracies of different methods with various experimental protocols on Birds-200-2011 dataset. ‘BBox’ and ‘Parts’

indicate bounding boxes and parts, respectively. The results of FC-CNN, FV-CNN and BCNN are duplicated from [24]. The results of

other methods are respectively from original papers.

Combining bounding boxes and fine-tuned VGG-VD19

model, PG-Alignment achieved 82.8% in accuracy. ST-

CNN [16] introduced a trainable Spatial Transformer (ST)

module for overcoming lack of spatial invariance of exist-

ing CNN architectures. The fine-tuned ST-CNN based on

the Inception architecture with batch normalization [13] ob-

tained 84.1% in accuracy. Zhang et al. [42] proposed a part

detector (PD) while considering filter responses, and repre-

sented the bag of parts using spatially weighted (SW) FV-

CNN and FC-CNN. They reported an accuracy of 84.5%.

The semantic part detection and abstraction CNN (SPDA-

CNN) [41] developed an end-to-end architecture containing

two sub-networks which performed semantic parts detec-

tion and recognition in a unified framework. SPDA-CNN

achieved an accuracy of 85.1% with an ensemble of VGG-

VD16 model and AlexNet. Branson et al. [3] proposed a

pose normalized deep convolutional neural network (PN-

CNN) to locate and normalize image patches, while em-

ploying a deep CNN to extract features for patch represen-

tation. By using both part annotations and bounding boxes,

PN-CNN achieved 85.4% in accuracy.

Our G2DeNet achieves the best results among all re-

ported methods. Compared with ST-CNN, our G2DeNet

produces orderless representations which does not explic-

itly consider the spatial invariance, but outperforming ST-

CNN which performs the spatial transformations of fea-

tures. The methods [18, 42, 41, 3] all exploit part detec-

tors or ground truth part annotations, which often can sig-

nificantly improve recognition accuracies for fine-grained

recognition task. Even without bounding boxes and part

detector, our G2DeNet achieves 1.7% ∼ 5.0% gains over

them. The competitive results show that our G2DeNet is a

very discriminative and robust image representation. Inte-

gration of part annotation with our G2DeNet may further

improve the performance, which will be our future work.

Methods
Accuracy (%)

Aircraft Cars

FC-CNN (VGG-VD16) 74.1 79.8
FV-CNN (VGG-VD16) [6] 77.6 85.7
BCNN (VGG-VD16)[14] 84.1 90.6
BCNN (VGG-VD16 + VGG-M) [14] 83.9 91.3

G2DeNet (Ours, w/o BBox) 89.0 92.5

Other Methods
75.9 [5] 90.5 [43]

80.7 [10] 92.6 [18]

Table 4. Classification accuracies of various methods on FGVC-

Aircraft and FGVC-Cars benchmarks.

4.2.2 FGVC-Aircraft

The FGVC-aircraft dataset [27] is a part of the FGComp

2013 challenge, which consists of 10,000 images across 100

aircraft classes. Comparison with birds dataset, the inter-

class variation of airplanes is more subtle, and in the images

the airplanes fill up larger regions but with more clear back-

ground. We exploit the fixed train/test split provided by the

dataset developers, and compare with FC-CNN, FV-CNN,

BCNN with VGG-VD16 model, and several other methods.

The results of different methods are listed in Table 4

(middle column). We can see that our G2DeNet is better

than its counterpart BCNN by 4.9%, and outperforms FV-

CNN and FC-CNN by 11.4% and 14.9%, respectively. As

we employ the same CNN model (i.e., VGG-VD16) with

FC-CNN, FV-CNN and BCNN, we attribute the improve-

ments to the proposed global Gaussian embedding layer.

Finally, we note that our G2DeNet outperforms the previ-

ous methods [5, 10] by a large margin.

4.2.3 FGVC-Cars

The FGVC-Cars dataset [20] is also presented as a part

of the FGComp 2013 challenge, containing 16,185 images

from 196 car categories. Following the commonly used set-

tings, we adopt the provided roughly 50-50 split by divid-

2736

ing the data into 8,144 training images and 8,041 test im-

ages. We also compare with FC-CNN, FV-CNN, BCNN

and the other two state-of-the-art methods. The results

are reported in Table 4 (right-most column). It can be

seen that our G2DeNet outperforms BCNN by 1.9% when

VGG-VD16 is used. Combining VGG-VD16 and VGG-M,

BCNN improves but G2DeNet still has 1.2% gains. Mean-

while, G2DeNet performs better than recently reported re-

sult [43], and is comparable to the previous best result [18]

where the bounding boxes are employed.

4.3. Ablation Experiments and Analysis

Finally, we employ Birds-200-2011 dataset without

BBox to analyze the effects of different training methods

and Gaussian embedding strategies on G2DeNet. Here, the

experimental settings are the same as those in Section 4.2.

4.3.1 Training Methods

Firstly, we conduct experiments using three kinds of train-

ing methods based on VGG-VD16 model for our proposed

network. The first one (VD16-NoTr) combines global Gaus-

sian embedding layer with the VGG-VD16 model pre-

trained on ImageNet dataset in a non-end-to-end manner,

which can be seen as G2DeNet without any training. For the

second, we fine-tune VGG-VD16 model on birds dataset,

then combine global Gaussian embedding layer with the

fine-tuned VGG-VD16. This method is called VD16-FT,

which can be seen as training G2DeNet in a non-end-to-end

manner. The last one is our G2DeNet. We initialize it with

VGG-VD16 model pre-trained on ImageNet dataset, then

train our G2DeNet in an end-to-end manner. The results of

different training methods are illustrated in Figure 3. Our

G2DeNet outperforms VD16-NoTr and VD16-FT by 5.9%
and 3.6%, respectively. It shows that plugging the global

Gaussian embedding layer into the deep CNN trained end-

to-end is much better than those with no training and train-

ing separately, and it also demonstrates the effectiveness of

our structural backpropagation method.

4.3.2 Gaussian Embedding

To show the advantage of our Gaussian embedding strat-

egy in G2DeNet, we compare with the three other kinds of

Gaussian embedding methods as described in Section 3.4.

The results of different Gaussian embedding methods are

listed in Table 5. From it we can see that our introduced

embedding method achieves the best performance, outper-

forming the competing methods by 3% ∼ 3.6%. The per-

formance gains of our embedding method over [28] and

[4, 26] may be ascribed to the fact that ours appropriately

uses the Lie group structure of Gaussians, while the lat-

ter two only consider the manifold structure. The embed-

ding matrix in [4, 26] is symmetric positive definite, and

Figure 3. Effects of different training methods on G2DeNet using

VGG-VD16 on Birds-200-2011 dataset.

can be further subject to matrix logarithm [2], which, how-

ever, produces unsatisfactory results. From the perspective

of computing, [4, 26] keep the eigenvalues of
[

Σ+��
�

�

�
� 1

]

as they are, while [4, 26] + Log-Euclidean [2] and ours per-

form nonlinear scaling of the eigenvalues by logarithm and

square root, respectively. We conjuncture that the nonlinear

scaling can be seen as a kind of eigenvalues normalization,

and the square root may be more favorable than the loga-

rithm in such scenarios. The above analysis may account

for why different embedding strategies perform differently

but this issue needs further study in the future.

Method Acc. (%)

Nakayama et al. [28] 83.5

Calvo et al. [4] or Lovrić et al. [26] 84.1

Calvo et al. [4] or Lovrić et al. + Log-Euclidean [2] 83.8

Ours 87.1

Table 5. Comparison of different Gaussian embedding methods for

the G2DeNet methodology on Birds-200-2011 dataset.

5. Conclusion

This paper proposed to plug a trainable layer of a global

Gaussian distribution as an image representation into deep

CNN architectures in an end-to-end learning fashion. It can

capture discriminative first- and second-order image char-

acteristics while appropriately utilize the structures of ge-

ometry and smooth group of Gaussians. The competitive

performance on large-scale region classification and chal-

lenging fine-grained recognition tasks demonstrate the ef-

fectiveness of our proposed method. As far as we know,

we are among the first who explicitly combined paramet-

ric statistical modeling with deep CNNs in an end-to-end

manner. This may motivate interests and efforts in plugging

other parametric distributions into CNNs, e.g., generalized

Gaussian distribution [30]. The proposed global Gaussian

embedding layer is modular and is of no parameter to learn,

readily applicable to AlexNet or VGG-Net, and combining

this layer with other CNN models (e.g., Inception [36] and

ResNet [12]) is our future research. We will also study other

applications of the proposed method, e.g., image retrieval.

2737

References

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.

NetVLAD: CNN architecture for weakly supervised place

recognition. In CVPR, 2016. 1, 3

[2] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Fast and

simple calculus on tensors in the Log-Euclidean framework.

In MICCAI, 2005. 2, 5, 8

[3] S. Branson, G. V. Horn, P. Perona, and S. J. Belongie. Im-

proved bird species recognition using pose normalized deep

convolutional nets. In BMVC, 2014. 7

[4] M. Calvo and J. M. Oller. A distance between multivariate

normal distributions based on an embedding into the Siegel

group. JMVA, 35(2):223–242, 1990. 3, 5, 8

[5] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic seg-

mentation and part localization for fine-grained categoriza-

tion. In ICCV, 2013. 7

[6] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In CVPR, 2015. 1, 6,

7

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In CVPR, 2009. 5

[8] L. Gong, T. Wang, and F. Liu. Shape of Gaussians as feature

descriptors. In CVPR, 2009. 3

[9] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, 2014. 1

[10] P. H. Gosselin, N. Murray, H. Jégou, and F. Perronnin. Revis-

iting the Fisher vector for fine-grained classification. Pattern

Recogn. Lett., 49:92–98, 2014. 7

[11] A. Gretton, K. Borgwardt, M. Rasch, B. Schlkopf, and

A. Smola. A kernel method for the two sample problem.

In NIPS, 2007. 1

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 8

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 7

[14] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In

ICCV, 2015. 1, 2, 4, 5, 6, 7

[15] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

arXiv, abs/1509.07838, 2015. 4

[16] M. Jaderberg, K. Simonyan, A. Zisserman, and

k. kavukcuoglu. Spatial transformer networks. In NIPS,

2015. 7

[17] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and

C. Schmid. Aggregating local image descriptors into com-

pact codes. IEEE TPAMI, 34(9):1704–1716, 2012. 3

[18] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained

recognition without part annotations. In CVPR, 2015. 6,

7, 8

[19] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev,

T. Duerig, J. Philbin, and L. Fei-Fei. The unreasonable effec-

tiveness of noisy data for fine-grained recognition. In ECCV,

2016. 6

[20] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D object rep-

resentations for fine-grained categorization. In Workshop on

3D Representation and Recognition, ICCV, 2013. 2, 5, 7

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 5

[22] P. Li, Q. Wang, H. Zeng, and L. Zhang. Local Log-Euclidean

multivariate Gaussian descriptor and its application to image

classification. IEEE TPAMI, 39(4):803–817, 2017. 3

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollr, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014. 2, 5

[24] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN

models for fine-grained visual recognition. In ICCV, 2015.

1, 2, 6, 7

[25] L. Liu, C. Shen, L. Wang, A. van den Hengel, and C. Wang.

Encoding high dimensional local features by sparse coding

based Fisher vectors. In NIPS, 2014. 1

[26] M. Lovric, M. Min-Oo, and E. A. Ruh. Multivariate nor-

mal distributions parametrized as a Riemannian symmetric

space. JMVA, 74(1):36–48, 2000. 3, 5, 8

[27] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. Technical re-

port, 2013. 2, 5, 7

[28] H. Nakayama, T. Harada, and Y. Kuniyoshi. Global Gaussian

approach for scene categorization using information geome-

try. In CVPR, 2010. 1, 3, 5, 8

[29] J. B. Oliva, D. J. Sutherland, B. Póczos, and J. G. Schneider.

Deep mean maps. arXiv, abs/1511.04150, 2015. 1, 6

[30] F. Pascal, L. Bombrun, J.-Y. Tourneret, and Y. Berthoumieu.

Parameter estimation for multivariate generalized Gaussian

distributions. IEEE TSP, 61(23):5960–5971, 2013. 8

[31] A. Rahimi and B. Recht. Random features for large-scale

kernel machines. In NIPS. 2008. 1

[32] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image

classification with the Fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013. 1, 3, 6

[33] G. Serra, C. Grana, M. Manfredi, and R. Cucchiara. GOLD:

Gaussians of local descriptors for image representation.

CVIU, 134:22–32, 2015. 1

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

5

[35] L. T. Skovgaard. A Riemannian geometry of the multivariate

normal model. Scand. J. Stat., 11(4):211–223, 1984. 3

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 8

[37] P. Tang, X. Wang, B. Shi, X. Bai, W. Liu, and Z. Tu. Deep

FisherNet for object classification. arXiv, abs/1608.00182,

2016. 1, 3

[38] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for MATLAB. In ACM on Multimedia, 2015. 5

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical re-

port, 2011. 2, 5, 6

2738

[40] Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust es-

timation of approximate infinite dimensional Gaussian with

application to material recognition. In CVPR, 2016. 1, 6, 7

[41] H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. El-

gammal, and D. Metaxas. SPDA-CNN: Unifying semantic

part detection and abstraction for fine-grained recognition. In

CVPR, 2016. 7

[42] X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian. Picking

deep filter responses for fine-grained image recognition. In

CVPR, 2016. 7

[43] F. Zhou and Y. Lin. Fine-grained image classification by

exploring bipartite-graph labels. In CVPR, 2016. 7, 8

2739

