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Abstract

Structured output support vector machine (SVM) based

tracking algorithms have shown favorable performance re-

cently. Nonetheless, the time-consuming candidate sam-

pling and complex optimization limit their real-time appli-

cations. In this paper, we propose a novel large margin ob-

ject tracking method which absorbs the strong discrimina-

tive ability from structured output SVM and speeds up by the

correlation filter algorithm significantly. Secondly, a multi-

modal target detection technique is proposed to improve the

target localization precision and prevent model drift intro-

duced by similar objects or background noise. Thirdly, we

exploit the feedback from high-confidence tracking result-

s to avoid the model corruption problem. We implement

two versions of the proposed tracker with the representa-

tions from both conventional hand-crafted and deep convo-

lution neural networks (CNNs) based features to validate

the strong compatibility of the algorithm. The experimental

results demonstrate that the proposed tracker performs su-

periorly against several state-of-the-art algorithms on the

challenging benchmark sequences while runs at speed in

excess of 80 frames per second.

1. Introduction

Visual tracking enjoys a wide popularity recently and has

been applied in many applications such as robotic services,

surveillance, human motion analyses, human-computer in-

teractions and so on. In this paper, we consider the most

general scenario of visual tracking, i.e., short-term, single-

object tracking with the target given in the first frame. The

most difficult point of this problem is to track the target at a

high speed for real-time applications while handle all chal-

lenging factors simultaneously both from background or the

target itself such as occlusions, deformations, fast motions,

illumination variations and so on.

Due to the lack of training samples, most existing track-

ers handle this problem from two aspects. The first one is
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to explore an effective tracking algorithm which can be de-

signed to be either discriminative [17, 9, 13, 15, 22, 1, 31]

or generative [24, 18, 16, 33] models. It seeks to design a

robust classifier or filter to detect the target, and establish

an optimal mechanism to update the model at each frame.

The other one is to exploit the power of the target rep-

resentation which may come from conventional handcraft

features [16, 18, 17, 9, 24] or high-level convolutional fea-

tures [15, 28, 23, 27, 21] from deep Convolutional Neural

Networks (CNNs). These methods improve performance

significantly from different aspects. However, to further

improve the performance by more complex tracking algo-

rithms or features, it would undoubtedly increase the com-

putational complexity, which would limit the real-time per-

formance of visual tracking.

The most popular and successful framework for visual

tracking is tracking-by-detection [14, 17, 34, 13, 22, 13]

which treats the tracking problem as a detection task and

learns information about the target from each detection on-

line. There are many classification algorithms used in this

framework, such as multiple instance learning [1], P-N

learning [17], online boosting [11, 12], support vector ma-

chines (SVM) [13, 15, 22, 31] and so on. Among them,

structured output SVM is demonstrated with an excellent

potential in this field [13, 22]. Structured output SVM is a

kind of classification algorithm which can deal with com-

plex outputs like trees, sequences, or sets rather than class

labels [26]. Hare et al. [13] employ this algorithm in the

visual tracking for the first time and improve tracking ac-

curacy considerably in several benchmarks [29, 30]. They

propose a tracking algorithm named Struck based on ker-

nelized structured output SVM where the output space is

defined as the translations of the target relative to the pre-

vious frame. However, Struck suffers from a high compu-

tational complexity by its complex optimization while its

training samples are still not dense enough. Therefore it op-

erates slowly and limits to extend to higher dimensional fea-

tures. Ning et al. [22] propose a dual linear structured SVM

(DLSSVM) algorithm which approximates nonlinear ker-

nels with explicit feature maps. DLSSVM improves track-

ing performance significantly, while its tracking speed is not
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fast enough for realtime applications, especially when scale

estimation is considered, as well as feature dimensions and

budgets of support vectors are increased. Thus, it is signif-

icant to design a novel tracking algorithm based on struc-

tured SVM which can not only absorb the strong discrim-

ination from structured SVM, but also process sufficiently

fast with higher dimensional features and more dense sam-

ples.

Recently, a group of correlation filter (CF) based trackers

[9, 14, 5, 2, 32, 4] have attracted extensive attentions due to

their significant computational efficiency. CF enables train-

ing and detection with densely-sampled examples and high

dimensional features in real time by using the fast Fourier

transform (FFT). Since Bolme et al. [4] introduce the CF

into the visual tracking field, several extensions have been

proposed to improve tracking performance. Henriques et al.

[14] propose a high speed tracker with kernelized correla-

tion filters (KCF) and multi-channel features which enables

further extension for high dimensional features while re-

maining the real-time capability. Danelljan et al. [5] figure

out the fast scale estimation problem by learning discrim-

inative CF based on a scale pyramid representation. One

deficiency of CF is the unwanted boundary effects intro-

duced by the periodic assumption for all circular shifts, that

would degrade the discriminative ability of tracking mod-

els. To resolve this issue, Danelljan et al. [7] introduce

a spatially regularized component in the learning to penal-

ize CF coefficients depending on their spatial locations and

achieve excellent tracking accuracy. However, this algorith-

m reduces the computational efficiency of CF and runs at a

reported speed of 5 frames per second (FPS). The evolution

of these methods motivate us to improve the discriminative

ability of CF based tracking algorithm and remain its high

operating speed.

With the great power in the feature representations, C-

NNs have been demonstrated significant success on many

computer vision tasks, including visual tracking. Recent

studies [27, 21, 28, 23, 15] have shown state-of-the-art re-

sults on many object tracking benchmarks. Ma et al. [21]

exploit features extracted from a pretrained deep CNN and

learn adaptive CFs on several CNN layers to improve track-

ing accuracy and robustness. Wang et al. [28] present a

sequential training method for CNN that is regarded as an

ensemble with each channel of the output feature map as an

individual base learner. These methods validate the strong

capacity of CNNs for the target representation at the cost of

time consumption and high requirements of computational

resources.

In this paper, we consider the problems mentioned above

and propose a large margin object tracking method with cir-

culant feature maps (LMCF). The main contributions of our

work can be summarized as follows:

• We propose a novel structured SVM based tracking

method which takes dense circular samples into ac-

count in both training and detection processes. A

bridge is built up to link our problem with CF, which

speeds up the optimization process significantly.

• We explore a multimodal target detection technique to

prevent the model drift problem introduced by similar

objects or background noise.

• We establish a model update strategy to avoid mod-

el corruption by the high-confidence selection from

tracking results.

2. Large Margin Object Tracking with Circu-

lant Feature Maps

In this section, we first present the problem formulation

of the large margin tracking method with circulant feature

maps. Next, we deduce a fast optimization algorithm that

builds up a bridge between our problem formulation and

the well-known correlation filter. Thirdly, a multimodal tar-

get detection method is proposed to improve the localiza-

tion precision and prevent model drift introduced by similar

objects or background noise. In the end, we present a mod-

el update strategy by exploiting the feedback from tracking

results to avoid the model corruption.

2.1. Problem formulation

We consider the tracking-by-detection framework in this

paper. When receiving a new frame, our goal is to learn a

classifier which can distinguish the target from its surround-

ing background in real time. The employed classifier is a

structured output SVM which is different from convention-

al binary discriminative classifiers. It can directly estimate

the relative movement between adjacent frames rather than

discriminate whether it is the target or not. Additionally, the

structured output SVM used here is distinct from the meth-

ods [13, 22] in both the variable definitions and the objective

function.

The object of large margin learning over structured out-

put spaces is to learn a function f : X → Y based

on the input-output pairs, where X is the input spaces

and Y is arbitrary discrete output spaces. In our case,

all the cyclic shifts of the image patch centered around

the target are considered as the training samples, i.e.,

Y = { (w, h)|w ∈ {0, ...,W − 1} , h ∈ {0, ..., H − 1}},

where W and H are the width and the height of the im-

age patch. Hence, the input-output pairs are defined as

(x,yw,h), where x ∈ X denotes the image patch which

contains and is proportional to the target bounding box at

center, yw,h ∈ Y represents its corresponding cyclic trans-

form. With different cyclic shifts yw,h, the pairs stand for

different image regions which contain diverse translated tar-

gets. The joint feature maps of these cyclic image patches
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are denoted as Ψ(x,yw,h), whose specific form depends on

the nature of the problem.

We aim to measure the compatibility between the input-

output pairs (x,y) with F : X × Y → R from which we

can acquire a prediction by maximizing F over the response

variable for a specific given input x. Then the general form

of the function f can be denoted as

f (x;w) = argmax
y∈Y

F (x,y;w) (1)

where we assume F to be a linear function, F (x,y;w) =
〈w,Ψ(x,y)〉 and w denotes the parameter vector which

can be learned from the soft-margin support vector machine

learning over structured outputs. F can also be extended

to nonlinear situation which will be discussed in the next

section. We penalize the margin violations by a quadratic

term, leading to the following optimization problem:

min
w

1

2
‖w‖

2
+ C

W−1
∑

w=1

H−1
∑

h=1

ξ2w,h

s.t.∀w, ∀h, ∀yw,h ∈ Y \y0,0 :

F (x,y0,0;w)− F (x,yw,h;w) >
√

∆(y0,0,yw,h)− ξw,h

(2)

where y0,0 denotes the observed output with no cyclic trans-

form and ξw,h is the slack variable which penalizes the mar-

gin violations. The regularization parameter C > 0 controls

the trade-off between training error minimization and mar-

gin maximization. ∆(y0,0,yw,h) quantifies the loss asso-

ciated with a prediction yw,h when the true output value is

y0,0. We define the loss function as

∆(y0,0,yw,h) = m (y0,0)−m (yw,h) (3)

where m (•) is designed to follow a Gaussian function that

takes a maximum value for the centered target and smoothly

reduces to 0 for larger shifts.

The optimization problem in Eq.2 pursues to ensure that

the value of F (x,y0,0;w) is greater than F (x,yw,h;w),
by a margin which depends on the loss function as Eq.3.

2.2. Fast online optimization

The conventional structured SVM in visual tracking is

solved by sequential minimal optimization (SMO) step [13]

or the basic dual coordinate descent (DCD) optimization

process [22]. Thus the tracking speed is limited due to their

high computational complexity. Inspired by [14], we pro-

pose a novel algorithm to employ Fourier transform to speed

up the optimization.

Following the constraint in Eq.2, we reformulate it by

adding Eq.4 into the constraint,

F (x,y0,0;w)− F (x,y0,0;w) >
√

∆(y0,0,y0,0)− ξ0,0

(4)

where ξ0,0 denotes the slack variable of the true output

which is set to 0. Then the optimization problem can be

rewritten as

min
w

1

2
‖w‖

2
+ C

W−1
∑

w=0

H−1
∑

h=0

ξ2w,h

s.t.∀w, ∀h, ∀yw,h ∈ Y :

F (x,y0,0;w)− F (x,yw,h;w) >
√

∆(y0,0,yw,h)− ξw,h

(5)

For clarity, we first formulate our optimization method

for the joint feature maps defined in the one-dimensional

domain, i.e., set W or H to 1. Here we set H = 1 and omit

h in the subscript temporarily. It can be generalized to two

dimensions in the same way. Now Eq.5 is reformulated as

min
w

1

2
‖w‖

2
+ C ‖ζ‖

2

2

s.t.∀w, ∀yw ∈ Y : wTΦ0 −wTΦ > Υ− ζ

(6)

where ζ = [ξ0, ..., ξW−1] represents the vector of slack

variables. Φ = [Ψ (x,y0) , ...,Ψ(x,yW−1)] is a circu-

lant matrix formed by the joint feature maps of all the

cyclic training samples and Φ0 = [Ψ (x,y0) , ...,Ψ(x,y0)]
is constructed with W duplicates of Ψ(x,y0). Υ =
[

√

∆(y0,y0), ...,
√

∆(y0,yW−1)
]

denotes the loss vec-

tor .

To solve the problem online, we define a new variable

z = ζ +wTΦ0 −wTΦ−Υ, z > 0. Plug z into the Eq.6:

min
w

1

2
‖w‖

2
+ C

∥

∥wTΦ−
(

wTΦ0 −Υ− z
)
∥

∥

2

2

s.t. z > 0
(7)

with the circulant nature of Φ, we have

wTΦ =
(

F−1

(

Ψ̂∗ (x,y0) ◦ ŵ
))T

(8)

where •̂ and F - 1 denotes the discrete Fourier transform

(DFT) and its inverse, ◦ represents the element-wise mul-

tiplication, Ψ̂∗ means the complex conjugate of Ψ̂.

There are two variables w and z to be solved in Eq.7.

Whenever one of them is known, the subproblem on the

other has a closed form solution. Thus similar to [34], we

introduce the alternating optimization algorithm to solve the

model efficiently by iterating between the following two

steps.

Update z. Given w, the subproblem on z becomes:

min
z

∥

∥z−
(

wTΦ0 −wTΦ−Υ
)
∥

∥

2

2
, s.t. z > 0 (9)

Then the closed form solution of z is:

z = max
{

wTΦ0 −wTΦ−Υ, 0
}

(10)
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Figure 1. Illustration of multimodal target detection in sequence human9 from OTB-15 [30]. The blue bounding box indicates the correct

location of target, the red one is an incorrect detection. The response of the target is weaker than the background area within the red

bounding box as shown in the middle. The unimodal detection will regard the highest peak as the target leading to false detection. The

proposed multimodal target detection will redetect the areas centered at other peaks to find the maximum peak among these response maps

as the right subfigure and locate the correct position of the target.

Update w. Given z, the subproblem on w becomes:

min
w

1

2
‖w‖

2
+ C

∥

∥wTΦ−
(

wTΦ0 −Υ− z
)∥

∥

2

2
(11)

In order to employ the correlation filter theory, we define

u0 = wTΦ0 which stands for a plane whose height is the

highest peak of wTΦ in the last iteration. Then the closed

form solution of w is:

ŵ =
Ψ̂∗ (x,y0) ◦ û

T

Ψ̂∗ (x,y0) ◦ Ψ̂ (x,y0) +
1

2C

(12)

where u = u0 − Υ − z and •

•
denotes the element-wise

division.

Nonlinear extension. The proposed linear model can be

extended to a nonlinear model by the kernel trick Kij =
〈ϕ (Ψ (x,yi)) , ϕ (Ψ (x,yj))〉 where ϕ (•) indicates the

implicit use of a high-dimensional feature space. The so-

lution w can be represented as w =
W−1
∑

w=0

αwϕ (Ψ (x,yw)).

The optimization now is rewritten as

min
α

αTF−1

(

k̂Ψ0Ψ0 ◦ α̂
)

+ C
∥

∥

∥
F−1

(

k̂Ψ0Ψ0 ◦ α̂
)

− (u0 −Υ− z)
T
∥

∥

∥

2

2

s.t. z > 0

(13)

where Ψ0 = Ψ(x,y0) and k̂Ψ0Ψ0 denotes the DFT of the

first row of the circulant kernel matrix K whose elements

are Kij . The closed form of the subproblem on α is:

α̂ =
ûT

k̂Ψ0Ψ0 + 1

2C

(14)

where •

•
denotes the element-wise division.

2.3. Multimodal target detection

Intuitively, when a new frame comes out, the transfor-

mation of the target y = f (s;w) is estimated by the Eq.1,

where s is the region in the new frame centered at the tar-

get position of the last frame. This can be sped up with

the learned model by FFT algorithm. The full detection re-

sponse map on all cyclic transform is obtained by

F (s,y;w) = F−1

(

Ψ̂∗

s0
◦ ŵ
)

= F−1

(

k̂Ψx0Ψs0 ◦ α̂
)

(15)

where Ψ•0 is short for Ψ(•,y0,0). The localization of the

target is estimated on the highest peak of the response map

which is defined as the unimodal detection in this paper.

However, the unimodal detection may be disturbed by sim-

ilar objects or certain noise leading to inaccurate detec-

tion. The inaccurate detection would further contaminate

the learned model due to incorrect training samples. Shown

as Figure 1, the peaks located at similar objects or back-

ground noise in the response map may approach, or even

surpass the peak at the target. As above analysis, the target

may locate at one of multiple peaks, all of them should be

taken into consideration.

Consequently, a multimodal target detection method is

proposed to improve localization precision further. For the

unimodal detection response map F (s,y;w), the multiple

peaks are computed by

P (s) = F (s,y;w) ◦B (16)

where B is a binary matrix with the same size as

F (s,y;w), which identifies the locations of local maxima

in F (s,y;w). The elements at the locations of local maxi-

ma in B are set to 1, while others are set to 0. All non-zero

elements in P (s) indicate multiple peaks in the response

map of s.
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(a) Occlusion (b) No update (c) Update

(d) No occlusion (e) Correct tracking (f) Incorrect tracking

Figure 2. The first column are the shots of sequence box from

OTB-15, where the red bounding boxes indicate the tracking re-

sults of LMCF with high-confidence update strategy and the green

ones belong to the LMCF-NU which updates the tracking mod-

el at each frame. The response maps in the second column are

corresponding to LMCF and the third column corresponding to

LMCF-NU. The red annotation in the last subfigure points out the

right position of the target in this response map.

When the ratios between multiple peaks to the highest

peak are greater than a predefined threshold θ, the cor-

responding image regions centered at those peaks are re-

detected through Eq.15. The target is finally identified to

locate at the maximum peak among these response maps as

shown in Figure 1.

Furthermore, to handle scale variation, we adopt a scale

searching strategy proposed by [5] at the detected location.

The difference between ours and [5] lies in that the scale

model is only executed when the detected results have high-

confidence as discussed in the next section.

2.4. Highconfidence update

Most existed trackers update tracking models [5, 22, 14,

2] at each frame without considering whether the detection

is accurate or not. Actually, this may cause a determinis-

tic failure once the target is detected inaccurately, severely

occluded or totally missing in the current frame. In the pro-

posed method, we utilize the feedback from tracking results

during the target detection to decide the necessity of model

update.

The peak value and the fluctuation of the response map

can reveal the confidence degree about the tracking results

to some extent. The ideal response map should have only

one sharp peak and be smooth in all other areas when the

detected target is extremely matched to the correct target.

The sharper the correlation peaks are, the better the loca-

tion accuracy is. Otherwise, the whole response map will

fluctuate intensely, whose pattern is significantly differen-

t from normal response maps as shown in the first row of

Figure 2. If we continue to use uncertain samples to update

the tracking model, it would be corrupted mostly as shown

in the second row of the Figure 2. So we explore a high-

confidence feedback mechanism with two criteria. The first

one is the maximum response score Fmax of the response

map F (s,y;w) defined as

Fmax = maxF (s,y;w) (17)

The second one is a novel criterion called average peak-to-

correlation energy (APCE) measure which is defined as

APCE =
|Fmax − Fmin|

2

mean

(

∑

w,h

(Fw,h − Fmin)
2

) (18)

where Fmax, Fmin and Fw,h denote the maximum, mini-

mum and the w-th row h-th column elements of F (s,y;w).
APCE indicates the fluctuated degree of response maps and

the confidence level of the detected targets. For sharper

peaks and fewer noise, i.e., the target apparently appear-

ing in the detection scope, APCE will become larger and

the response map will become smooth except for only one

sharp peak. Otherwise, APCE will significantly decrease if

the object is occluded or missing.

When these two criteria Fmax and APCE of the curren-

t frame are greater than their respective historical average

values with certain ratios β1, β2, the tracking result in the

current frame is considered to be high-confidence. Then

the proposed tracking model will be updated online with a

learning rate parameter η as

α̂t = (1− η) α̂t−1 + ηα̂

Ψ̂t
x0

= (1− η) Ψ̂t−1

x0
+ ηΨ̂x0

(19)

Figure 2 illustrates the importance of the proposed up-

date strategy. As shown in Figure 2, when the target is

occluded severely, the response map fluctuates fiercely in

the first row so that APCE reduces to about 10, while Fmax

remains strong enough. Under this circumstance, the pro-

posed high-confidence update strategy will choose not to

update the model in this frame, then the tracking model

won’t be corrupted and the target can be tracked success-

fully in the subsequent frames. Otherwise, the target will be

missed and the right peak will finally fade away.

An overview of the proposed method is summarized in

Algorithm 1.

3. Experiments

Since the proposed tracking algorithm is compatible

with different kinds of features for representing the target-

s, we implement experiments with both conventional fea-

tures based version LMCF and deep CNNs based version
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Algorithm 1 LMCF tracking algorithm

Input: Frames {It}
T

1
, initial target location p1, z = 0, u0 =

ones (W,H)
Output: Target locations of each frame {pt}

T

2
.

1: repeat

2: Crop an image region s from It at the last location pt−1

and extract its joint feature map Ψ(s,y0,0).
3: Detect the target location pt with the multimodal detection

via Eq.15 and Eq.16.

4: Estimate the scale of the target as [5].

5: Calculate Fmax and APCE with Eq.17 and Eq.18.

6: if Fmax and APCE satisfy the update condition, then

7: Train the u0, z and ŵ (α̂) with Eq.10 and Eq.12 (14).

8: Update the tracking model with Eq.19.

9: Update the scale estimation model as [5] with η.

10: end if

11: until end of video sequence.

DeepLMCF to validate the performance of the proposed

method.

We implement experiment on the OTB-13 [29] and OTB-

15 [30] benchmark datasets. All these sequences are an-

notated with 11 attributes which cover various challeng-

ing factors, including scale variation (SV), occlusion (OC-

C), illumination variation (IV), motion blur (MB), deforma-

tion (DEF), fast motion (FM), out-of plane rotation (OPR),

background clutters (BC), out-of-view (OV), in-plane ro-

tation (IPR) and low resolution (LR). To fully assess our

method, we use one-pass evaluation (OPE), temporal ro-

bustness evaluation (TRE), and spatial robustness evalua-

tion (SRE) metrics as suggested in [29]. The precision s-

cores indicate the percentage of frames in which the es-

timated locations are within 20 pixels compared to the

ground-truth positions. The success scores are defined as

the area under curve (AUC) of each success plot, which is

the average of the success rates corresponding to the sam-

pled overlap threshold.

We first analyze LMCF with the improvements from

multimodal target detection, high-confidence update strat-

egy and representation power of DeepLMCF on OTB-13.

Then we compare LMCF with 9 most related and state-of-

the-art trackers based on conventional features on OTB-13

and OTB-15. Finally, we present the attractive performance

of DeepLMCF compared with 9 up-to-date CNNs based

trackers on OTB-13. All the tracking results are using the

reported results to ensure a fair comparison.

3.1. Implementation details

The conventional features used for LMCF are composed

of HOG features and color names (CN) [9]. For the CNN

features of DeepLMCF, we use imagenet-vgg-verydeep-19

which is available at: http://www.vlfeat.org/matconvnet/.

The last three convolutional layers of this network are used

Table 1. Parameters of LMCF and DeepLMCF.

parameters LMCF DeepLMCF

padding 1.5 1.8

η 0.015 0.01

θ 0.7 0.7

β1 0.7 0.4

β2 0.45 0.3

C 10000 20000

to extract the features of the target and the weight of each

layer is respectively set to 0.02, 0.5 and 1 similar to [21].

Our tracker is implemented in MATLAB for LMCF with

a PC with a 3.60 GHz CPU and DeepLMCF with a tesla

k40 GPU. LMCF runs faster than 80 FPS while DeepLM-

CF runs faster than 10 FPS.

The optimization takes 10 iterations in the first frame

and 3 iterations for each online update. Similar to [5], 33

number of scales with a scale factor of 1.02 is used in the

scale model. The other parameters setting of LMCF and

DeepLMCF are shown in Table 1, where padding means

the magnification of the image region samples relative to

the target bounding box.

3.2. Analyses of LMCF

To demonstrate the effect of the proposed multimodal

target detection, high-confidence update strategy and rep-

resentation power of DeepLMCF, we first test with dif-

ferent versions of LMCF on OTB-13. We denote LMCF

without multimodal detection as LMCF-Uni, without high-

confidence update strategy as LMCF-NU and with neither

of these two as LMCF-N2. The characteristics and track-

ing results are summarized in Table 2. The mean FPS here

is estimated on the longest sequence doll in OTB-13 with

3872 frames.

As shown in Table 2, DeepLMCF shows the best track-

ing accuracy and robustness in all OPE, TRE and SRE eval-

uation metrics benefited by the hierarchical CNN features

and LMCF performs second while with the fastest speed.

Without multimodal detection, LMCF-Uni gets poor per-

formance because of false detection from similar objects or

background noise. Additionally, incorrect results are like-

ly leading to unwanted updates, resulting in the fact that

operating efficiency is lower than LMCF. Without high-

confidence update strategy, LMCF-NU updates the tracking

model in each frame, thus the tracking speed is dramatically

reduced to nearly half to LMCF and the accuracy is also less

than LMCF. Without both of these two, LMCF-N2 reaches

the last one in all evaluation metrics. Although the proposed

multimodal detection increases the detection time, our high-

confidence update strategy speeds up the model update pro-

cess significantly. Both of them improve the tracking per-

formance observably according to the experimental results.
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Table 2. Characteristics and tracking results of LMCF, DeepLMCF, LMCF-Uni, LMCF-NU and LMCF-N2. The entries in red denote the

best results and the ones in blue indicate the second best.

Trackers
multimodal high-confidence feature OPE TRE SRE mean

detection update representations precision success precision success precision success FPS

LMCF-N2 No No conventional 0.799 0.586 0.813 0.612 0.740 0.540 60.74

LMCF-Uni No Yes conventional 0.809 0.606 0.815 0.616 0.757 0.549 61.38

LMCF-NU Yes No conventional 0.813 0.605 0.820 0.619 0.750 0.545 46.45

LMCF Yes Yes conventional 0.839 0.624 0.829 0.625 0.760 0.552 85.23

DeepLMCF Yes Yes deep CNNs 0.892 0.643 0.877 0.649 0.850 0.596 8.11

Figure 3. The success plots of OPE, TRE, SRE on OTB-13 (left

column) and OTB-15 (right column). The numbers in the legend

indicate the average AUC scores for success plots. The years and

original sources of these trackers are also shown in the legend.

Results are best viewed on high-resolution displays.

3.3. Evaluation on LMCF

We evaluate LMCF with 9 state-of-the-art trackers de-

signed with conventional hand-crafted features including

Struck [13], MEEM [31], TGPR [10], DLSSVM [22], Sta-

ple [2], KCF [14], RPT [20], DSST [5] and SAMF [19].

Among them, Struck and DLSSVM are structured SVM

based methods, Staple, KCF, DSST, RPT and SAMF are CF

based algorithms, MEEM and TGPR are developed based

on regression and multiple trackers.

Figure 3 illustrates the success plots of top ten tracker-

s on both OTB-13 and OTB-15. LMCF performs best with

Figure 5. The precision and success plot of OPE on OTB-13. The

numbers in the legend indicate the average precision scores for

precision plot and the average AUC scores for success plot. Re-

sults are best viewed on high-resolution displays.

all OPE, TRE and SRE evaluation metrics in the two bench-

marks. Struck performed the first when the original bench-

mark [29] first came out, so that it is a good representa-

tion of its previous trackers. LMCF significantly improves

Struck by an average improvement of 15% in the average

AUC scores. The DSST and SAMF mainly focus on the s-

cale estimation, their speed are 24 FPS and 7 FPS as they

reported. Our method employs the scale estimation method

from DSST, but the proposed LMCF performs favorably

over the DSST as well as SAMF while runs more than 3

times faster than DSST and more than 11 times faster than

SAMF. As for tracking efficiency, Staple and KCF are the

only two with comparable reported speeds of 80 FPS and

172 FPS, while LMCF outperforms them in all evaluations.

Moreover, LMCF is also superior to other up-to-date track-

ers like MEEM, TGPR, RPT, SAMF and DLSSVM with a

significantly higher speed.

For detailed analyses, we also evaluate LMCF with these

trackers on various challenging attributes in OTB-13 as

shown in Figure 4. The results demonstrate that LMCF per-

forms well on most attributes, especially on occlusion, scale

variation, illumination variation, background clutter and out

of plane rotation.

3.4. Evaluation on DeepLMCF

To further improve the tracking accuracy and robust-

ness of LMCF, we implement DeepLMCF with deep C-

NNs based features. It is compared with 9 up-to-date C-

NNs based trackers including C-COT [8], DeepSRDCF[6],
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Figure 4. The success plots for 8 challenging attributes including background clutter, illumination variation, occlusion, deformation, out-

of-plane rotation, out-of-view, scale variation and in-plane rotation. The proposed LMCF performs best in almost all the attributes. Results

are best viewed on high-resolution displays.

HCF[21], HDT[23], STCT[28], CNN-SVM[15], SINT[25],

FCNT[27] and SiameseFC[3].

Figure 5 demonstrates the performance of DeepLMCF

with the 9 CNNs based trackers on OTB-13. Although the

proposed DeepLMCF scores the second following the C-

COT tracker on the precision and success scores, the track-

ing speed of DeepLMCF is 40 times faster than C-COT with

the speed from its reported results at about 0.25 FPS, which

is a severe limitation of its application. The most related

method to DeepLMCF is HCF due to the similar feature hi-

erarchy. But DeepLMCF keeps ahead of it especially on

success score mainly because the scale variations of the tar-

get are not considered by HCF. Moreover, HCF and Siame-

seFC are the only two with comparable reported speeds of

10 FPS and 58 FPS, while LMCF performs superiorly a-

gainst them in both evaluations. In summary, the proposed

DeepLMCF outperforms these trackers except for C-COT

while remains a comparably fast speed at more than 10 FP-

S.

4. Conclusion

In this paper, we propose a novel large margin objec-
t tracking method with circulant feature maps. A bridge
is built up to link the framework with correlation filter.
Hence, the proposed LMCF tracker absorbs the strong dis-
criminative ability from structured output SVM and speeds
up by the correlation filter algorithm significantly. In or-
der to prevent model drift introduced by similar objects
or background noise, a multimodal target detection tech-
nique is proposed to ensure the correct detection. More-
over, we establish a high-confidence model update strate-
gy to avoid the model corruption problem. Furthermore,

the proposed tracking algorithm is equipped with strong
compatibility, thus we also implement a deep CNNs based
version DeepLMCF to verify its outstanding performance.
Sufficient evaluations on challenging benchmark dataset-
s demonstrate that the proposed LMCF and DeepLMCF
tracking algorithms perform well against most state-of-the-
art methods including both conventional features and deep
CNNs features based trackers. It is worth to emphasize that
our proposed algorithm not only performs superiorly, but
also runs at a very fast speed which is sufficient for realtime
applications.
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