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Abstract

Deep Neural Networks (DNNs) have substantially im-

proved the state-of-the-art in salient object detection. How-

ever, training DNNs requires costly pixel-level annotations.

In this paper, we leverage the observation that image-

level tags provide important cues of foreground salient ob-

jects, and develop a weakly supervised learning method for

saliency detection using image-level tags only. The Fore-

ground Inference Network (FIN) is introduced for this chal-

lenging task. In the first stage of our training method, FIN is

jointly trained with a fully convolutional network (FCN) for

image-level tag prediction. A global smooth pooling layer

is proposed, enabling FCN to assign object category tags to

corresponding object regions, while FIN is capable of cap-

turing all potential foreground regions with the predicted

saliency maps. In the second stage, FIN is fine-tuned with

its predicted saliency maps as ground truth. For refinement

of ground truth, an iterative Conditional Random Field is

developed to enforce spatial label consistency and further

boost performance.

Our method alleviates annotation efforts and allows the

usage of existing large scale training sets with image-level

tags. Our model runs at 60 FPS, outperforms unsupervised

ones with a large margin, and achieves comparable or even

superior performance than fully supervised counterparts.

1. Introduction

Driven by the remarkable success of deep neural net-

works (DNNs) in many computer vision areas [23, 14, 11,

47, 48], there has been a recent surge of interests in training

DNNs using samples with accurate pixel-level annotations

for saliency detection [57, 26, 49]. Compared with unsu-

pervised methods [56, 22], DNNs learned from full super-

vision are more effective in capturing foreground regions

that are salient in the semantic meaning, yielding accurate

results under complex scenes. Given the data-hunger nature

of DNNs, their superior performance heavily relies on large

amounts of data set with pixel-level annotations for training.
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Figure 1. Image-level tags (left panel) provide informative cues

of dominant objects, which tend to be the salient foreground. We

propose to use image-level tags as weak supervision to learn to

predict pixel-level saliency maps (right panel).

However, the annotation work is very tedious, and training

sets with accurate annotations remain scarce and expensive.

To alleviate the need of large scale pixel-wise annota-

tions, we explore the weak supervision of image-level tags

to train saliency detectors. Image-level tags indicate the

presence or absence of object categories in the images and

are much easier to collect than pixel-wise annotations. The

task of predicting image-level tags focuses on the object

categories in the image and is irresponsible of the object

locations (Figure 1 left), whereas saliency detection aims to

highlight the full extend of foreground objects and neglects

their categories (Figure 1 right). These two tasks seem to be

conceptually different but inherently correlated with each

other. On the one hand, saliency detection provides object

candidates, enabling more accurate category classification.

On the other hand, image-level tags provide the category

information of dominant objects in the images which are

much likely to be the salient foreground. Moreover, recent

works [34, 58] have suggested that DNNs trained with only

image-level tags are also informative of object locations. It

is thus natural to leverage image-level tags as weak super-

vision to train DNNs for salient object detection. Surpris-
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ingly, this idea is largely unexplored in the literature.

In light of the above observations, we propose a new

weakly supervised learning method for saliency detection

using image-level supervisions only. Our learning method

consists of two stages: pre-training with image-level tags

and self-training using estimated pixel-level labels.

In the first stage, a deep Fully Convolutional Network

(FCN) is pre-trained for the task of image-level tags predic-

tion. To empower FCN with the ability of grounding image-

level tags in corresponding object regions, we propose a

global smooth pooling (GSP) layer, which aggregates spa-

tial high responses of feature maps into image-level cate-

gory scores. Compared with global average pooling (GAP)

and global max pooling (GMP), GSP alleviates the risks of

both overestimating and underestimating the object areas.

In addition, GSP takes a more general form of pooling op-

eration, making GAP and GMP its two special cases. Since

we focus on generic salient object detection, a new network,

named Foreground Inference Net (FIN) is designed. When

jointly trained with FCN for image-level tags prediction, the

FIN is capable of inferring a foreground heat map capturing

all potential category-agnostic object regions, which gen-

eralizes well to unseen categories, and provides an initial

estimation of the saliency map.

In the second stage, the self-training alternates between

estimating ground truth saliency maps and training the FIN

using estimated ground truth. To obtain more accurate

ground truth estimation, we refine the saliency maps pre-

dicted by the FIN with an iterative Conditional Random

Field (CRF). Instead of using a fixed unary term as in tradi-

tional CRFs, the proposed CRF performs inference by iter-

atively optimizing the unary term and the prediction results

in an EM-like procedure. In practice, the proposed CRF is

more robust to input noise and yields higher accuracy.

Our contributions are three folds. Firstly, we provide a

new paradigm for learning saliency detectors with weak su-

pervision, which requires less annotation efforts and allows

the usage of existing large scale data set with only image-

level tags (e.g., ImageNet [7]). Secondly, we propose two

novel network designs, i.e., global smooth pooling layer

and foreground inference network, which enable the deep

model to infer saliency maps by leveraging image-level tags

and better generalize to previously unseen categories at test

time. Thirdly, we propose a new CRF algorithm, which

provides accurate refinement of the estimated ground truth,

giving rise to more effective network training. The trained

DNN does not require any post-processing step, and yields

comparable or even higher accuracy than fully supervised

counterparts at a substantially accelerated speed.

2. Related Work

Fully Supervised Saliency Detection. Many supervised

algorithms, like CRFs [32], random forests [17, 19, 30],

SVMs [35], AdaBoost [60], DNNs [31, 25, 24], etc., have

been successfully applied to saliency detection. In partic-

ular, DNN based methods have substantially improved the

performance. Early works [46, 57, 26, 4] use DNNs in a

patch-by-patch scanning manner, leading to numerous re-

dundant computations. Recently, FCN based saliency meth-

ods [29, 49] have been proposed, with more competitive

performance in terms of both accuracy and speed. Never-

theless, training these models requires a large amount of

expensive pixel-level annotations. In contrast, ours only re-

lies on image-level tags for training.

Weakly Supervised Learning. Weakly supervised learn-

ing has been attracting increasingly more attention from ar-

eas like object detection [44], semantic segmentation [37],

and boundary detection [18]. In [38], weakly supervised

segmentation is formulated as a multiple instance learning

problem. A FCN is trained by using a GMP layer to se-

lect latent instances. Recently, [58] utilizes GAP to learn

CNNs for object localization from image tags. However,

both GMP and GAP perform hard selections of latent in-

stances, and are sub-optimal to weakly supervised learning.

To address this issue, [39] uses Log-Sum-Exp function to

approximate max pooling, while [20] proposes a weighted

rank-pooling layer to aggregate spatial responses by their

ranked indices. Our method bears a similar spirit but differs

from these works in two aspects. Firstly, these methods aim

to segment objects of the training categories, whereas we

aim to detect generic salient objects, which requires gener-

alization to unseen categories at test time and is more chal-

lenging in this sense. The FIN is proposed for this task and

has not been explored by these work. Secondly, we study

the general form of global pooling operation and propose a

new pooling method (i.e., GSP), which explicitly computes

the weights of feature responses according to their impor-

tance and is better suited to our task. Another line of works

is top-down neural attention models [42, 55], which require

both forward- and backward-propagation of a trained CNN.

In comparison, our method predicts saliency maps by only

forward passes. Due to end-to-end training, our predicted

saliency maps are also more accurate.

The exploration of weakly supervised learning in

saliency detection is limited. In co-saliency [10, 54], the

assumption that a group of images contain common objects

serves as a form of weak supervision. In [16], binary image

tags indicating the existence of salient objects are utilized to

train SVMs. To our knowledge, we are the first to leverage

object category labels for learning salient object detectors.

3. Weakly Supervised Saliency Detection

A CNN for image-level tags prediction typically con-

sists of a series of convolutional layers followed by sev-

eral fully connected layers. Let X be a training image, and
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Figure 2. Comparison between different pooling methods. First

and third rows: foreground maps produced by the FIN (Sec-

tion 3.2) with different pooling methods. Second and fourth rows:

refined saliency maps (Section 3.4) based on the foreground maps.

l ⊆ {1, . . . , C} denotes its label set. The CNN takes im-

age X as input and predicts a C-dimensional score vector

ŷ. Training the CNN involves minimizing some loss func-

tion L(l, ŷ), which measures the accuracy of the predicted

scores based on the ground truth label set. Although the

CNN is trained on image-level labels, it has been shown that

higher convolutional layers are able to capture discrimina-

tive object parts and serve as object detectors. However, the

location information encoded in convolutional layers fails

to be transferred to fully connected layers.

Based on the above discussions, recent works on dense

label prediction tasks (e.g., semantic segmentation) have

mostly discarded fully connected layers and explore Fully

Convolutional Networks (FCNs) to maintain spatial loca-

tion information. Given an input image X , the FCN pro-

duces a subsampled score map S, with the k-th channel

Sk corresponding to the k-th class. High responses in Sk

indicate the potential object regions of class k. The FCN

can be easily trained with per-pixel annotations in a fully

supervised manner. In weakly supervised settings, where

only image-level labels are provided, some form of score

aggregationA(·) is required to predict the image-level score

sk = A(Sk) for class k based on the pixel-level score map

Sk. Image-level supervision can then be injected into the

FCN through the predicted class score. Both Global Max

Pooling (GMP) and Global Average Pooling (GAP) have

been intensively investigated in the literature for this pur-

pose. Next, we provide a discussion of both approaches and

propose a new smooth form of global pooling method.

3.1. Aggregation Through Global Smooth Pooling

Global pooling operation is independently performed in

each channel of the score map S. Without loss of general-

ity, we only consider the score map with one channel, i.e.,

S ∈ R
n×n. For a more compact notation, we stack all the

columns of the score map S into a vector s. Global pool-

ing can then be described in a general form as s = w⊺s,

where w ∈ △ denotes the non-negative weight vector, and

△ = {x : ‖x‖1 = 1,x � 0} denotes the probability sim-

plex. The value of w is determined according to different

pooling operations. For GMP, where only the maximum re-

sponse value is considered, the aggregation is performed by

the following maximization problem

s = max
w∈△

w⊺s, (1)

which can be simply solved by setting the weight of the

highest response to 1, while others to 0. For GAP, all the

responses are equally treated with the same value of weight,

i.e., s = 1
d

∑d
i=1 si, where si is the i-th element of feature

s, and d = n2 is the dimension of s.

Though, both GMP and GAP have been successfully

used for score aggregation, they are sub-optimal for ground-

ing image-level tags in object regions. Considering the fact

that higher convolutional layers act as object (part) detec-

tors, we may treat the score maps as spatial responses of an

ensemble of these detectors. Since GMP only focuses on

a single response, the detectors are trained using the most

discriminative object part. As a result, they mostly fail to

discover the full extend of objects. In contrast, GAP en-

courages the detectors to have the same response at all spa-

tial positions, which is irrational and leads to overestimated

object areas. See Figure 2 for an example.

We notice that the drawbacks of GMP are mainly caused

by the hard selection of the highest response, which in-

volves a non-smooth maximization problem (1). It can

be shown that these drawbacks are largely addressed by

smoothing the selection operation. To this end, we follow

the techniques in [36], and smooth the maximization in (1)

by subtracting a strong convex function of the weight vec-

tor w. For simplicity, we choose the L2 norm as the convex

function, and the smoothed GMP is formulated as

s = max
w∈△

w⊺s−
µ

2
‖w‖22, (2)

where µ is a trade-off parameter to balance the effect of

the two terms. As µ approximates 0, (2) is reduced to

GMP. When µ is sufficiently large, the maximization of (2)

amounts to the minimization of ‖w‖22, and requires each el-

ement of w equals to 1
d , which has the same effect of GAP.

Since the L2 norm of the weight w does not explicitly

contain information of feature responses, we omit this term

in the aggregated response s and only use (2) to determine

the weight. It turns out that the optimal weight ŵ can be

computed by a projection of feature s onto the simplex (3).

The proposed Global Smooth Pooling (GSP) can then be
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formulated in the following two steps:

ŵ = arg min
w∈△

∥

∥

∥

∥

1

µ
s−w

∥

∥

∥

∥

2

2

, (3)

s = ŵ⊺s. (4)

In the first step, the optimal ŵ can be computed in O(d)
time using the projection algorithm [9]. The second step

performs aggregation by a simple inner-production between

the feature and weight vectors. For score maps of multi-

channels, the GSP is applied to each channel independently.

The proposed GSP is motivated by two insights. Firstly,

by smoothing GMP, GSP jointly considers multiple high

responses instead of a single one at each time, which is

more robust to noisy high responses than GMP and enables

the trained deep model to better capture the full extend of

the objects rather than only discriminative parts. Secondly,

as opposed to GAP, GSP selectively encourages the deep

model to fire on potential object regions instead of blindly

enforcing high response at every location. As a result, GSP

can effectively suppress background responses that tend to

be highlighted by GAP. See Figure 2 for an example.

3.2. Foreground Inference Network

When jointly trained with GSP layer on the image-level

tags, the score map S generated by FCN can capture object

regions in the input image, with each channel correspond-

ing to an object category. For saliency detection, we do

not pay special attentions to the object category, and only

aim to discover salient object regions of all categories. To

obtain such a category-agnostic saliency map, one can sim-

ply average the category score map across all the channels.

However, there are two potential issues. Firstly, response

values in different channels of the score map often subject

to distributions of different scales. By simply averaging all

the channels, responses in some objects (parts) will be sup-

pressed by regions with higher responses in other channels.

In consequence, the generated saliency maps either suffer

from background noises (Figure 3 (a)) or fail to uniformly

highlight object regions (Figure 3 (b-d)). More importantly,

since each channel of the score map is trained to exclu-

sively capture a specific category of the training set, they

can hardly generalize to unseen categories (Figure 3 (e)).

The Foreground Inference Net (FIN) is designed to mit-

igate the above issues by integrating category-specific re-

sponses of score map S in a principled manner. The ba-

sic architecture of FIN consists of a sequence of convolu-

tional layers followed by one sigmoid layer. It takes the

image X as input and predicts a subsampled saliency map

F = [Fi,j ]
n×n. Through the final sigmoid layer, each ele-

ment Fi,j is in the range of [0, 1] and measures the saliency

degree of the subsampled pixel.

In weakly supervised learning, ground truth saliency

maps are not provided for directly training the FIN. We
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Figure 3. Comparison between the output of FIN and the averaged

score maps. The averaged score maps have noisy background re-

sponses (a), fail to uniformly highlight foreground (b-d), and can-

not generalize to unseen categories (e).

therefore propose an indirect method to jointly train the FIN

and FCN1 for image label prediction. Given the training

sample {X, l}. The input image X is fed forward through

both the FIN and FCN to obtain the foreground saliency

map F ∈ R
n×n and score map S ∈ R

n×n×C , respec-

tively. Before score aggregation, we mask each channel of

the score map with the foreground saliency map:

Ŝk = Sk ⊙ F , (5)

where Sk denotes the k-th channel of score map S; ⊙ rep-

resents the element-wise multiplication; and Ŝk is the k-

th channel of the masked score map Ŝ. Score aggregation

is then performed on Ŝk using the the proposed GSP to

predict image-level score ŝk for the k-th category. Both

FIN and FCN can then be jointly trained by minimizing

the loss function L(l, ŝ). The key motivation is as fol-

lows. Each channel of the score map S highlights the region

of one object category by spatial high responses. To pre-

serve these high responses in the masked score map Ŝ, the

saliency map F is required to be activated at object regions

of all categories. Similar ideas can also be found in the at-

tention models [51] and the convolutional feature masking

layer [6]. The attention model in [51] adopts GAP to ag-

gregate masked features, whereas we explore GSP. In [6],

each mask is generated by bottom-up region proposal meth-

ods [45] to characterize one object candidate. In compari-

son, we aim at learning FIN to automatically infer saliency

maps of all categories using weak supervision.

However, one may still concern that the FIN can easily

learn the trivial solution of having high responses at all loca-

tions. To prevent this trivial solution, we add an additional

1 Though FIN also has fully convolutional architecture, we exclusively refer

to FCN as the network that generates the category score map S.
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Figure 4. Overview of the network architecture. In the first stage, we jointly train FCN and FIN (b-e) for image categorization (f). In the

second stage, the FIN (b,d) is trained for saliency prediction (g).

sparse regularization on the generated foreground saliency

map F , leading to the following loss function:

minL(l, ŝ) + λ‖f‖1, (6)

where f denotes the vectorized version of saliency map F .

The first term encourages F to have high responses at fore-

ground, while the second term penalizes high responses of

F at background; λ is a pre-defined trade-off parameter.

Note that the regularization term in (6) is imposed on the

feature representations rather than the weight parameters,

which is reminiscent of a recent work [12], where L1 regu-

larization on feature is used to enforce better generalization

from low-shot learning. In contrast, we aim to produce ac-

curate saliency maps with less background noise.

Another lingering concern is that FIN trained on a fixed

set of categories may struggle in generalizing to unseen cat-

egories. To address this issue, we apply the masking op-

eration (5) to the intermediate score map rather than the

final one (See Section 3.3). The intermediate score map

does not directly correspond to object categories, As con-

firmed by [11], it mainly encodes mid-level patterns, e.g.,

red blobs, triangular structures, specific textures, etc., which

are generic in characterizing all categories. Consequently,

FIN can capture conspicuous regions of category-agnostic

objects/parts and can better generalize to unseen categories.

3.3. Pre­training on Image­level Tags

We now formally describe the first stage of the proposed

weakly supervised training method. We train the networks

on the ImageNet object detection data set, containing 456k

training samples over 200 object categories. Only image-

level tags of training images are utilized, while bounding

box annotations are discarded for fairness. The training im-

ages in the detection data set often contain multiple objects

from different categories, as opposed to the image classi-

fication data set with only one annotated category in each

image. Therefore, the object detection data set is more suit-

able for solving saliency co-occurrence problem [3].

Network architecture. Figure 4 overviews the network ar-

chitecture. As discussed in Section 3.2, the FIN for saliency

map prediction and the FCN for category score map predic-

tion are jointly trained. Since both networks have highly

correlated tasks, they can be trained with shared convolu-

tional features. Specifically, we design the shared network

(Figure 4 (b)) following the 16-layer VGG network [43],

which consists of 13 convolutional layers inter-leaved by

ReLU non-linearity and 4 max pooling layers. The FCN

and FIN are built as two sibling sub-networks on top of the

shared layers. The FCN consists of a convolutional layer

followed by a BN [15] and a ReLU layer. Instead of di-

rectly generating the object score map, FCN predicts an in-

termediate score map (Figure 4 (c)) of 512 channels corre-

sponding to mid-level category-agnostic patterns. The FIN

consists of a convolutional layer followed by a BN and a

sigmoid layer, and infers a saliency map F (Figure 4 (d)),

which is then used to mask the score map to obtain the

masked score map (Figure 4 (e)). A GSP layer is used to

aggregate the spatial responses in the masked score map

into a 512-dimensional image-level score, which is then

passed through a fully connected layer to generate a 200-

dimensional score ŝ for the 200 object categories. The out-

put layer is a sigmoid layer, which converts the category

score into category probability p(k) = 1
1+exp(−ŝk)

.

Training details. Given a training set {Xi, li}
N
i=1 contain-

ingN sample pairs, we train the network by minimizing the

following objective function

min
θ

−
1

N

N
∑

i=1

[

∑

k∈li

log(p(k|Xi;θ))

+
∑

k/∈li

log(1− p(k|Xi;θ))− λ
∥

∥f(Xi;θ)
∥

∥

1

]

+ η‖θ‖22,
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where θ denotes network parameters; The first and second

terms are cross-entropy loss to measure prediction accu-

racy; The third term is the L1 regularization on the predicted

saliency map f ; the last term represents weight decay; λ

and η are empirically set to be 5e-4 and 1e-4, respectively.

µ in (3) is set to 10. The weight parameters of shared layers

are initialized with the pre-trained VGG model [43], while

weights in the other layers are randomly initialized using

the method of [13]. All input images are down-sampled

to a fixed resolution of 256 × 256. The FIN has a stride

of 16 pixels, leading to output saliency maps of 16 × 16.

We minimize the above objective function using mini-batch

Stochastic Gradient Descent (SGD), with a batch size of

64, and momentum of 0.9. The learning rate is initialized as

0.01 and decreased by a factor of 0.1 for every 20 epochs.

3.4. Self­training with Estimated Pixel­level Labels

After pre-training, the coarse saliency maps generated by

FIN can already capture the foreground regions. In the sec-

ond training stage, we refine the prediction by iterating be-

tween two steps: a) estimating ground truth saliency maps

using the trained FIN, and b) finetuning FIN with the esti-

mated ground truth. To improve the output resolution, we

extend the architecture of FIN with two modifications (See

Figure 4). Firstly, we build three additional deconvolutional

layers on top of the 14-th convolutional layer, where the first

two layers have ×2 upsampling factors and the last layer

has a ×4 upsampling factor. Secondly, inspired by [33],

two skip connections from the 7-th and 10-th convolutional

layers are added after the first two deconvolutional layers,

respectively, to combine high-level features with semantic

meaning and low-level features with finer details. Mean-

while, two techniques are adopted to guarantee the quality

of the estimated ground truth: i) refinement with the pro-

posed CRF, and ii) training with a bootstrapping loss [41]

that is robust to label noise.

Refinement with the proposed CRF The input image

is first over-segmented into a set of superpixels Z =
{z1, z2, . . . , zm} using the method in [8]. Each super-

pixel zi is characterized by its mean RGB and LAB fea-

ture. According to the estimated saliency map F by FIN,

we label superpixel zi as foreground (αi = 1) if the mean

saliency value of its pixels is larger than 0.5, or back-

ground (αi = 0) otherwise. Two Gaussian Mixture Mod-

els (GMMs) are learned to model the foreground and back-

ground appearance, respectively, with each GMM contain-

ing K = 5 components. To refine the saliency labels

α = {α1, α2, . . . , αm}, a binary fully connected CRF is

defined over these labels with the following energy function

E(α;Z,ω) =
∑

i

ψu(αi; zi,ω) +
∑

i<j

ψp(αi, αj ; zi, zj),

(7)

Algorithm 1 Iterative CRF refinement.

Input: A set of superpixel Z and initial label set α0

Output: Refined label set α⋆.

1: Initialize α⋆ ← α0 .

2: repeat

3: Learn GMM parameters ω based on label α⋆.

4: Initialize P 0
i (αi) ∝ exp{−ψu(αi; zi,ω)}.

5: for t = 1, 2, . . . , T do

6: P t
i (αi)← exp

{

− ψu(αi; zi,ω)

−
∑

j 6=i ψp(αi, αj ; zi, zj)P
t−1
j (αj)

}

7: Normalize P t
i

8: end for

9: Update α⋆ ← argmax
α

∏

i P
T
i (αi).

10: until converge.

where ω = {ω0,ω1} indicates the parameters of GMM

models. The unary term is independently computed for

each superpixel based on the GMM models and defined as

ψu(αi; zi,ω) = − log
( p(zi|ωαi

)

p(zi|ω0)+p(zi|ω1)

)

, where p(zi|ωc)
denotes the probability density of superpixel zi belonging

to foreground (c = 1) or background (c = 0). The pair-

wise term enforces label consistency and has the form

ψp(αi, αj ; zi, zj) = 1(αi 6= αj)(ρ1g1(zi, zj)+ρ2g2(zi, zj)),

where 1(·) is the indicator function; g1 and g2 are Gaus-

sian kernels measuring similarity with weights ρ1 and ρ2,

respectively. Following [21], we define the kernel functions

considering both appearance and position information

g1(zi, zj) = exp

(

−
|pi − pj |

2

2γ21
−
|Ii − Ij |

2

2γ22

)

, (8)

g2(zi, zj) = exp

(

−
|pi − pj |

2

2γ23

)

, (9)

where Ii and pi are color feature and position of superpixel

zi. All hyper-parameters in ψp are set following [21].

Conventional CRFs find the optimal label set α⋆ to solve

the energy function. In comparison, we propose an EM-

like procedure by iteratively updating the GMM parameter

ω and the optimal label set α. Given the current optimal

α⋆, we minimize (7) by learning parameter ω of foreground

and background GMMs; when ω is fixed, we optimize (7)

via mean field based message passing to obtain α⋆. De-

tailed procedure is presented in Algorithm 1. The number

of iteration is set to 5 in all experiments. In each iteration,

message passing is conducted for T = 5 times. By jointly

updating GMMs and labels, our algorithm is more robust to

initial label noise, yielding more accurate refinement. After

refinement, we assign the label of each superpixel to all its

pixels to obtain a refined saliency map R.
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Figure 5. PR curves of unsupervised methods (first row) and fully supervised methods (second row). The proposed WSS significantly

outperforms unsupervised methods and compares favorably against fully supervised methods

Fine-tuning with the robust loss. We use the refined

saliency map R as the estimated ground truth to fine-tune

the extended FIN. To further reduce the impact of noisy la-

bels, we adopt the bootstrapping loss [41] for training:

LB(r,f) =−
∑

i

[

δri + (1− δ)ai
]

log(fi)

+
[

δ(1− ri) + (1− δ)(1− ai)
]

log(1− fi),

where r and f are vectorized version of estimated ground

truth R and the output saliency map F of the extended FIN;

ai = 1(fi > 0.5); i is pixel index; δ is a weight parameter

and fixed to 0.95 following [41]. The bootstrapping loss is

derived from the cross-entropy loss, and enforces label con-

sistency by treating a convex combination of i) the noisy la-

bel ri, and ii) the current prediction ai of the FIN, as the tar-

get. We solve the loss function using mini-batch SGD, with

a batch size of 64. The learning rates of the pre-trained and

newly-added layers of FIN are initialized as 1e-3 and 1e-2,

respectively, and decreased by 0.1 for every 10 epochs. In

practice, the self-training starts to converge after two iter-

ations of "ground truth estimation"–"fine-tuning". At test

time, the extended FIN directly generates the saliency maps

and no post-processing is required.

4. Experiments

Existing DNN-based methods adopt public saliency

data sets for both training and evaluation without a well-

established protocol for choosing training/test sets. The us-

age of different training sets in different methods leads to

inconsistent and unfair comparisons. In addition, most ex-

isting data sets are originally built for the purpose of model

evaluation rather than training, with inadequate amounts of

samples for training very complex DNNs. To facilitate fair

comparison and effective model training, we contribute a

large scale data set named DUTS, containing 10,553 train-

ing images and 5,019 test images. All training images

are collected from the ImageNet DET training/val sets [7],

while test images are collected from the ImageNet DET test

set and the SUN data set [50]. Accurate pixel-level ground

truths are manually annotated by 50 subjects. The data set

can be found at our webpage2. To our knowledge, DUTS is

currently the largest saliency detection benchmark with the

explicit training/test evaluation protocol. For fair compari-

son in the future research, the training set of DUTS serves as

a good candidate for learning DNNs, while the test set and

other existing public data sets can be used for evaluation.

We evaluate our Weakly Supervised Saliency (WSS)

method on the test set of DUTS and 5 public data sets:

SED [2], ECSSD [52], THUR [5], PASCAL-S [30] and

HKU-IS [26]. We compare WSS with 16 existing meth-

ods, including 7 unsupervised ones: FT [1], DSR [28],

HS [53], MR [53], wCtr [59], MBS [56], BSCA [40]; and 9

fully supervised ones: DRFI [17], HDCT [19], LEGS [46],

MC [57], MDF [26], DS [29], SELD [25], DCL [27],

RFCN [49]. Except DRFI and HDCT, all supervised meth-

ods are based on DNNs pre-trained on ImageNet [7] classi-

fication tasks. Following existing works [53, 46], we eval-

uate all methods using Precision-Recall (PR) curves, Fβ

measure, and Mean Absolute Error (MAE).

4.1. Performance Comparison

It is unfair to directly compare supervised unsupervised

ones. Therefore, we compare methods within each setting.

The proposed WSS is compared with methods of both set-

tings to provide a more comprehensive understanding of

them. Both the PR curves in Figure 5 and the Fβ measure in

2 http://saliencydetection.net/duts

http://ice.dlut.edu.cn/lu
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Table 1. The Fβ measure of our method (WSS), the top 4 unsupervised methods, and top 7 fully supervised methods. All 7 supervised

methods use DNNs supervised by pixel-level labels. The bold fonts denote the best methods in each setting. The speeds are in the last row.

Unsupervised Weakly Fully

MR wCtr MBS BSCA WSS LEGS MDF MC DS SELD DCL RFCN

ECSSD 0.690 0.676 0.673 0.705 0.823 0.785 0.807 0.796 0.826 0.810 0.829 0.834

SED 0.782 0.786 0.776 0.756 0.838 0.800 0.795 0.817 0.794 0.815 0.825 0.813

PASAL-S 0.583 0.597 0.604 0.597 0.720 – 0.705 0.687 0.655 0.714 0.710 0.747

THUS 0.542 0.528 0.547 0.536 0.663 0.607 0.636 0.610 0.626 0.634 0.657 0.694

HKU-IS 0.655 0.677 0.663 0.654 0.821 0.723 – 0.743 0.788 0.769 0.853 0.856

DUTS 0.510 0.506 0.511 0.500 0.657 0.585 0.673 0.594 0.632 0.628 0.714 0.712

FPS 6.71 6.76 76.9 0.67 62.5 0.52 0.04 0.44 8.33 1.80 2.18 0.60

Table 1 show that WSS consistently outperforms unsuper-

vised methods with a considerable margin and compares fa-

vorably against fully supervised counterparts. Meanwhile,

WSS is also highly efficient with a real-time speed of 62.5

FPS, which is 8 times faster than supervised methods. Note

that most of the saliency detection data sets contain huge

amounts of objects not belonging to the 200 training cat-

egories. The superior performance of WSS confirms that

WSS can well generalize to these unseen categories. We

also perform additional evaluations to verify the generaliza-

tion ability of our method. We provide the quantitative and

qualitative results on unseen categories, the MAE results,

and the PR curves on PASCAL-S and ECSSD in the sup-

plementary material due to limited space.

4.2. Ablative Study

To further verify our main contributions, we compare

different variants of our methods. Denote FIN1 as the

saliency prediction of the FIN after the first stage pre-

training (Section 3.3), WSS1 and WSS1-CRF as the results

of FIN1 refined by the proposed iterative CRF and base-

line CRF with a fixed unary term, respectively. WSS1-

GAP and WSS1-GMP represent the variants of WSS1 by

replacing the proposed GSP with GAP and GMP, respec-

tively. WSS1-AVE denotes the variant of WSS1 by replac-

ing the FIN output with the average of score maps across all

channels. The Fβ on 5 data sets are demonstrated in Fig-

ure 6. Besides, we also re-implement the pooling methods

in [39, 20] and compare them wit GSP. Detailed results can

be found in the supplementary material.

Iterative CRF. WSS1 significantly outperforms FIN1

across all data sets, indicating the critical role of saliency

map refinement in the second training stage. Meanwhile,

WSS1 also improves the performance of WSS1-CRF with

a large margin in all the 5 data sets, which verifies the effec-

tiveness of the proposed iterative CRF over baseline CRFs.

GSP vs. GAP & GMP. The performance of WSS1-GMP is

higher than WSS1-GAP in most data sets, while WSS1 with

the proposed GSP consistently outperforms both WSS1-

GMP and WSS1-GAP, suggesting GSP is more suitable for

weakly supervised learning than GMP and GAP.

HKU-IS THUR PASCAL-S ECSSD DUTS
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Figure 6. Fβ measure of different variants of WSS.

FIN vs. Average Score Maps The performance of WSS1-

AVE is inferior than other variants. Even FIN1 without any

refinement significantly beats WSS1-AVE in 4 data sets.

This confirms the previously discussed disadvantage (Sec-

tion 3.2) of using the average score map as saliency estima-

tion, and further proves the contribution of the FIN.

4.3. Failure Cases

Since our method is trained on image-level tags only, it

sometimes fails to uniformly delineate the object regions in

very complex scenarios. We hope to mitigate this issue by

exploring various forms of weak supervision in the future.

5. Conclusions

This paper proposes a two-stage training method for

saliency detection with image-level weak supervision. In

the first stage, two novel network designs, i.e., GSP and

FIN, are proposed to estimate saliency maps through learn-

ing to predict image-level category labels. In the second

stage, the FIN is further fine-tuned using the estimated

saliency maps as ground truth. An iterative CRF is devel-

oped to refine the estimated ground truth and further im-

prove performance. Extensive evaluations on benchmark

data sets verify the effectiveness of our method.
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