
Multi-attention Network for One Shot Learning

Peng Wang1∗, Lingqiao Liu1∗, Chunhua Shen1,Zi Huang2, Anton van den Hengel1, Heng Tao Shen3

1The University of Adelaide, SA, Australia 2The University of Queensland, QLD, Australia
3University of Electronic Science and Technology of China, Chengdu, China

Abstract

One-shot learning is a challenging problem where the

aim is to recognize a class identified by a single training

image. Given the practical importance of one-shot learn-

ing, it seems surprising that the rich information present in

the class tag itself has largely been ignored. Most existing

approaches restrict the use of the class tag to finding sim-

ilar classes and transferring classifiers or metrics learned

thereon. We demonstrate here, in contrast, that the class tag

can inform one-shot learning as a guide to visual attention

on the training image for creating the image representation.

This is motivated by the fact that human beings can better

interpret a training image if the class tag of the image is

understood. Specifically, we design a neural network archi-

tecture which takes the semantic embedding of the class tag

to generate attention maps and uses those attention maps to

create the image features for one-shot learning. Note that

unlike other applications, our task requires that the learned

attention generator can be generalized to novel classes. We

show that this can be realized by representing class tags

with distributed word embeddings and learning the atten-

tion map generator from an auxiliary training set. Also, we

design a multiple-attention scheme to extract richer infor-

mation from the exemplar image and this leads to substan-

tial performance improvement. Through comprehensive ex-

periments, we show that the proposed approach leads to

superior performance over the baseline methods.

1. Introduction

The volume of data required to train current machine

learning technologies is one of the major limitations on the

range of problems they can usefully be applied to. Human

beings, in contrast, are often able to learn to identify a class

from a single training instance. One-shot learning is the

machine learning problem which aims to mimic this human

ability. One of the primary difficulties in one-shot learn-
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Figure 1. Given an exemplar image of a novel class, the objec-

tive of one-shot learning is to identify the images belonging to the

same class from a database. The left image is an exemplar image

of class tutu. Using the image solely can result in ambiguity in

recognition. If the class tag is understood that tutu is a kind of

clothing, it can help to focus the attention on the tutu parts and

consequently make more accurate decision.

ing is to generalize beyond the specific, single, training in-

stance, which inevitably requires identifying which parts of

the training image are important. The class tag is a useful

source of information which can help to identify the essen-

tial features of the class. However, most, if not all, existing

approaches use the class tag in a very restricted way, that is,

they turn to the class tag only when seeking other classes

from which to source exploitable classifiers [7, 19].

The approach we propose here uses the class tag to guide

an attention mechanism able to identify which parts of the

training image are most relevant. Our method is motivated

by the observation that human beings can better interpret an

exemplar image if its class tag is well understood. For ex-

ample, as illustrated in Fig. 1, from a single exemplar it is

difficult to understand which part of the image is relevant to

the class, which leads to ambiguity in recognition. But if we

understand that the class tag “tutu” implies a kind of cloth-

ing, we can infer that the region around the human body

is most relevant. Mimicking this process, in this paper we
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propose to use an attention mechanism to establish a corre-

spondence between the class tag and the visual content to

enable a better image representation for one-shot learning.

In contrast to the application of attention modules in

other tasks, such as visual question answering [27], our

method requires that the attention map generator can be

transferred to novel classes. In our work, we leverage dis-

tributed word embeddings [16] to represent the class tag to

capture the semantic relationships between different con-

cepts. Thus the attention map generator becomes a mapping

function from the word embedding and image features to at-

tention maps. We learn such a mapping from an auxiliary

dataset and we show that this mapping function does in fact

generalize to the exemplars of novel classes.

Another key novelty of our proposed network is that we

propose the idea of generating and using multiple attention

maps. There exists various clues that can help to recognize

a class e.g., different object parts and contextual scenes, the

visual appearance of which can vary significantly. A single

attention map can be insufficient to explore this informa-

tion and consequently may risk losing important cues. Mul-

tiple attention maps can alleviate this problem by offering

additional opportunities to extract useful information, thus

helping to create a more robust image representation.

To evaluate the proposed attention scheme for one-shot

learning we construct two datasets, one focusing on differ-

ent animal classes as in [12], the other containing a larger

number of generic object classes. These datasets are not

limited to this work, and can be used as benchmark for one-

shot learning. Comprehensive experiments conducted on

these two datasets demonstrate the advantage of our method

over baseline methods. In summary, the contributions of

this work are as follows:

• We show that class tag information can contribute one-

shot learning, and devise a novel method which is ca-

pable of exploiting this information.

• We propose an attention network that can generate at-

tention maps for creating the image representation of

an exemplar image in novel class based on its class tag.

• We further propose a multi-attention scheme to boost

the performance of the proposed attention network.

• We collect two new datasets and establish an experi-

mental protocol for evaluating one-shot learning.

2. Related Work

One Shot Learning. A variety of methods have ap-

proached the one-shot learning problem by transferring the

classifiers or metrics learned in previous categories resort-

ing to the class tag [7, 19, 15]. In [7], the authors represent

the object categories by a probabilistic model. They model

the knowledge learned in other classes as a prior proba-

bility function w.r.t. the model parameters, and given an

exemplar of a novel class, they update the knowledge and

generate a posterior density to recognize novel instances.

They learn a single prior for all categories, however, and

only three categories of models are employed to form the

prior. This impedes the generalization ability of the method.

The method in [19] takes a step further. They group cate-

gories into super-categories and learn a prior for each of

these super-groups. Given a single training image of a new

class, they first assign it to a super-category and then esti-

mate the parameters of the class resorting to the correspond-

ing super-category. Another type of works addressing the

one-shot learning problem using the essential idea of metric

learning, which tries to map the image features into a space

where images of the same class are close to each other while

instances belonging to different classes are separated. The

authors in [10] present a typical method of this kind. They

train a Siamese network to identify the positive/negative

training pairs and apply the learned feature maps to novel

classes to verity whether two instances belong to the same

class. Recently, to overcome deep neural networks’ need

for a large amount of data to train a class, some efforts

[20, 23] have exploited the memory-augmented model to

quickly encode and retrieve sufficient information for the

new task. Note that many of the above existing methods

are orthogonal to our approach in the sense that they can be

applied on top of the image representation generated by our

networks.

Attention Models. Attention models have been applied

to a variety of computer vision problems including image

classification [25, 1, 8], semantic segmentation [3], visual

tracking [5], person identification [9], image captioning

[4, 6, 26] and question answering [27]. The focus of the

attention in each case varies with the application. The fo-

cus can be image parts [25, 1, 27], different scales [3] or

spatio-temporal regions [9]. Despite the different applica-

tion scenarios, the essential schemes of some attention mod-

els are similar. They use the training data to learn a network

that can adaptively locate the relevant information. In some

sense this is akin to implicitly learning a classifier or detec-

tor. Considerable training data is thus required to guarantee

the generalization of the network. In this paper, we generate

the attention map in a completely different way, which uses

the embeddings of class tags to emphasize the class-relevant

content. By exploiting the underlining semantic relation-

ship between the semantic representations [16] of class tags,

our attention model can work on novel classes even from

only a single training instance. Our method is also related

to saliency detection [11]. The objectives, however, are dif-

ferent. Saliency detection aims at identifying salient objects

within an image and segmenting the object boundaries. Our

goal is rather to place the attention on visual content that is

relevant to the class tag without the requirement of accurate

localization.

2722



snowshoe

CNN

...

visual encoding

attention detector learning

h1

h2

...
...

g1 g2...

word 

representation

attention 1   attention 2

visual 

features

classification

image feature

coding 

vectors

attetnion 

detectors

semantic 

embedding

h1 h2

weighted pooling

kilt

snowshoe

...

turban

feature extraction

Figure 2. An illustration of the overview architecture of the proposed attention network.

3. Proposed Approach

In this section, we will elaborate on the proposed atten-

tion network for one-shot learning. We firstly give a formal

definition of the problem we study, and then illustrate the

overall architecture of the proposed network which is fol-

lowed by the detailed depiction of the key modules.

3.1. Problem Definition and Notations

Given an exemplar image Ie belonging to class c, our

task is to predict whether an image in a test set belongs to

class c. Without loss of generality, we represent each image

as a set of local features X = {xi}, xi ∈ R
dv , where dv

is the dimensionality of the local features. For each class

c, we define a vector c ∈ R
dw , representing the semantic

embedding of the class’ tag where dw is the dimensionality

of the tag embedding. A mapping function is learned from

image and class tag pairs, to attention maps. The mapping

is trained on an auxiliary dataset consisting of a category set

CN which does not overlap with {c} ({c} ∩ CN = ∅).

3.2. The Attention Network

3.2.1 Overview

The architecture of the proposed attention network is illus-

trated in Fig. 2. The input of the network is an image and its

associated class tag. The image is fed into a CNN to extract

the local visual features and the class tag is represented by

its distributed semantic embedding e.g., word2vector [14]

or GloVe [16]. We propose to use this embedding to guide

the visual attention in the image. Firstly we apply an en-

coder to map the local visual features into a set of coding

vectors. Then we generate an attention detector (or atten-

tion detectors) from the semantic embedding of the class tag

and apply this detector on the coding vectors to generate the

attention map (or attention maps). The attention map is then

used to perform weighted pooling on the coding vectors to

obtain the image-level representation. In the following sec-

tions, we elaborate the modules in our network.

3.2.2 Feature Extraction

Our method applies to any scenario where the input image

can be represented by a set of local features. In this work,

we extract the convolutional feature maps of a CNN and

view them as an array of local features. Other representa-

tions, such as extracting features from multiple object pro-

posals [22], could also be used. For the class tag, we use

the GloVe [16] pre-trained from a large-scale corpus as the

word embedding. If the class tag contains a phase with more

than one word, we average the embedding of each word in

the phase as the semantic representation of the class tag.

3.2.3 Visual Feature Encoding and Weighted Pooling

We apply a local feature encoder to each of the local fea-

ture. Formally, the encoder is a mapping function defined

as follows:

vi = f(Wvxi + bv), (1)

where f(a) = max(0, a) is a rectified linear unit (ReLU),

xi is a local feature, Wv ∈ R
d×dv and bv ∈ R

d are the

model parameters.
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Instead of directly aggregating these local features to cre-

ate the image representation, we pool these features via the

guidance of a set of attention maps. The basic form of this

pooling operation is as follows:

g =

|X |∑

i=1

viai, (2)

where ai indicates the attention value on the i-th coding

vector. In the following section, we introduce the details of

the calculation of ai.

Figure 3. Examples of generated attention maps, where the inten-

sity indicates the activeness of different regions. Two attention

maps are generated for each exemplar image and these two cat-

egories, “raft” and “church bell”, do not appear in the network

training phase.

3.2.4 Attention Map Generation

To generate the attention map, we first create an attention

detector from the semantic embedding of the class tag, that

is, we let:

h = Wsc+ bs, (3)

where c is the semantic embedding of the class tag, Ws ∈
R

d×dw and bs ∈ R
d are the model parameters to be learned.

The generated attention detector is then applied to each

coding vector to obtain its initial attention confidence score

a′i:

a′i = h⊤vi. (4)

Higher scores are expected on local regions that are relevant

to the class tag. This is driven by the objective function

i.e., emphasizing on irrelevant content results in an image

feature not discriminative which will be penalized by the

loss function. This confidence score is then normalized to

obtain the final attention value ai:

ai =
b(a′i)∑
i b(a

′
i)
, (5)

where b(·) is a function guaranteeing that the attention

scores are positive. We design two normalization strategies

here. For the first, we use a ReLU function:

b(a′i) = max(a′i, 0), (6)

and for the second, we use a Score Shifting scheme:

b(a′i) = a′i −min
j

({a′j}). (7)

The difference between these two strategies is that the for-

mer strategy completely ignores the negative-scored parts

which are identified as irrelevant by the attention detector

while the latter will consider both positive and negative de-

tection scores. In section 4.3.4 we conduct experiments to

compare these two normalization strategies.

Fig. 3 shows the examples of the attention maps gener-

ated from our attention module. As can be seen, the atten-

tion maps emphasize more on the parts that are relevant to

the class tag. Thus by applying weighted pooling with the

attention maps, the distraction from the irrelevant content of

an image class can be largely avoided. Note that the classes

in these examples are not seen at the training stage.

3.2.5 Multi-Attention Scheme

As one of the key novelties in our approach, we propose to

use a multiple-attention scheme to generate multiple atten-

tion maps. The advantage of using multiple attention maps

over a single attention map are twofold: (1) it can depict var-

ious aspects of an exemplar image, e.g., different attention

map highlights different parts of an object or highlights the

object and its visual context; (2) it reduces the risk of hav-

ing an incorrect attention map since more attention maps

means more chances of having at least one attention map

correctly focus on the relevant content. Fig. 4 shows such

an example. As can be seen, the single attention map fails to

focus on the “signboards” but they are captured when two

attention maps are used.

We realize the multiple-attention scheme by creating

multiple attention detectors {hk}. This is achieved by us-

ing t sets of (Ws

k,bs

k) as in Eq. 3. By applying the

same aforementioned normalization and weighted pooling

scheme, we finally create t pooling vector {gk}, which we

concatenate together to obtain the final image-level repre-

sentation:

G = [g1,g2, · · · ,gt]. (8)

3.3. Network Training

The purpose of the training stage is to learn an image

feature generator with the function form F (I, c), where I

is the input image and c is its associated class tag. At the

testing stage, we generate the image feature for an exem-

plar image Ie by using F (Ie, ce), where ce is its class tag.
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Then the distance between a test image It and Ie is cal-

culated via dist(It, Ie) = dist(F (Ie, ce), F (It, ce)). With

this distance, we can perform either image retrieval or im-

age classification task.

We train the image feature generator on an auxiliary

dataset which does not contain training samples from the

testing classes. To train the function F (·, ·), we apply a lin-

ear classifier on top of its generated features and use cross-

entropy loss to jointly train F (·, ·) and the classifier in an

end-to-end fashion. In practice, we use Stochastic Gradient

Descent (SGD) to train the network and apply weight decay

to regularize the model parameters.

At the testing stage, the classifier is discarded and only

F (·, ·) is used. This is because the class tag used in the

testing stage does not appear in the training stage.

single attention map two attention maps

Figure 4. Single v.s. two attention maps on class “signboard”.

4. Experiments

In this section, we will first introduce some imple-

mentation details, which is followed by the illustration of

the datasets constructed to evaluate one-shot learning task.

Then we will present some quantitative comparison be-

tween our method and some baseline methods. Finally, the

visualization of the attention maps will be given to quali-

tatively analyse the effectiveness of the proposed attention

scheme.

4.1. Implementation Details

We use the activations of the last convolutional layer of

VGG network [21] as visual features for images. Note that

we do not rescale the images into fixed size before feeding

them into the network but preserve their original sizes (or

aspect ratios). For class tag representation, we use GloVe

[16] to extract the 300-dimensional semantic embedding.

In the visual feature encoding stage, we encode the features

into 256 dimensionality.

4.2. Datasets

To evaluate the proposed attention network, we construct

two datasets from ImageNet [18]. For each dataset, the im-

ages are divided into two subsets and the classes of these

two subsets do not overlap. One subset is used as auxiliary

dataset for network training and the other to evaluate the

one-shot learning task. For simplicity, we name them the

auxiliary set and the evaluation set. In this paper, we have

two types of experimental settings. While one setting uses

only the evaluation set as the database from which to iden-

tify the images of a target class, the other setting is more

challenging in that it uses both the evaluation set and aux-

iliary set as the database. Through out this paper, we name

the former setting “close-word” setting and the latter setting

“open-world” setting.

4.2.1 Animal Dataset

We construct the Animal Dataset based on a benchmark

dataset for zero-shot learning, Animals with Attributes [12].

That dataset consists of 50 animal classes and provides a

real-valued attribute vector for each class. Since the dataset

does not provide the raw images, we collect the images un-

der each animal class from ImageNet. We use the same split

protocol as in [12], that is, we use 40 categories for network

training and the other 10 classes for one-shot learning eval-

uation. We employ the attribute vectors provided in [12] as

one of the semantic representations of the class tags.

4.2.2 Artifact Dataset

The Animal Dataset tries to transfer the knowledge learned

from 40 categories to 10 novel categories, where all the cat-

egories are animals. To verify the tansferability in a more

general range of classes, we collect another dataset called

the Artifact Dataset. In this dataset, we use the 1000 classes

in the classification task of ImageNet as network training

data and sample another 100 classes that do not appear in

the aforementioned 1000 classes from the synset “Artifact”

of ImageNet for one-shot learning task. Considering the

training and evaluation efficiency, instead of putting all the

images under a class into our dataset, we randomly sample

50 images per class.

4.3. Experimental Results

In this section, we demonstrate the experimental results.

Given an exemplar image of a class, the task is to iden-

tify the images having the same class label from a database,

which is similar to image retrieval. We use the images in

a class as the exemplar image in turn and the Mean Aver-

age Precision (mAP) in image retrieval is employed as the

evaluation metric.1

We will first show the performance comparison between

our method and some baseline methods. Then we delve into

the network structure to study the affect of the two afore-

mentioned attention score normalization strategies on the

one-shot learning performance. Finally, the visualization of

1Not that, as illustrated in section 3.3, we can evaluate classification

performance using nearest-neighbour classifier as well.
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some example attention maps will be shown to qualitatively

evaluate the proposed attention scheme.

4.3.1 The Comparison Methods

Note that the focus of the experiments is to show the advan-

tage of our attention based feature generation scheme for

one-shot learning task. Most existing approaches for one-

shot learning are orthogonal to our method in the sense that

they can be applied on top of the image feature generated

by our method. Here we compare the following methods.

• Global FC representation: we feed the whole image

into VGG network [21] and extract the activations of

the last fully-connected layer as the global image rep-

resentation. We perform PCA to decorrelate the di-

mensions and conduct ℓ2 normalization to normalize

the features. Cosine similarity is used to measure the

distance between images.

• Supervised encoding (SE): to verify the effectiveness

of the attention scheme, we choose another end-to-

end learning baseline, namely supervised encoding

[24, 13]. It first encodes each local visual feature into

a coding vector as in our method and then directly ag-

gregates these coding vectors to form an image repre-

sentation via sum pooling. The pooled feature is fed

into a classification layer for classification. The num-

ber in the parenthesis (if apply) indicates the dimen-

sionality of the coding vectors. The supervised encod-

ing method as well as the joint Bayesian [2] introduced

later are in some sense similar to the metric learning

fashion methods [10], the essence of which is to map

the images of the same class together and separate the

instances from different classes apart. Both supervised

encoding method and our method use the same auxil-

iary dataset to train the network.

• Supervised encoding + Joint Bayesian: the joint

Bayesian [2] is a very effective method for face verifi-

cation and can be applied to other scenarios as a gen-

eral metric learning method. We use the image feature

generated from supervised ecoding to learn the param-

eters and use a probabilistic measure of similarity be-

tween two images, introduced in [2], to verify whether

they belong to the same class.

• Zero shot learning: to demonstrate the importance of

having an image exemplar to learn a class, we im-

plement a state-of-the-art zero-shot learning approach

[17]. zero-shot learning tries to recognize a novel class

by just having a description of it. Here we use the at-

tributes provided in [12] as the class description. The

method consists of training and inference. At the train-

ing step, we use the descriptions and instances of the

training classes in the auxiliary dataset to learn a pro-

jection matrix V which maps from the visual feature

space to the attribute space. At inference step, we use

that matrix V to map the attribute of a novel class ce
into a linear model. This linear model can be used as

a classifier applicable to the images in the evaluation

dataset, where the images corresponding to class ce are

intended to have higher classification scores. We tune

the hyper-parameters via cross validation.2

• Attention: this denotes our network with a single at-

tention map. The content in the parenthesis (if apply)

indicates how to represent the class tag, attributes [12]

or word embedding [16]. The generated image feature

is ℓ2 normalized and cosine distance is employed as

the measure of similarity.

• Attention + Joint Bayesian: for fair comparison we

also apply the joint Bayesian [2] to the image repre-

sentation generated by our attention model. And the

same probabilistic measure in [2] is employed to iden-

tify whether two images belong to the same class.

• Multi-Attention: we generate and use multiple atten-

tion maps and the number in the parenthesis denotes

the number of attention maps adopted. For multi-

attention, we use word embedding [16] as the class tag

representation.

4.3.2 Results on Animal Dataset

Table 1 shows the experimental results on the Animal

Dataset. Note that the performance of FC is partially due

to the reason that it is trained to classify 1000 classes which

cover a subset of the testing animal classes. Supervised en-

coding is most comparable to our method. To show the de-

tailed comparison, we also give the comparison by class in

Table 3. It treats the local visual features equally and can, to

a large extent, suffer from the distraction influence of the ir-

relevant content. Benefiting from the guidance of the atten-

tion maps, our method can generate a more discriminative

image representation which focuses mainly on the relevant

content. A significant performance jump is observed when

multiple attention maps are adopted. As seen, two and five

attention maps both boost the recognition performance ob-

viously. Note that in the close-world scenario, two attention

maps achieves better performance.

Zero-shot learning method [17] has the worst perfor-

mance especially when distinguishing a novel class from

a wider range of classes in the open-world scenario. This

observation reveals the limitation of zero-shot learning and

2Using the tuned parameters we achieve 79.9% accuracy on Animal

with Attributes Dataset [12] which represents the state-of-the-art perfor-

mance.
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Table 1. Comparison of the attention network to alternative solu-

tions on the Animal Dataset.

close-world

Global FC 68.9%

SE 67.7%

Zero shot learning 55.2%

Attention (attribute) 72.4%

Attention (word vector) 74.0%

Multi-Attention (2) 82.4%

Multi-Attention (5) 77.7%

open-world

Global FC 42.8%

SE 42.1%

Zero shot learning 15.3%

Attention (attribute) 47.4%

Attention (word vector) 49.0%

Multi-Attention (2) 55.7%

Multi-Attention (5) 56.8%

highlights the importance of using visual clues when recog-

nizing a new class, even if there is only one example. An-

other interesting result here is that when using word embed-

ding [16] representing the class tag, our method achieves

better performance. This is beneficial for the generalization

of our method because defining the attributes for general

classes is difficult and labour intensive while the word em-

bedding can cover massive number of concepts, including

those people are not familiar with.

Table 2. Comparison of the attention network to alternative solu-

tions on the Artifact Dataset.

close-world

SE (256D) 27.8%

SE (512D) 28.2%

SE + Joint Bayesian 31.5%

Attention 34.5%

Attention + Joint Bayesian 36.8%

Multi-Attention (2) 50.5%

open-world

SE (256D) 11.6%

SE (512D) 12.2%

SE + Joint Bayesian 11.4%

Attention 15.2%

Multi-Attention (2) 28.2%

4.3.3 Results on Artifact Dataset

Table 2 demonstrates the results on the Artifact Dataset.

Again, we observe significant advantage of our method

over the comparing methods. For supervised encoding,

we encode the local visual features into two different di-

mensionalities 256 and 512 to see the affect of differnt di-

mensionalities of coding vectors. We can see doubling the

dimensionality only leads to minor performance improve-

ment. This means simply increasing the dimensionality of

the coding vector cannot help to capture more useful infor-

mation. When applying the joint Bayesian [2] to the image

representation generated by supervised encoding, the mAP

rises about 4% in close-world setting but remains almost the

same in open-world setting. When using a single attention

map to guide the local feature aggregation, it harvests about

7% and 4% higher recognition performance comparing to

supervised encoding in close-world and open-world settings

respectively. And when applying the joint Bayesian [2] to

our representation, we see further improvement. Again the

most significant performance jump happens when we apply

multiple attention maps. From Table 2 we can see, when

we use two attention maps, the performance is improved by

16% and 13% respectively in close-world and open-world

settings comparing to using single attention map. The ad-

vantage of having multiple attention maps is that it can pre-

serve more relevant information. An example is shown in

Fig. 4, where the “signboards” are ignored by the single at-

tention map but picked out when using two attention maps.

Table 4. Comparison of two different attention score normalization

schemes on the Artifact Dataset.

close-world
Score Shifting 32.0%

ReLU 34.5%

open-world
Score Shifting 15.2%

ReLU 15.2%

4.3.4 Two Schemes on Attention Score Normalization

Attention score normalization is an important step towards

network training and one-shot learning performance. An

important role of it is to preserve the relative importance

of different image parts. With this strategy, we alleviate

the requirement that the attention values of the useful parts

should remain stably high. Instead, we only need these

parts to obtain relatively higher attention values compared

to the distraction factors. In this part, we compare the per-

formance of the two normalization schemes introduced in

Eq. 6 and Eq. 7. The former is a ReLU function that ig-

nores the parts identified as irrelevant and the latter raises

all the attention values with the minimum score obtained
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Table 3. Comparison between supervised encoding and the proposed attention network on the Animal Dataset. Average precisions (%) for

each class are reported. The upper part shows the close-world results and the bottom part shows the open-world results.

Methods humpback whale leopard chimpanzee rat persian cat hippopotamus giant panda pig raccoon seal

SE 75.7 98.1 82.9 69.1 83.6 49.4 90.6 28.6 62.0 43.4

Attention 79.8 98.5 79.3 70.5 89.9 60.1 93.9 37.1 77.5 55.6

Multi-Attention (2) 73.1 96.4 86.8 82.0 90.6 77.3 93.5 67.5 80.4 69.1

Methods humpback whale leopard chimpanzee rat persian cat hippopotamus giant panda pig raccoon seal

SE 12.3 82.9 39.0 27.5 61.4 24.0 80.2 8.8 39.7 17.3

Attention 23.6 86.4 42.6 36.2 65.4 35.5 83.3 10.9 52.8 28.2

Multi-Attention (2) 21.2 80.2 47.3 47.4 65.2 40.6 84.0 26.8 54.6 39.0

chimpanzee leopard seal

giant panda rat koto

feeding bottlepogo sticktutu

Figure 5. Visualization of attention maps on novel classes. The first five examples are from the Animal Dataset and the remaining examples

are from the Artifact Dataset. Note that these classes do not appear in the network training stage.

from an image (Score Shifting). Both schemes can guar-

antee the attention maps are composed of positive values.

Table 4 gives this comparison on the Artifact Dataset. As

can be seen, they achieve comparable performance in the

open-world setting and ReLU outperforms Score Shifting

by 2% in the close-world setting. The results manifest that

both schemes can highlight the discriminative information

and ReLU may lead to superior performance because it can

further remove the distraction of some noisy content.

4.3.5 Attention Map Visualization

To qualitatively evaluate the proposed attention scheme, we

visualize some example attention maps generated on novel

classes in Fig. 5. Although these classes are not seen in the

network training stage, the generated attention maps suc-

cessfully highlight the content depicted by the class tags.

Interestingly, our method can work well in some challeng-

ing cases where the object concerned is small w.r.t the size

of the image, such as the “pogo stick” and “feeding bottle”

examples in Fig. 5. If we create the image feature by di-

rectly aggregating all the local features, these small objects

tend to be overwhelmed by the distraction content and this

can lead to the failure in image recognition. However, with

the guidance of the attention maps, our method can create a

more discriminative image representation.

5. Conclusion

We propose a novel method to exploit the class tag to

benefit one-shot learning. Specially, we design a neural net-

work that can generate attention maps for creating the im-

age representation of exemplar image in novel class based

on its class tag. To further boost the performance, a multi-

attention scheme is proposed. The framework can be ap-

plied to more general settings, e.g., few-shot learning, by

generating discriminative image representations resorting to

the class tag. This will be investigated in future work.
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