This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Recurrent Modeling of Interaction Context for Collective Activity Recognition

Minsi Wang,

Bingbing Ni,

Xiaokang Yang

Shanghai Jiao Tong University
mswangl994@gmail.com, {nibingbing, xkyang}@ sjtu.edu.cn

Abstract

Modeling of high order interactional context, e.g., group
interaction, lies in the central of collective/group activity
recognition. However, most of the previous activity recog-
nition methods do not offer a flexible and scalable scheme
to handle the high order context modeling problem. To
explicitly address this fundamental bottleneck, we propose
a recurrent interactional context modeling scheme based
on LSTM network. By utilizing the information propaga-
tion/aggregation capability of LSTM, the proposed scheme
unifies the interactional feature modeling process for single
person dynamics, intra-group (e.g., persons within a group)
and inter-group (e.g., group to group) interactions. The pro-
posed high order context modeling scheme produces more
discriminative/descriptive interactional features. It is very
flexible to handle a varying number of input instances (e.g.,
different number of persons in a group or different number
of groups) and linearly scalable to high order context mod-
eling problem. Extensive experiments on two benchmark
collective/group activity datasets demonstrate the effective-
ness of the proposed method.

1. Introduction

Analysis of collective activity groups provides useful in-
formation for several real-world applications including so-
cial role understanding and social event prediction. The
main challenge of collective activity recognition is mod-
eling of interactional context information among persons.
This is because that the number of persons involved in an
interaction is always varying. Moreover, in most cases a
collective activity is associated with several sub groups of
interactions, and how to model the group to group interac-
tion is even more challenging.

Previous methods for activity recognition mainly focus-
es on modeling unary features, e.g., single person appear-
ance or dynamics information [21, 26] and person to person
interaction (e.g., pairwise features) [22]. However, these
contextual information modeling schemes are not sufficien-
t for collective activity recognition. It is because that in
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Figure 1. The overview of proposed framework. A hierarchical
recurrent interactional context modeling framework is proposed to
model intra-group and inter-group interaction context.

collective activity, different activity categories might share
the same type of unary or pairwise features (e.g., “stand-
ing alone” in the cases of queueing or discussion, “facing
to same direction” in the case of walking and crossing). In
other words, besides modeling the intra-group interaction
(e.g., interaction among the persons within a group), how
to effectively describe the group to group interaction is of
more importance. Low order contextual features do not pro-
vide sufficient cues to recognize these activities. To address
this fundamental problem, most previous methods attemp-
t to encode the high order relationship among persons in
the scene by inferring the latent graphical structures [9, &].
However, applying these approaches for collective activi-
ty recognition is infeasible because these methods often re-
quires high computational cost in the case of tree-structured
model during inference and learning. Moreover, it is very
difficult to generalize methods based on graphical models to
handle higher order interactional context. Ni et al. [24] pro-
posed a causality analysis framework to encode unary, pair-
wise and group interaction features. However, this method
is only capable of modeling human trajectory level informa-
tion, which is insufficient to recognize finer-grained actions,
e.g., those can only be recognized by human appearance or
local body part dynamics.

A fundamental problem becomes: how to systematically
encode the high order human interactional context, i.e, the

3048



target method should be feasible for representing contextu-
al features among arbitrary number of interacting persons or
groups and the computational complexity scales well with
the context order. To this end, we propose a recurrent in-
teractional context encoding scheme based on Long-Short
Term Memory (LSTM) [16].

More specifically, we propose a hierarchical recurrent
interactional context encoding framework to handle three
level interactions, namely single human dynamics, within
group human interaction and group to group interaction.
First, spatio-temporal graph partition is performed to for-
m human interactional subgroups. Besides, we propose a
unified network architecture to model single person dynam-
ics, intra-group (persons within a interactional subgroup)
and inter-group (group to group) contextual features, based
on the sub-action encoder and long short-term memory (L-
STM) network. Moreover, we also propose to input unary
features encoded by sub-actions (e.g., move or pose) within
a spatial-temporal interaction group into our hierarchical L-
STM context encoding network. Here are the advantages of
this scheme. First, encoding each person dynamics by sub-
actions is sufficient enough to distinguish different action-
s. Second, using the recurrent contextual information ac-
cumulation/modeling scheme, modeling of different order
of contextual information is thus unified, as LSTM nodes
share parameters and therefore increasing the order can be
simply handled by adding another LSTM node. Third, the
model complexity of proposed scheme is linearly scalable
with respect to the context order. Extensive experimental
results on two benchmark collective/group activity datasets
well demonstrate the discriminative capability, flexibility of
modeling high order interactional context and robustness to
noisy human detections, by comparing to the state-of-the-
art group activity recognition methods.

The rest of the paper is organized as follows. We review
some related works in Section 2. In Section 3, we intro-
duce the proposed recurrent interactional context encoding
framework and the implementation details. Extensive ex-
perimental results and discussion are presented in Section 4.
Section 5 gives the conclusions.

2. Related Work

Collective/Group Activity Recognition. Many pervi-
ous works have been done on collective activity recogni-
tion focusing on contextual learning [6, 7], where the s-
patial distribution of atomic activities are applied to de-
scribe group activities. Amer et al.[2] detected the video
parts where the collective activities occur and made use of
these local visual cues in the detected parts for recogni-
tion. Lan et al. [22] proposed an adaptive latent structure
learning that represents hierarchical relationships ranging
from lower person-level information to higher group-level
interactions. In [21] and [26] the idea of social roles, the

expected behaviour of an individual person in the context
of group, is exploited in fully supervised and weakly su-
pervised frameworks respectively. Choi and Savarese [5]
have unified tracking multiple people, recognizing individ-
ual actions, interactions and collective activities in a joint
framework. In [7], a random forest structure is used to sam-
ple discriminative spatio-temporal regions from input video
fed to 3D Markov random field to localize collective activ-
ities in a scene. Shu et al. [30] detect group activities from
aerial video using an AND-OR graph formalism. Recently,
a probabilistic structured kernel method constructed based
on a multi-instance cardinality model is introduced in [15].
Furthermore, Deng et al. [9] introduced a neural network-
based hierarchical graphical model that predict group activi-
ty simultaneously. In [17], a LSTM based hierarchical deep
temporal model is proposed to model temporal dynamics
for group activity recognition.

Recurrent Neural Networks and LSTM. Recurren-
t neural networks especially the long-short term memory
models [16] have achieved great success in a large vari-
ety of applications including temporal modeling such as
natural language processing [33, 34] and speech recogni-
tion [14, 13], and non-temporal modeling such as image
caption generation [19, 37]. Several works have been pro-
posed to model action image sequences using RNN/LSTM
models. Veeriah et al. [36] proposed a differential gating
scheme for the LSTM neural network, which emphasizes
on the change in information gain caused by the salient
motions between successive frames. Donahue ef al. [10]
developed a novel recurrent convolutional architecture for
large-scale visual learning. They applied this model on sev-
eral tasks including benchmark video recognition, image
description, and video narration. Karpathy et al. [19] de-
scribed a multi-modal RNN architecture to generate image
descriptions. Wu et al. [38] extracted spatial and the short-
term motion features by two CNNs to further model longer-
term temporal clues. The two types of CNN-based features
are further combined in a regularized feature fusion network
for video event classification.

Recently, LSTM network is also applied in fine grained
action detection [25], human trajectory prediction [1], and
in object recognition in the context of recurrent visual at-
tention [3] [23] [29]. For collective activity recognition,
Ibrahim and Muralidharan [17] introduce a hierarchical
structured model, which incorporates a deep LSTM frame-
work to recognize individual actions and group activities.
They leverage LSTM-based temporal modelling to learn
discriminative information from time varying sports activity
data. However, person pooling is not able to model group to
group context. To solve this problem, in our works, a hier-
archical recurrent interactional context encoding framework
is proposed to model intra-group and inter-group interaction
context.
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Figure 2. The hierarchical recurrent interactional context encoding framework for collective/group activity recognition. Given tracklets of
N person, we feed each tracklet into spatial CNN and motion CNN respectively and concatenate their outputs, followed by a person level
LSTM network to represent person dynamics. Then, we utilize context encoder to model group level and scene level interaction context.
In the end, the encoding results are fed into LSTM network to identify the whole activity.

3. Methodology

In contrast to traditional activity recognition, collective
activity has its unique natures. In particular, the interac-
tion between human groups plays more important role in
collectivity (e.g., two groups stand face to face in the ac-
tivity discussion). To expand the difference between group
actions and to better represent them, we deploy contextual
binary encoder in our hierarchical group activity recogni-
tion scheme, which encodes the sub-action (e.g., move and
pose) information of people into person dynamics to enrich
person level features and make person action unique.

To model group-to-group interaction, a pipeline is pro-
posed as follows (which is illustrated in Figure.2). Firstly,
we perform human detection and tracking to generate hu-
man tracklets (e.g., a sequence of tracked human bounding
boxes). Then, we apply clustering/segmentation method to
partition all human tracklets into spatio-temporal consistent
groups. After that, we train the proposed hierarchical recur-
rent context encoding network to learn interactional context
features for 1) single human dynamics, 2) intra-group hu-
man interactions, and 3) inter-group interactions.

3.1. Interaction Volume Generation

Generate Human Tracklet. For fair comparison, the
input to our method is a set of tracklets of the people in a
scene provided by Choi et al. [5, 6].

Generate Human Groups. The key step to recognize
collective/group activities is to model the interactions be-
tween human groups as well as the interactions among each
group, therefore we must partition all the single human
tracklets in the video into human groups in prior to further
processing. We perform tracklets grouping/partition based
on the graph partition algorithm used as in [27]. The adja-
cency graph is constructed according to the relative spatial
distance and velocity between tracklets.

3.2. Context Encoding of Group Interaction

The goal of this work is to model group interaction in
collective activities. As discussed above, the input to our
group interaction modeling framework is a set of human
tracklets in the video as well as groupings of these tracklet-
s. To this end, we build a hierarchical scheme which mod-
els single person appearance dynamics, encodes sub-action
information to obtain within group human interaction and
group to group interaction in a bottom-up manner. For each
level of interaction modeling, sub-action encoder and RN-
N (e.g., LSTM) is utilized to aggregate a varying number
of entity level features as well as the relationship between
entities to a unified context feature representation, i.e., an
entity is corresponding to a person for within group contex-
t modeling, or a human group for group to group context
modeling. Details are given as follows.
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3.2.1 Single Person Interaction Context

Single person interaction context includes two cues: 1)
change of appearance of a person over time and 2) tempo-
ral dynamics of a person’s action, which provide important
cues for recognizing collective/group activity. For instance,
to distinguish between walking and queuing, whether the
person is standing still or moving is discriminative.

More specifically, given the tracklet (tracked spatio-
temporal volume) of a person (I; for tracklet in original
image and Iif for tracklet in corresponding flow image),
we employ long short-term memory (LSTM) models to en-
code temporal evolution of an individual person. Motivated
by the success of deep convolutional neural network fea-
tures (DCNN) in representing image patch/region level vi-
sual characteristics and optical flow algorithm in represent-
ing motion of objects, in this work, similar to [31, 12] we
use Flownet [ 1] to generate flow images for each frame
and extract DCNN features from each human bounding box
along the tracklet (both original images and flow images),
which serve as the input sequence to the LSTM model.

We denoted by X = {x1,x2, - ,zr} the sequence of
input features, i.e., x; the feature vector fused by concate-
nating original and flow features input to the ¢-th LSTM
node. The corresponding state and output of each LSTM
node is denoted by h; and o, respectively. Each LSTM n-
ode includes three gates, (i.e., input gate 7, output gate o
and forget gate f) as well as a memory cell. At each time
step ¢, given the input z; and the previous hidden state h;_1,
LSTM updates as follows:

iy = o(Wizs + Ushs—1 + Vicg—1 + b;) (D
Je=0Wyxy +Ushy—1 + Vici—1 + by) ()
ct = ft © ci—1 + iy © tanh(Weay + Uchy 1 +be)  (3)
or = o(Wory + Uphy—1 + Vocr + b,) “4)
he = 0y © tanh(cy) (5)

where o is the sigmoid function and ® denotes the element-
wise multiplication operator. W, U, and V are the weight
matrices, and b, are the bias vectors. The memory cell ¢;
is a weighted sum of the previous memory cell ¢;_; and a
function of the current input. The weights are the activa-
tions of forget gate and input gate respectively. On the one
hand, the hidden state h; could be used to represent the spe-
cific atomic action the person is performing at time ¢, e.g.,
walking or standing still. On the other hand, h, also con-
tains the aggregated action information of that person from
the first time stamp to ¢, e.g., person dynamics.

3.2.2 Intra-Group and Inter-Group Interaction Con-
text

As mentioned above, person in the scene are partitioned in-
to several groups according to their spatio-temporal prox-

imity. It is then important to model the interaction within
each group, i.e., person to person interaction. Most previ-
ous methods on interaction modeling are usually based on
the pairwise features, e.g., relative distance or relative ve-
locity between persons, and these methods are difficult to
be generalized to cope with higher order interactional con-
text, i.e., when the persons in the group is more than two.

To address this issue, we propose a LSTM based context
encoding framework to model interactional context. Name-
ly, we first encode the person level features based on their
sub-actions (e.g., move and pose), then order the person lev-
el features by z or y coordinate of the center of person in im-
age and input them into another LSTM network. The aggre-
gated output of this LSTM network serve as the intra-group
person to person interactional context. In other words, per-
son level dynamics are enriched by encoder and collected
over all people in the group, so that it can be used to describe
the group interactional activity within the group. Note that
this scheme is flexible to encode the contextual information
among arbitrary number of persons in the group. We will
first introduce context encoding and then illustrate its ap-
plication in inter-group and intra-group interaction context
modeling.

Context Encoding. The single person level modeling
has recognized overall person dynamics and to model the
intra-group and inter-group interaction context, more infor-
mation in detail is needed to explore the pattern of group
action. Some graphical structures [5, 22, 26] have been dis-
covered to model pairwise interaction context, however they
can not represent whole interaction context sufficiently and
efficiently. Here, context encoding is proposed to model w-
hole interaction context among all people in image and it
will scales well with increasing number of entities involved
in the context (i.e., context order).

Inspired by [6], we use spatial-temporal information to
encode context. In Figure.3, given sub-action information
for each person, our context encoder aims to encode sub-
action information into person dynamics to enrich person
level features. Two types of sub-actions (e.g., move and
pose) are deployed in encoder, which is enough to describe
the action of individuals in our experiments (Section 4).

According to traditional binary code, there are usually
{0,1} after encoding. But for neural network, input {0}
usually means no input. Thus, we define {—1,0,1} to rep-
resent the code where {0} means the element makes no
sense. For encoding sub-action move, there are three ele-
ments {—1,0,1} to be represented, where {—1,0,+1} de-
notes move left, stand still and move right respectively (dot-
ted lines in Fig.3). We encode the sub-action move by cal-
culating the motion in = coordinate as Eq. (6).
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where Azy, = (2§ — ') and z{ denotes the z coor-
dinate of the center of bounding box I, of corresponding
person in time stamp ¢. p indicates the threshold for de-
termining whether person moves (e.g., if motion of person
is less than pu pixels, the person is treated as stand still).
Moreover, to represent the sub-action of eight types of ac-
tion pose (e.g., eight directions people face to) annotated in
dataset, we utilize 3-bit code (range from O to 7) to repre-
sent eight orientation for pose and the way to encode pose
is shown as solid lines in Figure.3.

Also, to better represent person’s character in group, sub-
action information (e.g., move and pose) is encoded into the
feature of person dynamics according to Eq. (7),

yP = el x OP 2 x OF, ... cF x OF] (7)

7 )

where cF denotes k th bit of code for i th person in group,
O? is the output of person level LSTM (p indicates per-
son level in OY) for ¢ th person and [ ] denotes vector con-
catenation in Eq. (7). (e.g., assume the dimension of Of is
1 x 1024, [cF] is 4 bits code then the dimension of ¢! is
1 x 4096). We use binary code because of its nature that
every bit has two types of opposite value corresponding to
opposite direction in sub-actions (e.g., move or pose). In our
paper, it is strongly recommended to perform the sub-action
augmentation for model robustness (Section 3.3).
Inter-group and Intra-group Interaction Contex-
t Modeling. Next, for within group interaction modeling,

after performing context encoding, encoded features y? can
be directly fed into intra-Group or inter-Group LSTM net-
work for training (Group-Level or Scene-Level in Figure.2).
Given the annotation of frame, LSTM can learn the coding
rule and is able to decode the code at prediction phase.

Significantly, one problem is that recursive network in-
cluding LSTM only accepts ordered input sequence, i.e.,
time series. However, in our case the set of person level
features are orderless. Therefore, a fundamental process-
ing step is to perform some ordering/alignment scheme to
facilitate the subsequent processing. For such a purpose,
we use spatial cues to order the encoded person level fea-
tures within a group to input to the LSTM network. More
specifically, we order the person level features by the x or y
coordinates of the respective tracklets and form two LSTM
input sequences ( z coordinate is better in our works). For
each direction, we obtain a spatially aggregated interaction
context representation which indicates the person to person
interaction along that direction (e.g., ordered by x coordi-
nate from left to right in Figure. 3).

The modeling of group to group (inter-group) interac-
tional context is similar with intra-group context model-
ing. Namely, group level representations are first encoded
by common sub-action information (usually different from
within group), ordered by the x or y coordinates of the ge-
ometric centers of each group and input to another LSTM
network and the aggregated network output serves as the
scene level (group to group) interaction representation.

3.3. Implementation Details

We trained our model in three steps (person-level, group-
level, scene-level). In addition, there is context encoding
step when modeling intra-group and inter-group context.
The network structures and parameters of our proposed hi-
erarchical model are defined as follows:

1. Level 1 Network (Person Context). We extract D-
CNN features based on models pre-trained on Ima-
geNet [28]. Two CNN networks are applied, and the
spatial CNN (AlexNet [20]) is for original images and
the motion CNN (GoogleNet [35]) is for flow images.
Typically, the motion CNN is not needed to train when
performing person level training. More specifically, a
single layer LSTM network is placed after concatena-
tion layer. Therefore the dimensionality of the LSTM
cell input is 4096 + 1024 = 5120. Each LSTM layer
contains 1024 hidden units. The number of output u-
nits is set as the number of class (e.g., action label or
scene label).

2. Context Encoding. The person level features are trans-
formed following Eq. (6) (7) and the encoded features
are the input of next network after being ordered by the
x coordinate.

3052



3. Level 2 Network (Group Context). The input to this
LSTM network is the output of the person level con-
text network after context encoding. The outputs of
spatial CNN, motion CNN and person level LSTM are
concatenated, therefore the dimensionality of the input
vector to each LSTM cell is 4096 + 1024 + 1024 =
6144 if context encoding step do not change its dimen-
sion. Single layer LSTM network is adopted, and each
LSTM layer contains 1024 hidden units.

4. Level 3 Network (Scene Context). The input to this
LSTM network is the output of the group level con-
text network after context encoding, and the structure
is similar as group level network. Differences between
group level and scene level network are the dimension-
ality of input that depends on encoding results.

The training process is performed on Caffe [18]. All the
input patches of images are resized to 227 x 227 pixels and
subtracted by the image mean. Our training procedure fol-
lows a bottom up manner. Namely, we firstly train the per-
son level context network. The output of the level 1 network
serves as the input to Level 2 network after context encod-
ing to train the group context network. Finally, the output
of Level 2 network is used to train Level 3 scene contex-
t network after context encoding (Figure. 2). For Level 1
network, the input DCNN features are extracted by the Im-
ageNet pre-trained model.

To train all networks, the learning rate for person level
network is fixed value 0.00001. The original learning rate
for LSTM network is 0.0001, and the learning rate is de-
creased to % of the original value after every two epochs.
All LSTM networks are trained/tested using the implemen-
tation of [10]. To represent person level context for a video
sample, we input all the person tracklets into Level 1 net-
work and choose the last one of outputs as feature vector.
Similarly, to represent group level context for a video sam-
ple, the last one of level 2 network outputs is chosen as the
input of next level network.

Data Augmentation for Sub-action. Due to the lack of
training data and the difference between training and testing
data, our model cannot encode all the direction of move and
orientation of pose. In order to increase model robustness,
a novel data augmentation method is deployed to avoid the
weakness of context encoding. We perform data augmen-
tation not only augment the diversity of input image but al-
so augment the diversity of composition of binary codes.
The data augmentation method for sub-action is shown in
Figure. 4. Assume that there are two people in group and
the corresponding pose labels are {0, 5} (blue lines in Fig-
ure. 4). For every person in image, we do the augmentation
by rotating @ = 180° one time for move or % = 45°
seven times for pose (red lines in Figure. 4). Then binary
codes are changed, but interaction context between them is

1[-1,-1,+1]

\

0[-1,-1,-1]

before rotation

5 [+1,-1,+1 — after rotation

\» 6 [+1,+1,-1]

Figure 4. Data augmentation method for sub-action.

—— rotation

kept (group activity is not changed). We aim to cover all
situation by doing proposed sub-action data augmentation.

4. Experiments

We perform extensive experiments on the Collective Ac-
tivity Dataset [6] and Choi’s new Dataset [5] to validate the
ability of learning context information, also compare our
results with the state-of-the-art methods. And in depth dis-
cussions are also provided.

Due to the fact that the popular dataset introduced in [6]
and [5] lacks sufficient diversity of background and large e-
nough training data, sometimes what happens in image can
be inferred by classifying the background of that image. In
order to avoid the effects of background and focus on the
analysis of interaction, proposed method ignores the infor-
mation of background and does not use it in any steps.

4.1. Collective Activity Dataset

The Collective Activity Dataset has been widely used
for evaluating group activity recognition performance. This
dataset contains 44 video clips acquired by using low reso-
lution handheld cameras. And there are eight person-level
pose labels, five person level action labels, and five group-
level activities in this dataset. A scene is simply assigned
with what the majority of people are doing. We follow the
train/test splits as suggested in [22], use the tracklet data
provided in [5] and only use five group-level activities for
training. Context encoder is not applied.

The Collective Activity Dataset consists of collective ac-
tivities, Crossing, Standing, Queuing, Walking and Talking.
According to [6], the Walking class is ill-defined as it is
more like a single person activity than a collective one. Ad-
ditionally, the only difference between class Walking and
Crossing is the relation between person and street. There-
fore, we merge class Walking and Crossing as class Moving
and report the Mean Per Class Accuracy (MPCA) of Walk-
ing and Crossing as the accuracy of Moving. Due to the
imbalanced test set, we report MPCA.

For person level network, proposed method using spatial
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Table 1. Results (%) on Collective Activity Dataset [6]. The results
of class Walking and Crossing are merged as Moving. Pooling de-
notes pooling-SVM method. Mean Per Class Accuracy (MPCA)
are shown for comparsion.

Class [22] [5] [17] [15]  Pooling Ours
Moving 92 90.0 959 87 94.2 94.4
Waiting 69 829 664 75 50.3 63.6
Queuing 76 954 968 92 100.0  100.0
Talking 99 949 995 99 99.5 99.5
MPCA 84 90.8 89.7 883 858 89.4

and motion CNN to recognize action is inspired by [3 1, 12]
and it is most similar to the work [17]. Thus, we implement
the model of [17] by performing a pooling-SVM structure
with motion feature and no person level annotation (Ta-
ble 1, Pooling). The results of our method are shown in
Table 1 and compared with the following methods (1) Lan
et al. [22], (2) Choi et al. [5], (3) Ibrahim et al. [17], (4)
Hajimirsadeghi et al. [15]. Note that results of others are
calculated from corresponding original confusion matrix in
[22,5, 17, 15].

As shown in Table 1 and Figure 5, the performance of
our method is on the same level with the state-of-the-art
methods. All of our results are comparable to baseline [17].
The difference between [ 1 7] and our model is that we do not
use person action label but utilize optical flow information
for training and testing. And it is clear that our model has
improved performance compared to pooling-SVM method
(i.e., the method [!7] with motion feature and no person
level annotation). It demonstrates that LSTM can aggregate
context information and its feature aggregation ability can
be used in feature pooling. The result of pool-SVM has a
lower accuracy than our method. It is partly because pool-
ing method can not well distinguish the class Waiting and
Queuing which have nearly the same motion features. Be-
sides, compared to pooling-SVM and our model with oth-
ers, it shows that classification performance for the action
class Waiting is unsatisfactory. Note that we do not use
person-level pose labels and person level action labels, and
class Waiting always occurs with class Crossing and Walk-
ing at the same time, which may be a factor in confused
prediction.

From this experiment, we validate the ability of learning
context information for LSTM and show a novel method of
recognizing group activity without person level annotation
by using LSTM to aggregate features.

4.2. Choi’s New Dataset

The Choi’s New Dataset [5] is composed of 32 video
clips with 6 collective activities: gathering, talking, dis-
missal, walking together, chasing and queueing. There are
9 interaction labels, 3 atomic action labels, 8 pose labels
and 6 group-level activities. We use all labels for training
except 9 interaction labels. The atomic actions are labelled

Moving Moving

Waiting Waiting
Queuing

Queuing

Talking Talking

Moving ~ Waiting  Queuing  Talking Movng ~ Waiting ~ Queuing  Talking
(b) Ours

Figure 5. Confusion matrix on Collective Activity Dataset [0] (re-
gard Walking and Crossing as the same class Moving). (a)
Confusion matrix of baseline [17]; (b) Confusion matrix of our
method.

(a) Baseline

as walking, standing still, and running. The whole sets are
divided into 3 subsets' and we run 3-fold training and test-
ing as suggested in [5]. In experiments, we use the tracklets
provided on the website of the authors of [6].

We employ hierarchical recurrent interactional contex-
t encoding framework to recognize group activity on this
dataset. Firstly, person level network is applied to deter-
mine atomic action of each person in image. We encode
each feature according to group information generated by
the method in Section 3.1. In the end, encoded features are
fed into group level or scene level network to determine fi-
nal class. Note that we use various thresholds for encoding
sub-action move (e.g., Th0, Thl and Th2 denote model-
s that threshold p equals to 0, 1, 2 respectively in Table 2),
which is the boundary we define move left or right and s-
tand still (e.g., if motion of person is less than 2 pixels, the
person is treated as stand still in T'h2 model).

We also compare our activity recognition results with the
state-of-the-art methods. The methods for comparison in-
cludes: 1) Chang et al. [4], 2) Choi et al. [6] and 3) Choi et
al. [5]. We implement the method [ | 7] with motion features
(i.e. optical flow images) on this dataset for comparison.
As shown in Table 2, our method achieves a remarkable
breakthrough in recognizing group activity in Choi’s new
dataset [5]. Our model namely ThO further improves the
Multi-Class Accuracy (MCA) performance to 89.4% and
Th1 achieves best MPCA, 85.2%. This demonstrates that
our contextual modeling scheme is effective.

Actually, there are atomic labels (move, stand still and
running) instead of activity labels for each person in sec-
ond dataset. So in Table 2, the method [17] doesn’t work
well without context encoder. Compared with its results,
our method improves the performance by a large margin in
both MCA and MPCA.

The confusion matrix of our method is also illustrated
in Figure. 6. We note that the classification performance
for the class dismissal is relative low, while the classifica-

Utest set 1: [1,2,7, 12, 13, 19, 20, 21, 26, 27, 30];
test set 2: [3, 5, 10, 11, 15, 16, 17, 18, 24, 25, 31];
test set 3: [4, 6, 8,9, 14, 22, 23, 28, 29, 32];
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Table 2. Results (%) on Choi’s New Dataset [5]. Both multi-class
accuracy (MCA) and MPCA are shown because of class size im-
balance. T'h0 denotes the threshold  is zeros while Th1 and Th2
denote threshold p is equal to 1 and 2 pixels respectively.

Class [4] [6] [5] [17] ThO Thl Th2
Gathering 599 500 435 307 719 719 728
Talking 97.0 727 822 914 959 959 959
Dismissal 90.5 49.2 77.0 31.6 684 737 747
Walking 943 832 874 824 86.6 852 789
Chasing 539 952 919 823 892 892 89.2
Queuing 863 959 934 69.6 955 955 955
MCA - 774 83.0 78.1 894 892 873
MPCA 803 743 792 647 84.6 852 845

71.93%

Gathering 7.02% 0.00% 0.88% -

Talking 95.87% 1.83% 0.00% 0.92% -

Dissmissal 12.63% 68.42% 13.68%

Walking [~ 4.18% 0.00%

Chasing - 3.85% 0.00%

Queuing - 3.18% 0.00%

0.45% 0.91% 0.00%

r r r r r

Gathering Talking Dissmissal Walking Chasing

Queuing
Figure 6. Confusion matrix on Choi’s New Dataset [5] obtained
by using our hierarchical recurrent interactional context encoding
model.

tion accuracy for the class gathering is higher. On the one
hand, this is due to the reason that context encoder cannot
distinguish “moving into image plane” from “moving out of
image plane”. On the other hand, action gathering, talking
and dismissal are temporal continuous process in the same
video, as a result, it is hard to determine which class it be-
longs to in the transition from gathering into talking and the
transition from talking into dismissal.

4.3. Discussion

Above all, LSTM based recurrent interactional context
encoding scheme for group activity recognition is feasible
in feature aggregation and it is predictable that it will suc-
cess in processing large database in the future. In future, we
attempt to boost performance by applying VGGnet [32] in
our model.

Besides, proposed model works well in modelling group
action which consists of various sub-actions. For view vari-
ance, ordering persons is an indirect way to model relative
spatial information among each person and it does not in-
tend to get absolute ordering. Thus, in general, it does not
matter whatever the view angle changes. What the people
do in corresponding ordering is important (See Figure. 7).

a view

1 person ‘ é <io o—2> 04—>
—  move |
\ o }
C \
- 3 4 \
© \ | 1 2 3 4

Figure 7. Ordering as view changes. We define moving left and
right as —1, 41 respectively and want to recognize the activi-
ty dismissal. Absolute ordering is not important (view a&b).
The importance is that dismissal must be represented as sequence
{—1,—-1,41,+1} in x coordinate. For view c, it may be confus-
ing but it will have same pattern as view a&b as person moves.

Usually, views in surveillance videos don’t change so much.

There are also some limitations of our method performed
on Collective Activity Dataset [6]. Some of them are due
to dataset. In the dataset, the amount of data is small and
the diversity is poor. There are also some inaccurate an-
notations (e.g., confused annotations in the transition of t-
wo type of action), and it easily leads to misunderstanding.
We use sub-action data augmentation to compensate it but
can not avoid it completely. In addition, for atomic action
classification, the performance is mainly limited by track-
ing and optical flow algorithm. It is hard to generate optical
flow images when people walk near buildings covered by
shadows. Moreover, the threshold used in encoder on con-
text need to be set via cross-validation.

5. Conclusions

In this paper, we focus on learning the multi-level in-
teraction context and develop a hierarchical recurrent inter-
actional context encoding framework for collective activ-
ity recognition. LSTM based feature aggregation method
is employed to model the action of majority and contex-
t encoder is used to generate multi-level interaction con-
text. Results show the success of learning context infor-
mation based on LSTM with weak label and validate the
encoding-decoding ability of LSTM. Furthermore, the pro-
posed method is powerful for recognizing group activity,
robustness to noisy human detections and flexible enough
to model high order interactional context.
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