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Abstract

Modeling of high order interactional context, e.g., group

interaction, lies in the central of collective/group activity

recognition. However, most of the previous activity recog-

nition methods do not offer a flexible and scalable scheme

to handle the high order context modeling problem. To

explicitly address this fundamental bottleneck, we propose

a recurrent interactional context modeling scheme based

on LSTM network. By utilizing the information propaga-

tion/aggregation capability of LSTM, the proposed scheme

unifies the interactional feature modeling process for single

person dynamics, intra-group (e.g., persons within a group)

and inter-group (e.g., group to group) interactions. The pro-

posed high order context modeling scheme produces more

discriminative/descriptive interactional features. It is very

flexible to handle a varying number of input instances (e.g.,

different number of persons in a group or different number

of groups) and linearly scalable to high order context mod-

eling problem. Extensive experiments on two benchmark

collective/group activity datasets demonstrate the effective-

ness of the proposed method.

1. Introduction

Analysis of collective activity groups provides useful in-

formation for several real-world applications including so-

cial role understanding and social event prediction. The

main challenge of collective activity recognition is mod-

eling of interactional context information among persons.

This is because that the number of persons involved in an

interaction is always varying. Moreover, in most cases a

collective activity is associated with several sub groups of

interactions, and how to model the group to group interac-

tion is even more challenging.

Previous methods for activity recognition mainly focus-

es on modeling unary features, e.g., single person appear-

ance or dynamics information [21, 26] and person to person

interaction (e.g., pairwise features) [22]. However, these

contextual information modeling schemes are not sufficien-

t for collective activity recognition. It is because that in

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

Person Level 

Context

Group Level 

Context

Scene Level 

Context

Input Image Sequence

t-1

t-2

t

Figure 1. The overview of proposed framework. A hierarchical

recurrent interactional context modeling framework is proposed to

model intra-group and inter-group interaction context.

collective activity, different activity categories might share

the same type of unary or pairwise features (e.g., “stand-

ing alone” in the cases of queueing or discussion, “facing

to same direction” in the case of walking and crossing). In

other words, besides modeling the intra-group interaction

(e.g., interaction among the persons within a group), how

to effectively describe the group to group interaction is of

more importance. Low order contextual features do not pro-

vide sufficient cues to recognize these activities. To address

this fundamental problem, most previous methods attemp-

t to encode the high order relationship among persons in

the scene by inferring the latent graphical structures [9, 8].

However, applying these approaches for collective activi-

ty recognition is infeasible because these methods often re-

quires high computational cost in the case of tree-structured

model during inference and learning. Moreover, it is very

difficult to generalize methods based on graphical models to

handle higher order interactional context. Ni et al. [24] pro-

posed a causality analysis framework to encode unary, pair-

wise and group interaction features. However, this method

is only capable of modeling human trajectory level informa-

tion, which is insufficient to recognize finer-grained actions,

e.g., those can only be recognized by human appearance or

local body part dynamics.

A fundamental problem becomes: how to systematically

encode the high order human interactional context, i.e, the
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target method should be feasible for representing contextu-

al features among arbitrary number of interacting persons or

groups and the computational complexity scales well with

the context order. To this end, we propose a recurrent in-

teractional context encoding scheme based on Long-Short

Term Memory (LSTM) [16].

More specifically, we propose a hierarchical recurrent

interactional context encoding framework to handle three

level interactions, namely single human dynamics, within

group human interaction and group to group interaction.

First, spatio-temporal graph partition is performed to for-

m human interactional subgroups. Besides, we propose a

unified network architecture to model single person dynam-

ics, intra-group (persons within a interactional subgroup)

and inter-group (group to group) contextual features, based

on the sub-action encoder and long short-term memory (L-

STM) network. Moreover, we also propose to input unary

features encoded by sub-actions (e.g., move or pose) within

a spatial-temporal interaction group into our hierarchical L-

STM context encoding network. Here are the advantages of

this scheme. First, encoding each person dynamics by sub-

actions is sufficient enough to distinguish different action-

s. Second, using the recurrent contextual information ac-

cumulation/modeling scheme, modeling of different order

of contextual information is thus unified, as LSTM nodes

share parameters and therefore increasing the order can be

simply handled by adding another LSTM node. Third, the

model complexity of proposed scheme is linearly scalable

with respect to the context order. Extensive experimental

results on two benchmark collective/group activity datasets

well demonstrate the discriminative capability, flexibility of

modeling high order interactional context and robustness to

noisy human detections, by comparing to the state-of-the-

art group activity recognition methods.

The rest of the paper is organized as follows. We review

some related works in Section 2. In Section 3, we intro-

duce the proposed recurrent interactional context encoding

framework and the implementation details. Extensive ex-

perimental results and discussion are presented in Section 4.

Section 5 gives the conclusions.

2. Related Work

Collective/Group Activity Recognition. Many pervi-

ous works have been done on collective activity recogni-

tion focusing on contextual learning [6, 7], where the s-

patial distribution of atomic activities are applied to de-

scribe group activities. Amer et al.[2] detected the video

parts where the collective activities occur and made use of

these local visual cues in the detected parts for recogni-

tion. Lan et al. [22] proposed an adaptive latent structure

learning that represents hierarchical relationships ranging

from lower person-level information to higher group-level

interactions. In [21] and [26] the idea of social roles, the

expected behaviour of an individual person in the context

of group, is exploited in fully supervised and weakly su-

pervised frameworks respectively. Choi and Savarese [5]

have unified tracking multiple people, recognizing individ-

ual actions, interactions and collective activities in a joint

framework. In [7], a random forest structure is used to sam-

ple discriminative spatio-temporal regions from input video

fed to 3D Markov random field to localize collective activ-

ities in a scene. Shu et al. [30] detect group activities from

aerial video using an AND-OR graph formalism. Recently,

a probabilistic structured kernel method constructed based

on a multi-instance cardinality model is introduced in [15].

Furthermore, Deng et al. [9] introduced a neural network-

based hierarchical graphical model that predict group activi-

ty simultaneously. In [17], a LSTM based hierarchical deep

temporal model is proposed to model temporal dynamics

for group activity recognition.

Recurrent Neural Networks and LSTM. Recurren-

t neural networks especially the long-short term memory

models [16] have achieved great success in a large vari-

ety of applications including temporal modeling such as

natural language processing [33, 34] and speech recogni-

tion [14, 13], and non-temporal modeling such as image

caption generation [19, 37]. Several works have been pro-

posed to model action image sequences using RNN/LSTM

models. Veeriah et al. [36] proposed a differential gating

scheme for the LSTM neural network, which emphasizes

on the change in information gain caused by the salient

motions between successive frames. Donahue et al. [10]

developed a novel recurrent convolutional architecture for

large-scale visual learning. They applied this model on sev-

eral tasks including benchmark video recognition, image

description, and video narration. Karpathy et al. [19] de-

scribed a multi-modal RNN architecture to generate image

descriptions. Wu et al. [38] extracted spatial and the short-

term motion features by two CNNs to further model longer-

term temporal clues. The two types of CNN-based features

are further combined in a regularized feature fusion network

for video event classification.

Recently, LSTM network is also applied in fine grained

action detection [25], human trajectory prediction [1], and

in object recognition in the context of recurrent visual at-

tention [3] [23] [29]. For collective activity recognition,

Ibrahim and Muralidharan [17] introduce a hierarchical

structured model, which incorporates a deep LSTM frame-

work to recognize individual actions and group activities.

They leverage LSTM-based temporal modelling to learn

discriminative information from time varying sports activity

data. However, person pooling is not able to model group to

group context. To solve this problem, in our works, a hier-

archical recurrent interactional context encoding framework

is proposed to model intra-group and inter-group interaction

context.
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Figure 2. The hierarchical recurrent interactional context encoding framework for collective/group activity recognition. Given tracklets of

N i person, we feed each tracklet into spatial CNN and motion CNN respectively and concatenate their outputs, followed by a person level

LSTM network to represent person dynamics. Then, we utilize context encoder to model group level and scene level interaction context.

In the end, the encoding results are fed into LSTM network to identify the whole activity.

3. Methodology

In contrast to traditional activity recognition, collective

activity has its unique natures. In particular, the interac-

tion between human groups plays more important role in

collectivity (e.g., two groups stand face to face in the ac-

tivity discussion). To expand the difference between group

actions and to better represent them, we deploy contextual

binary encoder in our hierarchical group activity recogni-

tion scheme, which encodes the sub-action (e.g., move and

pose) information of people into person dynamics to enrich

person level features and make person action unique.

To model group-to-group interaction, a pipeline is pro-

posed as follows (which is illustrated in Figure.2). Firstly,

we perform human detection and tracking to generate hu-

man tracklets (e.g., a sequence of tracked human bounding

boxes). Then, we apply clustering/segmentation method to

partition all human tracklets into spatio-temporal consistent

groups. After that, we train the proposed hierarchical recur-

rent context encoding network to learn interactional context

features for 1) single human dynamics, 2) intra-group hu-

man interactions, and 3) inter-group interactions.

3.1. Interaction Volume Generation

Generate Human Tracklet. For fair comparison, the

input to our method is a set of tracklets of the people in a

scene provided by Choi et al. [5, 6].

Generate Human Groups. The key step to recognize

collective/group activities is to model the interactions be-

tween human groups as well as the interactions among each

group, therefore we must partition all the single human

tracklets in the video into human groups in prior to further

processing. We perform tracklets grouping/partition based

on the graph partition algorithm used as in [27]. The adja-

cency graph is constructed according to the relative spatial

distance and velocity between tracklets.

3.2. Context Encoding of Group Interaction

The goal of this work is to model group interaction in

collective activities. As discussed above, the input to our

group interaction modeling framework is a set of human

tracklets in the video as well as groupings of these tracklet-

s. To this end, we build a hierarchical scheme which mod-

els single person appearance dynamics, encodes sub-action

information to obtain within group human interaction and

group to group interaction in a bottom-up manner. For each

level of interaction modeling, sub-action encoder and RN-

N (e.g., LSTM) is utilized to aggregate a varying number

of entity level features as well as the relationship between

entities to a unified context feature representation, i.e., an

entity is corresponding to a person for within group contex-

t modeling, or a human group for group to group context

modeling. Details are given as follows.
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3.2.1 Single Person Interaction Context

Single person interaction context includes two cues: 1)

change of appearance of a person over time and 2) tempo-

ral dynamics of a person’s action, which provide important

cues for recognizing collective/group activity. For instance,

to distinguish between walking and queuing, whether the

person is standing still or moving is discriminative.

More specifically, given the tracklet (tracked spatio-

temporal volume) of a person (Ii for tracklet in original

image and I
f
i for tracklet in corresponding flow image),

we employ long short-term memory (LSTM) models to en-

code temporal evolution of an individual person. Motivated

by the success of deep convolutional neural network fea-

tures (DCNN) in representing image patch/region level vi-

sual characteristics and optical flow algorithm in represent-

ing motion of objects, in this work, similar to [31, 12] we

use Flownet [11] to generate flow images for each frame

and extract DCNN features from each human bounding box

along the tracklet (both original images and flow images),

which serve as the input sequence to the LSTM model.

We denoted by X = {x1, x2, · · · , xT } the sequence of

input features, i.e., xt the feature vector fused by concate-

nating original and flow features input to the t-th LSTM

node. The corresponding state and output of each LSTM

node is denoted by ht and ot, respectively. Each LSTM n-

ode includes three gates, (i.e., input gate i, output gate o

and forget gate f ) as well as a memory cell. At each time

step t, given the input xt and the previous hidden state ht−1,

LSTM updates as follows:

it = σ(Wixt + Uiht−1 + Vict−1 + bi) (1)

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ) (2)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc) (3)

ot = σ(Woxt + Uoht−1 + Voct + bo) (4)

ht = ot ⊙ tanh(ct) (5)

where σ is the sigmoid function and ⊙ denotes the element-

wise multiplication operator. W∗, U∗ and V∗ are the weight

matrices, and b∗ are the bias vectors. The memory cell ct
is a weighted sum of the previous memory cell ct−1 and a

function of the current input. The weights are the activa-

tions of forget gate and input gate respectively. On the one

hand, the hidden state ht could be used to represent the spe-

cific atomic action the person is performing at time t, e.g.,

walking or standing still. On the other hand, ht also con-

tains the aggregated action information of that person from

the first time stamp to t, e.g., person dynamics.

3.2.2 Intra-Group and Inter-Group Interaction Con-

text

As mentioned above, person in the scene are partitioned in-

to several groups according to their spatio-temporal prox-

imity. It is then important to model the interaction within

each group, i.e., person to person interaction. Most previ-

ous methods on interaction modeling are usually based on

the pairwise features, e.g., relative distance or relative ve-

locity between persons, and these methods are difficult to

be generalized to cope with higher order interactional con-

text, i.e., when the persons in the group is more than two.

To address this issue, we propose a LSTM based context

encoding framework to model interactional context. Name-

ly, we first encode the person level features based on their

sub-actions (e.g., move and pose), then order the person lev-

el features by x or y coordinate of the center of person in im-

age and input them into another LSTM network. The aggre-

gated output of this LSTM network serve as the intra-group

person to person interactional context. In other words, per-

son level dynamics are enriched by encoder and collected

over all people in the group, so that it can be used to describe

the group interactional activity within the group. Note that

this scheme is flexible to encode the contextual information

among arbitrary number of persons in the group. We will

first introduce context encoding and then illustrate its ap-

plication in inter-group and intra-group interaction context

modeling.

Context Encoding. The single person level modeling

has recognized overall person dynamics and to model the

intra-group and inter-group interaction context, more infor-

mation in detail is needed to explore the pattern of group

action. Some graphical structures [5, 22, 26] have been dis-

covered to model pairwise interaction context, however they

can not represent whole interaction context sufficiently and

efficiently. Here, context encoding is proposed to model w-

hole interaction context among all people in image and it

will scales well with increasing number of entities involved

in the context (i.e., context order).

Inspired by [6], we use spatial-temporal information to

encode context. In Figure.3, given sub-action information

for each person, our context encoder aims to encode sub-

action information into person dynamics to enrich person

level features. Two types of sub-actions (e.g., move and

pose) are deployed in encoder, which is enough to describe

the action of individuals in our experiments (Section 4).

According to traditional binary code, there are usually

{0, 1} after encoding. But for neural network, input {0}
usually means no input. Thus, we define {−1, 0, 1} to rep-

resent the code where {0} means the element makes no

sense. For encoding sub-action move, there are three ele-

ments {−1, 0, 1} to be represented, where {−1, 0,+1} de-

notes move left, stand still and move right respectively (dot-

ted lines in Fig.3). We encode the sub-action move by cal-

culating the motion in x coordinate as Eq. (6).
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Figure 3. Context Encoder. The motion of anchor person is divid-

ed into two direction (e.g., left and right). The pose of the anchor

person is divided into eight orientation encoded by the number

around circle. The inputs of context encoder are sub-action infor-

mation cki and person dynamics O
p
i and its output is y

p
i in Eq. (7).

y
p
i is fed into group LSTM following x coordinate order.

C(△xIb) =











−1, △xIb < µ

0, | △ xIb | 6 µ

+1, △xIb > µ

(6)

where △xIb =
(

xt
Ib
− xt−1

Ib

)

and xt
Ib

denotes the x coor-

dinate of the center of bounding box Ib of corresponding

person in time stamp t. µ indicates the threshold for de-

termining whether person moves (e.g., if motion of person

is less than µ pixels, the person is treated as stand still).

Moreover, to represent the sub-action of eight types of ac-

tion pose (e.g., eight directions people face to) annotated in

dataset, we utilize 3-bit code (range from 0 to 7) to repre-

sent eight orientation for pose and the way to encode pose

is shown as solid lines in Figure.3.

Also, to better represent person’s character in group, sub-

action information (e.g., move and pose) is encoded into the

feature of person dynamics according to Eq. (7),

y
p
i = [c1i ×O

p
i , c

2

i ×O
p
i , ..., c

k
i ×O

p
i ] (7)

where cki denotes k th bit of code for i th person in group,

O
p
i is the output of person level LSTM (p indicates per-

son level in O
p
i ) for i th person and [ ] denotes vector con-

catenation in Eq. (7). (e.g., assume the dimension of O
p
i is

1 × 1024, [cki ] is 4 bits code then the dimension of y
p
i is

1 × 4096). We use binary code because of its nature that

every bit has two types of opposite value corresponding to

opposite direction in sub-actions (e.g., move or pose). In our

paper, it is strongly recommended to perform the sub-action

augmentation for model robustness (Section 3.3).

Inter-group and Intra-group Interaction Contex-

t Modeling. Next, for within group interaction modeling,

after performing context encoding, encoded features y
p
i can

be directly fed into intra-Group or inter-Group LSTM net-

work for training (Group-Level or Scene-Level in Figure.2).

Given the annotation of frame, LSTM can learn the coding

rule and is able to decode the code at prediction phase.

Significantly, one problem is that recursive network in-

cluding LSTM only accepts ordered input sequence, i.e.,

time series. However, in our case the set of person level

features are orderless. Therefore, a fundamental process-

ing step is to perform some ordering/alignment scheme to

facilitate the subsequent processing. For such a purpose,

we use spatial cues to order the encoded person level fea-

tures within a group to input to the LSTM network. More

specifically, we order the person level features by the x or y

coordinates of the respective tracklets and form two LSTM

input sequences ( x coordinate is better in our works). For

each direction, we obtain a spatially aggregated interaction

context representation which indicates the person to person

interaction along that direction (e.g., ordered by x coordi-

nate from left to right in Figure. 3).

The modeling of group to group (inter-group) interac-

tional context is similar with intra-group context model-

ing. Namely, group level representations are first encoded

by common sub-action information (usually different from

within group), ordered by the x or y coordinates of the ge-

ometric centers of each group and input to another LSTM

network and the aggregated network output serves as the

scene level (group to group) interaction representation.

3.3. Implementation Details

We trained our model in three steps (person-level, group-

level, scene-level). In addition, there is context encoding

step when modeling intra-group and inter-group context.

The network structures and parameters of our proposed hi-

erarchical model are defined as follows:

1. Level 1 Network (Person Context). We extract D-

CNN features based on models pre-trained on Ima-

geNet [28]. Two CNN networks are applied, and the

spatial CNN (AlexNet [20]) is for original images and

the motion CNN (GoogleNet [35]) is for flow images.

Typically, the motion CNN is not needed to train when

performing person level training. More specifically, a

single layer LSTM network is placed after concatena-

tion layer. Therefore the dimensionality of the LSTM

cell input is 4096 + 1024 = 5120. Each LSTM layer

contains 1024 hidden units. The number of output u-

nits is set as the number of class (e.g., action label or

scene label).

2. Context Encoding. The person level features are trans-

formed following Eq. (6) (7) and the encoded features

are the input of next network after being ordered by the

x coordinate.
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3. Level 2 Network (Group Context). The input to this

LSTM network is the output of the person level con-

text network after context encoding. The outputs of

spatial CNN, motion CNN and person level LSTM are

concatenated, therefore the dimensionality of the input

vector to each LSTM cell is 4096 + 1024 + 1024 =
6144 if context encoding step do not change its dimen-

sion. Single layer LSTM network is adopted, and each

LSTM layer contains 1024 hidden units.

4. Level 3 Network (Scene Context). The input to this

LSTM network is the output of the group level con-

text network after context encoding, and the structure

is similar as group level network. Differences between

group level and scene level network are the dimension-

ality of input that depends on encoding results.

The training process is performed on Caffe [18]. All the

input patches of images are resized to 227× 227 pixels and

subtracted by the image mean. Our training procedure fol-

lows a bottom up manner. Namely, we firstly train the per-

son level context network. The output of the level 1 network

serves as the input to Level 2 network after context encod-

ing to train the group context network. Finally, the output

of Level 2 network is used to train Level 3 scene contex-

t network after context encoding (Figure. 2). For Level 1

network, the input DCNN features are extracted by the Im-

ageNet pre-trained model.

To train all networks, the learning rate for person level

network is fixed value 0.00001. The original learning rate

for LSTM network is 0.0001, and the learning rate is de-

creased to 1

2
of the original value after every two epochs.

All LSTM networks are trained/tested using the implemen-

tation of [10]. To represent person level context for a video

sample, we input all the person tracklets into Level 1 net-

work and choose the last one of outputs as feature vector.

Similarly, to represent group level context for a video sam-

ple, the last one of level 2 network outputs is chosen as the

input of next level network.

Data Augmentation for Sub-action. Due to the lack of

training data and the difference between training and testing

data, our model cannot encode all the direction of move and

orientation of pose. In order to increase model robustness,

a novel data augmentation method is deployed to avoid the

weakness of context encoding. We perform data augmen-

tation not only augment the diversity of input image but al-

so augment the diversity of composition of binary codes.

The data augmentation method for sub-action is shown in

Figure. 4. Assume that there are two people in group and

the corresponding pose labels are {0, 5} (blue lines in Fig-

ure. 4). For every person in image, we do the augmentation

by rotating 360
◦

2
= 180◦ one time for move or 360

◦

8
= 45◦

seven times for pose (red lines in Figure. 4). Then binary

codes are changed, but interaction context between them is

before rotation

after rotation

rotation

6 [+1,+1,-1]

5 [+1,-1,+1]

0 [-1,-1,-1]

1 [-1,-1,+1]

Figure 4. Data augmentation method for sub-action.

kept (group activity is not changed). We aim to cover all

situation by doing proposed sub-action data augmentation.

4. Experiments

We perform extensive experiments on the Collective Ac-

tivity Dataset [6] and Choi’s new Dataset [5] to validate the

ability of learning context information, also compare our

results with the state-of-the-art methods. And in depth dis-

cussions are also provided.

Due to the fact that the popular dataset introduced in [6]

and [5] lacks sufficient diversity of background and large e-

nough training data, sometimes what happens in image can

be inferred by classifying the background of that image. In

order to avoid the effects of background and focus on the

analysis of interaction, proposed method ignores the infor-

mation of background and does not use it in any steps.

4.1. Collective Activity Dataset

The Collective Activity Dataset has been widely used

for evaluating group activity recognition performance. This

dataset contains 44 video clips acquired by using low reso-

lution handheld cameras. And there are eight person-level

pose labels, five person level action labels, and five group-

level activities in this dataset. A scene is simply assigned

with what the majority of people are doing. We follow the

train/test splits as suggested in [22], use the tracklet data

provided in [5] and only use five group-level activities for

training. Context encoder is not applied.

The Collective Activity Dataset consists of collective ac-

tivities, Crossing, Standing, Queuing, Walking and Talking.

According to [6], the Walking class is ill-defined as it is

more like a single person activity than a collective one. Ad-

ditionally, the only difference between class Walking and

Crossing is the relation between person and street. There-

fore, we merge class Walking and Crossing as class Moving

and report the Mean Per Class Accuracy (MPCA) of Walk-

ing and Crossing as the accuracy of Moving. Due to the

imbalanced test set, we report MPCA.

For person level network, proposed method using spatial
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Table 1. Results (%) on Collective Activity Dataset [6]. The results

of class Walking and Crossing are merged as Moving. Pooling de-

notes pooling-SVM method. Mean Per Class Accuracy (MPCA)

are shown for comparsion.

Class [22] [5] [17] [15] Pooling Ours

Moving 92 90.0 95.9 87 94.2 94.4

Waiting 69 82.9 66.4 75 50.3 63.6

Queuing 76 95.4 96.8 92 100.0 100.0

Talking 99 94.9 99.5 99 99.5 99.5

MPCA 84 90.8 89.7 88.3 85.8 89.4

and motion CNN to recognize action is inspired by [31, 12]

and it is most similar to the work [17]. Thus, we implement

the model of [17] by performing a pooling-SVM structure

with motion feature and no person level annotation (Ta-

ble 1, Pooling). The results of our method are shown in

Table 1 and compared with the following methods (1) Lan

et al. [22], (2) Choi et al. [5], (3) Ibrahim et al. [17], (4)

Hajimirsadeghi et al. [15]. Note that results of others are

calculated from corresponding original confusion matrix in

[22, 5, 17, 15].

As shown in Table 1 and Figure 5, the performance of

our method is on the same level with the state-of-the-art

methods. All of our results are comparable to baseline [17].

The difference between [17] and our model is that we do not

use person action label but utilize optical flow information

for training and testing. And it is clear that our model has

improved performance compared to pooling-SVM method

(i.e., the method [17] with motion feature and no person

level annotation). It demonstrates that LSTM can aggregate

context information and its feature aggregation ability can

be used in feature pooling. The result of pool-SVM has a

lower accuracy than our method. It is partly because pool-

ing method can not well distinguish the class Waiting and

Queuing which have nearly the same motion features. Be-

sides, compared to pooling-SVM and our model with oth-

ers, it shows that classification performance for the action

class Waiting is unsatisfactory. Note that we do not use

person-level pose labels and person level action labels, and

class Waiting always occurs with class Crossing and Walk-

ing at the same time, which may be a factor in confused

prediction.

From this experiment, we validate the ability of learning

context information for LSTM and show a novel method of

recognizing group activity without person level annotation

by using LSTM to aggregate features.

4.2. Choi’s New Dataset

The Choi’s New Dataset [5] is composed of 32 video

clips with 6 collective activities: gathering, talking, dis-

missal, walking together, chasing and queueing. There are

9 interaction labels, 3 atomic action labels, 8 pose labels

and 6 group-level activities. We use all labels for training

except 9 interaction labels. The atomic actions are labelled
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Figure 5. Confusion matrix on Collective Activity Dataset [6] (re-

gard Walking and Crossing as the same class Moving). (a)

Confusion matrix of baseline [17]; (b) Confusion matrix of our

method.

as walking, standing still, and running. The whole sets are

divided into 3 subsets1 and we run 3-fold training and test-

ing as suggested in [5]. In experiments, we use the tracklets

provided on the website of the authors of [6].

We employ hierarchical recurrent interactional contex-

t encoding framework to recognize group activity on this

dataset. Firstly, person level network is applied to deter-

mine atomic action of each person in image. We encode

each feature according to group information generated by

the method in Section 3.1. In the end, encoded features are

fed into group level or scene level network to determine fi-

nal class. Note that we use various thresholds for encoding

sub-action move (e.g., Th0, Th1 and Th2 denote model-

s that threshold µ equals to 0, 1, 2 respectively in Table 2),

which is the boundary we define move left or right and s-

tand still (e.g., if motion of person is less than 2 pixels, the

person is treated as stand still in Th2 model).

We also compare our activity recognition results with the

state-of-the-art methods. The methods for comparison in-

cludes: 1) Chang et al. [4], 2) Choi et al. [6] and 3) Choi et

al. [5]. We implement the method [17] with motion features

(i.e. optical flow images) on this dataset for comparison.

As shown in Table 2, our method achieves a remarkable

breakthrough in recognizing group activity in Choi’s new

dataset [5]. Our model namely Th0 further improves the

Multi-Class Accuracy (MCA) performance to 89.4% and

Th1 achieves best MPCA, 85.2%. This demonstrates that

our contextual modeling scheme is effective.

Actually, there are atomic labels (move, stand still and

running) instead of activity labels for each person in sec-

ond dataset. So in Table 2, the method [17] doesn’t work

well without context encoder. Compared with its results,

our method improves the performance by a large margin in

both MCA and MPCA.

The confusion matrix of our method is also illustrated

in Figure. 6. We note that the classification performance

for the class dismissal is relative low, while the classifica-

1 test set 1: [1, 2, 7, 12, 13, 19, 20, 21, 26, 27, 30];

test set 2: [3, 5, 10, 11, 15, 16, 17, 18, 24, 25, 31];

test set 3: [4, 6, 8, 9, 14, 22, 23, 28, 29, 32];
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Table 2. Results (%) on Choi’s New Dataset [5]. Both multi-class

accuracy (MCA) and MPCA are shown because of class size im-

balance. Th0 denotes the threshold µ is zeros while Th1 and Th2

denote threshold µ is equal to 1 and 2 pixels respectively.

Class [4] [6] [5] [17] Th0 Th1 Th2

Gathering 59.9 50.0 43.5 30.7 71.9 71.9 72.8

Talking 97.0 72.7 82.2 91.4 95.9 95.9 95.9

Dismissal 90.5 49.2 77.0 31.6 68.4 73.7 74.7

Walking 94.3 83.2 87.4 82.4 86.6 85.2 78.9

Chasing 53.9 95.2 91.9 82.3 89.2 89.2 89.2

Queuing 86.3 95.9 93.4 69.6 95.5 95.5 95.5

MCA - 77.4 83.0 78.1 89.4 89.2 87.3

MPCA 80.3 74.3 79.2 64.7 84.6 85.2 84.5

71.93%
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Figure 6. Confusion matrix on Choi’s New Dataset [5] obtained

by using our hierarchical recurrent interactional context encoding

model.

tion accuracy for the class gathering is higher. On the one

hand, this is due to the reason that context encoder cannot

distinguish “moving into image plane” from “moving out of

image plane”. On the other hand, action gathering, talking

and dismissal are temporal continuous process in the same

video, as a result, it is hard to determine which class it be-

longs to in the transition from gathering into talking and the

transition from talking into dismissal.

4.3. Discussion

Above all, LSTM based recurrent interactional context

encoding scheme for group activity recognition is feasible

in feature aggregation and it is predictable that it will suc-

cess in processing large database in the future. In future, we

attempt to boost performance by applying VGGnet [32] in

our model.

Besides, proposed model works well in modelling group

action which consists of various sub-actions. For view vari-

ance, ordering persons is an indirect way to model relative

spatial information among each person and it does not in-

tend to get absolute ordering. Thus, in general, it does not

matter whatever the view angle changes. What the people

do in corresponding ordering is important (See Figure. 7).

1 2

3 4

a

b

1 person a view

move

1 2 3 4
x

view c

4 2 3 1
x

view b

x

view a

1 3 2 4

Figure 7. Ordering as view changes. We define moving left and

right as −1,+1 respectively and want to recognize the activi-

ty dismissal. Absolute ordering is not important (view a&b).

The importance is that dismissal must be represented as sequence

{−1,−1,+1,+1} in x coordinate. For view c, it may be confus-

ing but it will have same pattern as view a&b as person moves.

Usually, views in surveillance videos don’t change so much.

There are also some limitations of our method performed

on Collective Activity Dataset [6]. Some of them are due

to dataset. In the dataset, the amount of data is small and

the diversity is poor. There are also some inaccurate an-

notations (e.g., confused annotations in the transition of t-

wo type of action), and it easily leads to misunderstanding.

We use sub-action data augmentation to compensate it but

can not avoid it completely. In addition, for atomic action

classification, the performance is mainly limited by track-

ing and optical flow algorithm. It is hard to generate optical

flow images when people walk near buildings covered by

shadows. Moreover, the threshold used in encoder on con-

text need to be set via cross-validation.

5. Conclusions

In this paper, we focus on learning the multi-level in-

teraction context and develop a hierarchical recurrent inter-

actional context encoding framework for collective activ-

ity recognition. LSTM based feature aggregation method

is employed to model the action of majority and contex-

t encoder is used to generate multi-level interaction con-

text. Results show the success of learning context infor-

mation based on LSTM with weak label and validate the

encoding-decoding ability of LSTM. Furthermore, the pro-

posed method is powerful for recognizing group activity,

robustness to noisy human detections and flexible enough

to model high order interactional context.
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