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Abstract

In this work, we propose “Residual Attention Network”,

a convolutional neural network using attention mechanism

which can incorporate with state-of-art feed forward net-

work architecture in an end-to-end training fashion. Our

Residual Attention Network is built by stacking Attention

Modules which generate attention-aware features. The

attention-aware features from different modules change

adaptively as layers going deeper. Inside each Attention

Module, bottom-up top-down feedforward structure is used

to unfold the feedforward and feedback attention process

into a single feedforward process. Importantly, we propose

attention residual learning to train very deep Residual At-

tention Networks which can be easily scaled up to hundreds

of layers.

Extensive analyses are conducted on CIFAR-10 and

CIFAR-100 datasets to verify the effectiveness of every mod-

ule mentioned above. Our Residual Attention Network

achieves state-of-the-art object recognition performance on

three benchmark datasets including CIFAR-10 (3.90% er-

ror), CIFAR-100 (20.45% error) and ImageNet (4.8% single

model and single crop, top-5 error). Note that, our method

achieves 0.6% top-1 accuracy improvement with 46% trunk

depth and 69% forward FLOPs comparing to ResNet-200.

The experiment also demonstrates that our network is ro-

bust against noisy labels.

1. Introduction

Not only a friendly face but also red color will draw our

attention. The mixed nature of attention has been studied

extensively in the previous literatures [34, 16, 23, 40]. At-

tention not only serves to select a focused location but also

enhances different representations of objects at that loca-

tion. Previous works formulate attention drift as a sequen-

tial process to capture different attended aspects. However,

as far as we know, no attention mechanism has been applied

to feedforward network structure to achieve state-of-art re-

sults in image classification task. Recent advances of image

classification focus on training feedforward convolutional

neural networks using “very deep” structure [27, 33, 10].

Inspired by the attention mechanism and recent advances

in the deep neural network, we propose Residual Attention

Network, a convolutional network that adopts mixed atten-

tion mechanism in “very deep” structure. The Residual At-

tention Network is composed of multiple Attention Mod-

ules which generate attention-aware features. The attention-

aware features from different modules change adaptively as

layers going deeper.

Apart from more discriminative feature representation

brought by the attention mechanism, our model also ex-

hibits following appealing properties:

(1) Increasing Attention Modules lead to consistent perfor-

mance improvement, as different types of attention are cap-

tured extensively. Fig.1 shows an example of different types

of attentions for a hot air balloon image. The sky attention

mask diminishes background responses while the balloon

instance mask highlighting the bottom part of the balloon.

(2) It is able to incorporate with state-of-the-art deep net-

work structures in an end-to-end training fashion. Specif-

ically, the depth of our network can be easily extended to

hundreds of layers. Our Residual Attention Network out-

performs state-of-the-art residual networks on CIFAR-10,

CIFAR-100 and challenging ImageNet [5] image classifica-

tion dataset with significant reduction of computation (69%

forward FLOPs).

All of the aforementioned properties, which are chal-

lenging to achieve with previous approaches, are made pos-

sible with following contributions:

(1) Stacked network structure: Our Residual Attention Net-

work is constructed by stacking multiple Attention Mod-

ules. The stacked structure is the basic application of mixed

attention mechanism. Thus, different types of attention are

able to be captured in different Attention Modules.
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Figure 1: Left: an example shows the interaction between features and attention masks. Right: example images illustrating

that different features have different corresponding attention masks in our network. The sky mask diminishes low-level

background blue color features. The balloon instance mask highlights high-level balloon bottom part features.

(2) Attention Residual Learning: Stacking Attention Mod-

ules directly would lead to the obvious performance drop.

Therefore, we propose attention residual learning mecha-

nism to optimize very deep Residual Attention Network

with hundreds of layers.

(3) Bottom-up top-down feedforward attention: Bottom-up

top-down feedforward structure has been successfully ap-

plied to human pose estimation [24] and image segmenta-

tion [22, 25, 1]. We use such structure as part of Attention

Module to add soft weights on features. This structure can

mimic bottom-up fast feedforward process and top-down

attention feedback in a single feedforward process which

allows us to develop an end-to-end trainable network with

top-down attention. The bottom-up top-down structure in

our work differs from stacked hourglass network [24] in its

intention of guiding feature learning.

2. Related Work

Evidence from human perception process [23] shows the

importance of attention mechanism, which uses top infor-

mation to guide bottom-up feedforward process. Recently,

tentative efforts have been made towards applying atten-

tion into deep neural network. Deep Boltzmann Machine

(DBM) [21] contains top-down attention by its reconstruc-

tion process in the training stage. Attention mechanism

has also been widely applied to recurrent neural networks

(RNN) and long short term memory (LSTM) [13] to tackle

sequential decision tasks [25, 29, 21, 18]. Top information

is gathered sequentially and decides where to attend for the

next feature learning steps.

Residual learning [10] is proposed to learn residual of

identity mapping. This technique greatly increases the

depth of feedforward neuron network. Similar to our work,

[25, 29, 21, 18] use residual learning with attention mech-

anism to benefit from residual learning. Two information

sources (query and query context) are captured using atten-

tion mechanism to assist each other in their work. While in

our work, a single information source (image) is split into

two different ones and combined repeatedly. And residual

learning is applied to alleviate the problem brought by re-

peated splitting and combining.

In image classification, top-down attention mechanism

has been applied using different methods: sequential pro-

cess, region proposal and control gates. Sequential pro-

cess [23, 12, 37, 7] models image classification as a se-

quential decision. Thus attention can be applied similarly

with above. This formulation allows end-to-end optimiza-

tion using RNN and LSTM and can capture different kinds

of attention in a goal-driven way.

Region proposal [26, 4, 8, 38] has been successfully

adopted in image detection task. In image classification,

an additional region proposal stage is added before feed-

forward classification. The proposed regions contain top

information and are used for feature learning in the sec-

ond stage. Unlike image detection whose region propos-

als rely on large amount of supervision, e.g. the ground

truth bounding boxes or detailed segmentation masks [6],

unsupervised learning [35] is usually used to generate re-

gion proposals for image classification.

Control gates have been extensively used in LSTM. In

image classification with attention, control gates for neu-
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rones are updated with top information and have influence

on the feedforward process during training [2, 30]. How-

ever, a new process, reinforcement learning [30] or opti-

mization [2] is involved during the training step. Highway

Network [29] extends control gate to solve gradient degra-

dation problem for deep convolutional neural network.

However, recent advances of image classification focus

on training feedforward convolutional neural networks us-

ing “very deep” structure [27, 33, 10]. The feedforward

convolutional network mimics the bottom-up paths of hu-

man cortex. Various approaches have been proposed to

further improve the discriminative ability of deep convolu-

tional neural network. VGG [27], Inception [33] and resid-

ual learning [10] are proposed to train very deep neural

networks. Stochastic depth [14], Batch Normalization [15]

and Dropout [28] exploit regularization for convergence and

avoiding overfitting and degradation.

Soft attention developed in recent work [3, 17] can be

trained end-to-end for convolutional network. Our Resid-

ual Attention Network incorporates the soft attention in

fast developing feedforward network structure in an innova-

tive way. Recent proposed spatial transformer module [17]

achieves state-of-the-art results on house number recogni-

tion task. A deep network module capturing top informa-

tion is used to generate affine transformation. The affine

transformation is applied to the input image to get attended

region and then feed to another deep network module. The

whole process can be trained end-to-end by using differen-

tiable network layer which performs spatial transformation.

Attention to scale [3] uses soft attention as a scale selection

mechanism and gets state-of-the-art results in image seg-

mentation task.

The design of soft attention structure in our Residual At-

tention Network is inspired by recent development of local-

ization oriented task, i.e. segmentation [22, 25, 1] and hu-

man pose estimation [24]. These tasks motivate researchers

to explore structure with fined-grained feature maps. The

frameworks tend to cascade a bottom-up and a top-down

structure. The bottom-up feedforward structure produces

low resolution feature maps with strong semantic informa-

tion. After that, a top-down network produces dense fea-

tures to inference on each pixel. Skip connection [22] is em-

ployed between bottom and top feature maps and achieved

state-of-the-art result on image segmentation. The recent

stacked hourglass network [24] fuses information from mul-

tiple scales to predict human pose, and benefits from encod-

ing both global and local information.

3. Residual Attention Network

Our Residual Attention Network is constructed by stack-

ing multiple Attention Modules. Each Attention Mod-

ule is divided into two branches: mask branch and trunk

branch. The trunk branch performs feature processing and

can be adapted to any state-of-the-art network structures.

In this work, we use pre-activation Residual Unit [11],

ResNeXt [36] and Inception [32] as our Residual Attention

Networks basic unit to construct Attention Module. Given

trunk branch output T (x) with input x, the mask branch

uses bottom-up top-down structure [22, 25, 1, 24] to learn

same size mask M(x) that softly weight output features

T (x). The bottom-up top-down structure mimics the fast

feedforward and feedback attention process. The output

mask is used as control gates for neurons of trunk branch

similar to Highway Network [29]. The output of Attention

Module H is:

Hi,c(x) = Mi,c(x) ∗ Ti,c(x) (1)

where i ranges over all spatial positions and c ∈ {1, ..., C}
is the index of the channel. The whole structure can be

trained end-to-end.

In Attention Modules, the attention mask can not only

serve as a feature selector during forward inference, but also

as a gradient update filter during back propagation. In the

soft mask branch, the gradient of mask for input feature is:

∂M(x, θ)T (x, φ)

∂φ
= M(x, θ)

∂T (x, φ)

∂φ
(2)

where the θ are the mask branch parameters and the φ are

the trunk branch parameters. This property makes Attention

Modules robust to noisy labels. Mask branches can prevent

wrong gradients (from noisy labels) to update trunk param-

eters. Experiment in Sec.4.1 shows the robustness of our

Residual Attention Network against noisy labels.

Instead of stacking Attention Modules in our design, a

simple approach would be using a single network branch

to generate soft weight mask, similar to spatial transformer

layer [17]. However, these methods have several drawbacks

on challenging datasets such as ImageNet. First, images

with clutter background, complex scenes, and large appear-

ance variations need to be modeled by different types of

attentions. In this case, features from different layers need

to be modeled by different attention masks. Using a single

mask branch would require exponential number of channels

to capture all combinations of different factors. Second, a

single Attention Module only modify the features once. If

the modification fails on some parts of the image, the fol-

lowing network modules do not get a second chance.

The Residual Attention Network alleviates above prob-

lems. In Attention Module, each trunk branch has its own

mask branch to learn attention that is specialized for its fea-

tures. As shown in Fig.1, in hot air balloon images, blue

color features from bottom layer have corresponding sky

mask to eliminate background, while part features from top

layer are refined by balloon instance mask. Besides, the in-

cremental nature of stacked network structure can gradually

refine attention for complex images.
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Figure 2: Example architecture of the proposed network for ImageNet. We use three hyper-parameters for the design of

Attention Module: p, t and r. The hyper-parameter p denotes the number of pre-processing Residual Units before splitting

into trunk branch and mask branch. t denotes the number of Residual Units in trunk branch. r denotes the number of Residual

Units between adjacent pooling layer in the mask branch. In our experiments, we use the following hyper-parameters setting:

{p = 1, t = 2, r = 1}. The number of channels in the soft mask Residual Unit and corresponding trunk branches is the

same.

3.1. Attention Residual Learning

However, naive stacking Attention Modules leads to the

obvious performance drop. First, dot production with mask

range from zero to one repeatedly will degrade the value of

features in deep layers. Second, soft mask can potentially

break good property of trunk branch, for example, the iden-

tical mapping of Residual Unit.

We propose attention residual learning to ease the above

problems. Similar to ideas in residual learning, if soft mask

unit can be constructed as identical mapping, the perfor-

mances should be no worse than its counterpart without at-

tention. Thus we modify output H of Attention Module as

Hi,c(x) = (1 +Mi,c(x)) ∗ Fi,c(x) (3)

M(x) ranges from [0, 1], with M(x) approximating 0,

H(x) will approximate original features F (x). We call this

method attention residual learning.

Our stacked attention residual learning is different from

residual learning. In the origin ResNet, residual learning is

formulated as Hi,c(x) = x+Fi,c(x), where Fi,c(x) approx-

imates the residual function. In our formulation, Fi,c(x)
indicates the features generated by deep convolutional net-

works. The key lies on our mask branches M(x). They

work as feature selectors which enhance good features and

suppress noises from trunk features.

In addition, stacking Attention Modules backs up atten-

tion residual learning by its incremental nature. Attention

residual learning can keep good properties of original fea-

tures, but also gives them the ability to bypass soft mask

branch and forward to top layers to weaken mask branch’s

feature selection ability. Stacked Attention Modules can

gradually refine the feature maps. As show in Fig.1, fea-

tures become much clearer as depth going deeper. By using

attention residual learning, increasing depth of the proposed

Residual Attention Network can improve performance con-

sistently. As shown in the experiment section, the depth of

Residual Attention Network is increased up to 452 whose

performance surpasses ResNet-1001 by a large margin on

CIFAR dataset.

3.2. Soft Mask Branch

Following previous attention mechanism idea in

DBN [21], our mask branch contains fast feed-forward

sweep and top-down feedback steps. The former operation

quickly collects global information of the whole image, the

latter operation combines global information with original

feature maps. In convolutional neural network, the two

steps unfold into bottom-up top-down fully convolutional

structure.

From input, max pooling are performed several times to

increase the receptive field rapidly after a small number of

Residual Units. After reaching the lowest resolution, the

global information is then expanded by a symmetrical top-

down architecture to guide input features in each position.

Linear interpolation up sample the output after some Resid-

ual Units. The number of bilinear interpolation is the same

as max pooling to keep the output size the same as the input

feature map. Then a sigmoid layer normalizes the output
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Figure 3: The receptive field comparison between mask

branch and trunk branch.

range to [0, 1] after two consecutive 1 × 1 convolution lay-

ers. We also added skip connections between bottom-up

and top-down parts to capture information from different

scales. The full module is illustrated in Fig.2.

The bottom-up top-down structure has been applied to

image segmentation and human pose estimation. However,

the difference between our structure and the previous one

lies in its intention. Our mask branch aims at improving

trunk branch features rather than solving a complex prob-

lem directly. Experiment in Sec.4.1 is conducted to verify

above arguments.

3.3. Spatial Attention and Channel Attention

In our work, attention provided by mask branch changes

adaptably with trunk branch features. However, constrains

to attention can still be added to mask branch by changing

normalization step in activation function before soft mask

output. We use three types of activation functions corre-

sponding to mixed attention, channel attention and spatial

attention. Mixed attention f1 without additional restriction

use simple sigmoid for each channel and spatial position.

Channel attention f2 performs L2 normalization within all

channels for each spatial position to remove spatial infor-

mation. Spatial attention f3 performs normalization within

feature map from each channel and then sigmoid to get soft

mask related to spatial information only.

f1(xi,c) =
1

1 + exp(−xi,c)
(4)

f2(xi,c) =
xi,c

‖xi‖
(5)

f3(xi,c) =
1

1 + exp(−(xi,c − meanc)/stdc)
(6)

Where i ranges over all spatial positions and c ranges over

all channels. meanc and stdc denotes the mean value and

standard deviation of feature map from c-th channel. xi

denotes the feature vector at the ith spatial position.

Activation Function Attention Type Top-1 err. (%)

f1(x) Mixed Attention 5.52

f2(x) Channel Attention 6.24

f3(x) Spatial Attention 6.33

Table 1: The test error (%) on CIFAR-10 of Attention-56

network with different activation functions.

Layer Output Size Attention-56 Attention-92

Conv1 112×112 7× 7, 64, stride 2

Max pooling 56×56 3× 3 stride 2

Residual Unit 56×56





1× 1, 64

3× 3, 64

1× 1, 256



× 1

Attention Module 56×56 Attention ×1 Attention ×1

Residual Unit 28×28





1× 1, 128

3× 3, 128

1× 1, 512



× 1

Attention Module 28×28 Attention ×1 Attention ×2

Residual Unit 14×14





1× 1, 256

3× 3, 256

1× 1, 1024



× 1

Attention Module 14×14 Attention ×1 Attention ×3

Residual Unit 7×7





1× 1, 512

3× 3, 512

1× 1, 2048



× 3

Average pooling 1×1 7× 7 stride 1

FC,Softmax 1000

params×10
6

31.9 51.3

FLOPs×10
9

6.2 10.4

Trunk depth 56 92

Table 2: Residual Attention Network architecture details

for ImageNet. Attention structure is described in Fig. 2.

We make the size of the smallest output map in each mask

branch 7×7 to be consistent with the smallest trunk output

map size. Thus 3,2,1 max-pooling layers are used in mask

branch with input size 56×56, 28×28, 14×14 respectively.

The Attention Module is built by pre-activation Residual

Unit [11] with the number of channels in each stage is the

same as ResNet [10].

The experiment results are shown in Table 1, the mixed

attention has the best performance. Previous works nor-

mally focus on only one type of attention, for example scale

attention [3] or spatial attention [17], which puts additional

constrain on soft mask by weight sharing or normalization.

However, as supported by our experiments, making atten-

tion change adaptively with features without additional con-

straint leads to the best performance.

4. Experiments

In this section, we evaluate the performance of pro-

posed Residual Attention Network on a series of bench-

mark datasets including CIFAR-10, CIFAR-100 [19], and

ImageNet [5]. Our experiments contain two parts. In the

first part, we analyze the effectiveness of each component in

the Residual Attention Network including attention residual
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learning mechanism and different architectures of soft mask

branch in the Attention Module. After that, we explore the

noise resistance property. Given limited computation re-

sources, we choose CIFAR-10 and CIFAR-100 dataset to

conduct these experiments. Finally, we compare our net-

work with state-of-the-art results in CIFAR dataset. In the

second part, we replace the Residual Unit with Inception

Module and ResNeXt to demonstrate our Residual Atten-

tion Network surpasses origin networks both in parameter

efficiency and final performance. We also compare image

classification performance with state-of-the-art ResNet and

Inception on ImageNet dataset.

4.1. CIFAR and Analysis

Implementation. The CIFAR-10 and CIFAR-100

datasets consist of 60, 000 32 × 32 color images of 10 and

100 classes respectively, with 50, 000 training images and

10, 000 test images. The broadly applied state-of-the-art

network structure ResNet is used as baseline method. To

conduct fair comparison, we keep most of the settings same

as ResNet paper [10]. The image is padded by 4 pixels on

each side, filled with 0 value resulting in 40 × 40 image.

A 32 × 32 crop is randomly sampled from an image or

its horizontal flip, with the per-pixel RGB mean value

subtracted. We adopt the same weight initialization method

following previous study [9] and train Residual Attention

Network using nesterov SGD with a mini-batch size of 64.

We use a weight decay of 0.0001 with a momentum of 0.9
and set the initial learning rate to 0.1. The learning rate

is divided by 10 at 64k and 96k iterations. We terminate

training at 160k iterations.

The overall network architecture and the hyper parame-

ters setting are described in Fig.2. The network consists of

3 stages and similar to ResNet [10], equal number of At-

tention Modules are stacked in each stage. Additionally,

we add two Residual Units at each stage. The number of

weighted layers in trunk branch is 36m+20 where m is the

number of Attention Module in one stage. We use original

32× 32 image for testing.

Attention Residual Learning. In this experiment, we

evaluate the effectiveness of attention residual learning

mechanism. Since the notion of attention residual learn-

ing (ARL) is new, no suitable previous methods are com-

parable therefore we use “naive attention learning” (NAL)

as baseline. Specifically, “naive attention learning” uses

Attention Module where features are directly dot product

by soft mask without attention residual learning. We set

the number of Attention Module in each stage m = {1, 2,

3, 4}. For Attention Module, this leads to Attention-56

(named by trunk layer depth), Attention-92, Attention-128

and Attention-164 respectively.

We train these networks using different mechanisms and

Network ARL (Top-1 err. %) NAL (Top-1 err.%)

Attention-56 5.52 5.89

Attention-92 4.99 5.35

Attention-128 4.44 5.57

Attention-164 4.31 7.18

Table 3: Classification error (%) on CIAFR-10.
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Figure 4: The mean absolute response of output features in

each stage.

summarize the results in the Table 3. As shown in Ta-

ble 3, the networks trained using attention residual learn-

ing technique consistently outperform the networks trained

with baseline method which proves the effectiveness of our

method. The performance increases with the number of At-

tention Module when applying attention residual learning.

In contrast, the performance of networks trained with “naive

attention learning” method suffers obvious degradation with

increased number of Attention Module.

To understand the benefit of attention residual learning,

we calculate mean absolute response value of output layers

for each stage. We use Attention-164 to conduct this experi-

ment. As shown in the Fig. 4, the response generated by the

network trained using naive attention learning quickly van-

ishes in the stage 2 after four Attention Modules compared

with network trained using attention residual learning. The

Attention Module is designed to suppress noise while keep-

ing useful information by applying dot product between fea-

ture and soft mask. However, repeated dot product will lead

to severe degradation of both useful and useless information

in this process. The attention residual learning can relieve

signal attenuation using identical mapping, which enhances

the feature contrast. Therefore, it gains benefits from noise

reduction without significant information loss, which makes

optimization much easier while improving the discrimina-

tion of represented features. In the rest of the experiments,

we apply this technique to train our networks.

Comparison of different mask structures. We con-

duct experiments to validate the effectiveness of encoder-

decoder structure by comparing with local convolutions

without any down sampling or up sampling. The local

convolutions soft mask consists of three Residual Units us-
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ing the same number of FLOPs. The Attention-56 is used

to construct Attention-Encoder-Decoder-56 and Attention-

Local-Conv-56 respectively. Results are shown in Table 4.

The Attention-Encoder-Decoder-56 network achieves lower

test error 5.52% compared with Attention-Local-Conv-56

network 6.48% with a considerable margin 0.94%. The re-

sult suggests that the soft attention optimization process will

benefit from multi-scale information.

Mask Type Attention Type Top-1 err. (%)

Local Convolutions Local Attention 6.48

Encoder and Decoder Mixed Attention 5.52

Table 4: Test error (%) on CIFAR-10 using different mask

structures.

Noisy Label Robustness. In this experiment, we show

our Residual Attention Network enjoys noise resistant prop-

erty on CIFAR-10 dataset following the setting of pa-

per [31]. The confusion matrix Q in our experiment is set

as follows:

Q =











r 1−r
9

· · · 1−r
9

1−r
9

r · · · 1−r
9

...
...

. . .
...

1−r
9

1−r
9

· · · r











10×10

(7)

where r denotes the clean label ratio for the whole dataset.

We compare ResNet-164 network with Attention-92 net-

work under different noise levels. The Table 5 shows the re-

sults. The test error of Attention-92 network is significantly

lower than ResNet-164 network with the same noise level.

In addition, when we increase the ratio of noise, test er-

ror of Attenion-92 declines slowly compared with ResNet-

164 network. These results suggest that our Residual Atten-

tion Network can perform well even trained with high level

noise data. When the label is noisy, the corresponding mask

can prevent gradient caused by label error to update trunk

branch parameters in the network. In this way, only the

trunk branch is learning the wrong supervision information

and soft mask branch masks the wrong label.

Comparisons with state-of-the-art methods. We com-

pare our Residual Attention Network with state-of-the-art

methods including ResNet [11] and Wide ResNet [39] on

Noise Level ResNet-164 err. (%) Attention-92 err. (%)

10% 5.93 5.15

30% 6.61 5.79

50% 8.35 7.27

70% 17.21 15.75

Table 5: Test error (%) on CIFAR-10 with label noises.

Network params×106 CIFAR-10 CIFAR-100

ResNet-164 [11] 1.7 5.46 24.33

ResNet-1001 [11] 10.3 4.64 22.71

WRN-16-8 [39] 11.0 4.81 22.07

WRN-28-10 [39] 36.5 4.17 20.50

Attention-92 1.9 4.99 21.71

Attention-236 5.1 4.14 21.16

Attention-452† 8.6 3.90 20.45

Table 6: Comparisons with state-of-the-art methods on

CIFAR-10/100. †: the Attention-452 consists of Attention

Module with hyper-parameters setting: {p = 2, t = 4,

r = 3} and 6 Attention Modules per stage.

CIFAR-10 and CIFAR-100 datasets. The results are shown

in Table 6. Our Attention-452 outperforms all the baseline

methods on CIFAR-10 and CIFAR-100 datasets. Note that

Attention-92 network achieves 4.99% test error on CIFAR-

10 and 21.71% test error on CIFAR-100 compared with

5.46% and 24.33% test error on CIFAR-10 and CIFAR-

100 for ResNet-164 network under similar parameter size.

In addition, Attention-236 outperforms ResNet-1001 using

only half of the parameters. It suggests that our Attention

Module and attention residual learning scheme can effec-

tively reduce the number of parameters in the network while

improving the classification performance.

4.2. ImageNet Classification

In this section, we conduct experiments using ImageNet

LSVRC 2012 dataset [5], which contains 1, 000 classes

with 1.2 million training images, 50, 000 validation images,

and 100, 000 test images. The evaluation is measured on the

non-blacklist images of the ImageNet LSVRC 2012 valida-

tion set. We use Attention-56 and Attention-92 to conduct

the experiments. The network structures and hyper param-

eters can be found in the Table 2.

Implementation. Our implementation generally follows

the practice in the previous study [20]. We apply scale

and aspect ratio augmentation [33] to the original image.

A 224 × 224 crop is randomly sampled from an augment

image or its horizontal flip, with the per-pixel RGB scale

to [0, 1] and mean value subtracted and standard variance

divided. We adopt standard color augmentation [20]. The

network is trained using SGD with a momentum of 0.9. We

set initial learning rate to 0.1. The learning rate is divided

by 10 at 200k, 400k, 500k iterations. We terminate training

at 530k iterations.

Mask Influence. In this experiment, we explore the effi-

ciency of proposed Residual Attention Network. We com-

pare Attention-56 with ResNet-152 [10]. The ResNet-152

has 50 trunk Residual Units and 60.2×106 parameters com-
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Network params×106 FLOPs×109 Test Size Top-1 err. (%) Top-5 err. (%)

ResNet-152 [10] 60.2 11.3 224× 224 22.16 6.16

Attention-56 31.9 6.3 224× 224 21.76 5.9

ResNeXt-101 [36] 44.5 7.8 224× 224 21.2 5.6

AttentionNeXt-56 31.9 6.3 224× 224 21.2 5.6

Inception-ResNet-v1 [32] - - 299× 299 21.3 5.5

AttentionInception-56 31.9 6.3 299× 299 20.36 5.29

ResNet-200 [11] 64.7 15.0 320× 320 20.1 4.8

Inception-ResNet-v2 - - 299× 299 19.9 4.9

Attention-92 51.3 10.4 320× 320 19.5 4.8

Table 7: Single crop validation error on ImageNet.

pared with 18 trunk Residual Units and 31.9×106 parame-

ters in Attention-56. We evaluate our model using single

crop scheme on the ImageNet validation set and show re-

sults in Table 7. The Attention-56 network outperforms

ResNet-152 by a large margin with a 0.4% reduction on

top-1 error and a 0.26% reduction on top-5 error. More

importantly, Attention-56 network achieves better perfor-

mance with only 52% parameters and 56% FLOPs com-

pared with ResNet-152, which suggests that the proposed

attention mechanism can significantly improve network per-

formance while reducing the model complexity.

Different Basic Units. In this experiment, we show

Residual Attention Network can generalize well using dif-

ferent basic unit. We apply three popular basic units: Resid-

ual Unit, ResNeXt [36], and Inception [32] to construct our

Residual Attention Networks. To keep the number of pa-

rameters and FLOPs in the same scale, we simplify the In-

ception. Results are shown in Table 7.

When the basic unit is ResNeXt, the AttentionNeXt-56

network performance is the same as ResNeXt-101 while

the parameters and FLOPs are significantly fewer than

ResNeXt-101. For Inception, The AttentionIncepiton-56

outperforms Inception-ResNet-v1 [32] by a margin with a

0.94% reduction on top-1 error and a 0.21% reduction on

top-5 error. The results show that our method can be ap-

plied on different network structures.

Comparisons with State-of-the-art Methods. We com-

pare our Attention-92 evaluated using single crop on the

ILSVRC 2012 validation set with state-of-the-art algo-

rithms. Table 7 shows the results. Our Attention-92 outper-

forms ResNet-200 with a large margin. The reduction on

top-1 error is 0.6%. Note that the ResNet-200 network con-

tains 32% more parameters than Attention-92. The com-

putational complexity of Attention-92 shown in the Table 7

suggests that our network reduces nearly half training time

comparing with ResNet-200 by adding attention mecha-

nism and reducing trunk depth. Above results suggest that

our model enjoys high efficiency and good performance.

5. Discussion

We propose a Residual Attention Network which stacks

multiple Attention Modules. The benefits of our network

are in two folds: it can capture mixed attention and is an ex-

tensible convolutional neural network. The first benefit lies

in that different Attention Modules capture different types

of attention to guide feature learning. Our experiments on

the forms of activation function also validate this point:

free form mixed attention will have better performance than

constrained (including single) attention. The second ben-

efit comes from encoding top-down attention mechanism

into bottom-up top-down feedforward convolutional struc-

ture in each Attention Module. Thus, the basic Attention

Modules can be combined to form larger network structure.

Moreover, residual attention learning allows training very

deep Residual Attention Network. The performance of our

model surpasses state-of-the-art image classification meth-

ods, i.e. ResNet on CIFAR-10 (3.90% error), CIFAR-100

(20.67% error), and challenging ImageNet dataset (0.6%

top-1 accuracy improvement) with only 46% trunk depth

and 69% forward FLOPs (comparing with ResNet-200). In

the future, we will exploit different applications of deep

Residual Attention Network such as detection and segmen-

tation to better explore mixed attention mechanism for spe-

cific tasks.
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