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Abstract

Current action recognition methods heavily rely on

trimmed videos for model training. However, it is expen-

sive and time-consuming to acquire a large-scale trimmed

video dataset. This paper presents a new weakly super-

vised architecture, called UntrimmedNet, which is able to

directly learn action recognition models from untrimmed

videos without the requirement of temporal annotations of

action instances. Our UntrimmedNet couples two impor-

tant components, the classification module and the selection

module, to learn the action models and reason about the

temporal duration of action instances, respectively. These

two components are implemented with feed-forward net-

works, and UntrimmedNet is therefore an end-to-end train-

able architecture. We exploit the learned models for action

recognition (WSR) and detection (WSD) on the untrimmed

video datasets of THUMOS14 and ActivityNet. Although

our UntrimmedNet only employs weak supervision, our

method achieves performance superior or comparable to

that of those strongly supervised approaches on these two

datasets. 1

1. Introduction

Action recognition in videos has attracted extensive re-

search attention in the past few years, and much progress

has been made in computer vision community, on both as-

pects of hand-crafted representations [27, 45, 46, 48] and

deeply-learned representations [23, 40, 42, 50]. In general,

action recognition is usually cast as a classification problem,

where each action instance is manually trimmed from a long

video sequence during the training phase, and the learned

action model is exploited for action recognition in trimmed

clips (e.g., HMDB51 [25] and UCF101 [41]) or untrimmed

videos (e.g., THUMOS14 [22] and ActivityNet [16]). Al-

though these precise temporal annotations could relieve the

difficulty of learning action models, it may be difficult to

adapt to large-scale action recognition in more realistic and

1The code and models are available at https://github.com/

wanglimin/UntrimmedNet.
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Figure 1. Weakly supervised action recognition and detection:

during training phase, we simply have untrimmed videos with-

out temporal annotation and we train action models from these

untrimmed videos directly; during test phase, the learned action

models could be applied to action recognition (WSR) and detec-

tion (WSD) in untrimmed videos.

challenging scenario due to several reasons. First, annotat-

ing temporal duration for each action instance is expensive

and time-consuming. Meanwhile, huge numbers of videos

on Youtube website are temporally untrimmed by nature,

and trimming videos in such scale would be impractical.

More importantly, unlike object boundary, there might even

be no sensible definition about the exact temporal extent of

actions [37, 38]. Thus, these temporal annotations may be

subjective and not consistent across different persons.

To overcome the above limitations of using trimmed

videos for training, we introduce a more efficient setting of

directly learning action recognition models from untrimmed

videos, as shown in Figure 1. In this new setting, only the

video-level action label is available during training, and the

goal is to learn the models from untrimmed videos, which

could be applied to new videos to perform action recogni-

tion or detection. As we do not have precise temporal anno-

tations of action instances in training, we call this new prob-

lem as weakly supervised action recognition (WSR) and de-

tection (WSD). Without the requirement of exact temporal
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annotations of action instances, the setup of WSR and WSD

would greatly reduce the human efforts in building large-

scale datasets. However, this weakly supervised setting also

poses new challenges in that our learning algorithm needs

to not only learn the visual patterns for each action class,

but also automatically reason the temporal locations of pos-

sible action instances. Therefore, to deal with the problems

of WSR and WSD, the designed method should consider

these two aspects at the same time.

In this work, we address the challenges of the WSR and

WSD problems by proposing a new end-to-end architec-

ture, called UntrimmedNet. Without temporal annotations

of action instances, our UntrimmedNet directly takes an

untrimmed video as input and simply exploits its video-

level label to learn the network weights. Considering the re-

quirements mentioned above, in a nutshell, our Untrimmed-

Net is mainly composed of two components, namely a clas-

sification module and a selection module, which handle the

problems of learning action models and detecting action in-

stances, respectively. The outputs of the classification and

selection modules are fused to yield the prediction results

of untrimmed videos, which can be exploited to tune the

UntrimmedNet parameters in an end-to-end manner.

Specifically, our UntrimmedNet starts with generating

clip proposals, which may contain action instances, by us-

ing uniform or shot based sampling. Then, these clip pro-

posals are fed into UntrimmedNet for feature extraction.

Based on these clip-level representations, the classification

module aims to predict the classification scores for each clip

proposal, while the selection module tries to select or rank

those clip proposals. In practice, the design of classifica-

tion module is based on a standard Softmax classifier and

the selection module is implemented with two alternative

mechanisms: hard selection and soft selection. For hard

selection, a top-k pooling method is utilized to determine

the most k discriminative clips, and for soft selection, an

attention weight is learned to rank the importance of differ-

ent clips. Finally, the results of classification and selection

modules are fused with an weighted summation multiplica-

tion to produce the untrimmed video-level prediction. With

this video-level prediction and the global video label, we

are able to jointly optimize the components of classifica-

tion modules, selection modules, and feature extraction net-

works using the standard back propagation algorithm.

We perform experiments on two challenging untrimmed

video datasets, namely THUMOS14 [22] and Acitivi-

tyNet [16], to examine the UntrimmedNet on the tasks of

weakly supervised action recognition (WSR) and detection

(WSD). Although our UntrimmedNet does not employ the

temporal annotations of action instances, it obtains superior

performance for action recognition and comparable perfor-

mance for action detection, when compared with the state-

of-the-art methods that use strong supervision for training.

2. Related Work

Deep learning for action recognition. Since the break-

through [24] in image classification with Convolutional

Neural Networks (CNNs) [29] at ILSVRC 2012 [36], sev-

eral works have been trying to design effective deep net-

work architectures for action recognition in videos [23, 40,

42, 11, 50, 47]. Karpathy et al. [23] first tested deep net-

works on a large-scale dataset (Sports-1M) and achieved

lower performance than traditional features [45]. Simonyan

et al. [40] designed two stream CNNs containing spatial and

temporal nets by explicitly exploiting pre-trained models

and optical flow calculation. Tran et al. [42] investigated 3D

CNNs [20] on the realistic and large-scale video datasets.

Meanwhile, several works [32, 44, 7, 50] tried to model

long-term temporal information for action understanding.

Ng et al. [32] and Donahue et al. [7] utilized recurrent neu-

ral networks (LSTM) to capture the long range dynamics for

action recognition. Wang et al. [50] designed a sparse sam-

pling strategy to model the entire video information with av-

erage aggregation. In addition, several deep learning meth-

ods have been proposed for action proposal generation and

detection [14, 49, 30, 10, 43, 39]. Our UntrimmedNets dif-

fer to those deep networks in that the UntrimmedNets take

the untrimmed videos as inputs and only require weak su-

pervision to guide model training, while those previous ar-

chitectures all uses the trimmed clips for training.

Weakly supervised learning in videos. Weakly su-

pervised learning was extensively studied in object recog-

nition and detection [1, 4, 9, 34], and there were several

works adapting this method to learn action models from

videos [28, 8, 2, 3, 17, 26, 12, 13]. The first type of weak su-

pervision is movie script, which provides uncertain tempo-

ral annotations of action instances. For example, Laptev et

al. [28] proposed to learn action models from movie scripts

for action recognition, and Duchennel et al. [8] tried to lo-

calize action instances in movies with the help of scripts.

Compared with our work, movie script supervision show

two differences: (1) movie scripts are usually aligned with

frames and so they can provide approximate temporal an-

notations of instance, while our weak supervision does not

provide any temporal information about action instances,

(2) movie script supervision only applies to movie videos

while our method applies to all kinds of videos. The sec-

ond type of weak supervision is a ordered list of action

classes occurring in the videos. For instance, Bojanowski

et al. [3] proposed a discriminative clustering method for

weakly supervised action labeling, and Huang et al. [17]

adapted the framework of Connectionist Temporal Classi-

fication [15] from speech recognition to weakly supervised

action labeling. Our UntrimmedNet differs from them in

that our weak supervision contains no any order informa-

tion on the containing action instances.
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Figure 2. Pipeline of learning from untrimmed videos: our UntrimmedNets start with clip proposal generation, where we sample a

set of short clips from the continuous untrimmed videos. Then, these clip proposals are separately fed into pre-trained networks for

feature extraction. After this, a classification module is designed to perform action recognition for each clip proposal independently, and a

selection module is proposed to detect or rank important clip proposals. Finally, the outputs of classification module and selection module

are combined to yield the video-level prediction.

3. Learning from Untrimmed Videos

In this section we introduce the pipeline of learning from

untrimmed videos. First, we describe the methods of gen-

erating clip proposals for UntrimmedNets. Second, we

give a detailed description on the architecture design of

UntrimmedNet. Finally, we present the learning algorithm

to tune the parameters of UntrimmedNet in an end-to-end

manner.

3.1. Clip sampling

An action instance usually describes the continuous

and coherent motion pattern with a specific intention,

which may last for a few seconds and contain no shot

changes. However, an untrimmed video often exhibits

extremely complex motion dynamics, action instances

may only occupy small portions of it. Therefore, our

UntrimmedNet starts with generating short clips from the

untrimmed videos, which could serve as action proposals

for UntrimmedNet training.

Formally, given an untrimmed video V with the dura-

tion of T frames, our method generates a set of clip pro-

posals C = {ci}
N
i=1, where N is the number of proposals

and ci = (bi, ei) denote the beginning and ending location

of the ith proposal ci. We design two simple yet effective

methods to generate proposals: uniform sampling and shot-

based sampling.

Uniform sampling. Under the assumption that an action

instance may have a relatively short duration, we propose

to divide the long video into N clips with equal duration,

i.e., bi =
i−1

N
T + 1 and ei =

i
N
T . This sampling method

ignores the continuous and consistent properties of action

instances and is prone to generating imprecise proposals.

Shot-based sampling. It is expected each action in-

stance focuses on the consistent motion within a single shot.

We present a sampling method based on shot change detec-

tion. Specifically, we extract the HOG features for each

frame and calculate the HOG feature difference between

adjacent frames. Then, we use the absolute value of this

difference to measure the change of visual content and if it

is larger than a threshold, a shot change would be detected.

After this, in each shot, we propose to sample shot clips of

fixed duration of K frames in a sequential manner (K set to

300 in practice), which helps to break down shots with very

long durations. Suppose we have a shot denoted by si =
(sbi , s

e
i ), where (sbi , s

e
i ) represents the beginning and ending

locations of this shot, we produce proposals from this shot

as C(si) = {(sbi+(i−1)×K, sbi+i×K)}i:sb
i
+i×K<se

i

. Fi-

nally, we merge all these clip proposals from different shots

for UntrimmedNet training.

3.2. UntrimmedNets

As shown in Figure 2, the architecture of UntrimmedNet

is composed of a feature extraction module, a classification

module, and a selection module. These different compo-

nents are all designed to be differentiable and render the

UntrimmedNet to be trainable in an end-to-end manner.

Feature extraction module. After proposal generation,

these shot clips are fed into deep networks for feature ex-

traction. These feature representations are utilized to de-

scribe the clip visual content and passed to the next layers

for action recognition. Formally, given a video V with a

set of clip proposals C = {ci}
N
i=1, we extract the repre-

sentation as φ(V ; c) ∈ R
D for each clip proposal c. Our

UntrimmedNet is a general framework for weakly super-

vised action recognition and detection, and does not depend

on the choice of feature extraction network. In the experi-

4327



ments, we try out two architectures: Two-Stream CNN [40]

with deeper architecture [18] and Temporal Segment Net-

work [50] with the same architecture. More details will be

described in Section 5.

Classification module. In the classification module, we

aim to classify each clip proposal c into the predefined ac-

tion categories based on the extracted features φ(c). Sup-

pose we have C action classes, we learn a linear map-

ping Wc ∈ R
C×D to transform the feature representa-

tion φ(c) into a C-dimensional score vector xc(c), i.e.,

xc(c) = Wcφ(c), where C is the number of action cate-

gories and Wc are the model parameters. This score vector

can be also passed through a softmax layer as follows:

x̄c
i (c) =

exp(xc
i (c))∑C

k=1
exp(xc

k(c))
, (1)

where xc
i (c) denotes the ith dimension of xc(c). For clar-

ity, we use the notation xc(c) to denote the original classi-

fication score of clip proposal c and x̄c(c) to represent the

softmax classification score. There is a slight difference be-

tween those two types of classification scores. The original

classification score x̄c(c) encodes the raw class activation

and its response is able to reflect the degree of containing

a specific action class. In the case of containing no action

instance, its value could be very small for all classes. How-

ever, the softmax classification score x̄c(c) undergoes the

normalization operation, turning its sum into 1. If there is

an action instance in this clip, this softmax score could en-

code information of action class distribution. But for the

case of background clips, this normalization operation may

amplify noisy activations and its response may not encode

the visual information correctly.

Selection module. The selection module aims to select

those clip proposals of most probably containing action in-

stances. Here we design two kinds of selection mechanisms

for this goal: hard selection based on the principle of mul-

tiple instance learning (MIL) [6] and soft selection based

on the attention-based modeling [31, 53]. As we shall see

in experiments, those two selection method can both well

handle the problem of weakly supervised learning.

In the hard selection method, we try to identify a subset

of k clip proposals (instances) for each action class. In-

spired by the idea of multiple instance learning, we choose

top k instances with the highest classification scores and

then average among these selected instances. It should

be noted that here we use the original classification score

as its value is able to correctly reflect the likelihood of

containing certain action instances. Formally, let us use

xs
i (cj) = δ(j ∈ Sk

i ) to encode the selection choice for

class i and instance cj , where Sk
i is the set of indices of clip

proposals with the highest k classification scores for class i.
In the soft selection method, we want to combine the

classification scores of all clip proposals and learn an im-

portance weight to rank different clip proposals. Intuitively,

these clip proposals are not all relevant to the action class

and we could learn an attention weight to highlight the dis-

criminative clip proposals and suppress the background clip

proposals. Formally, for each clip proposal, we learn this

attention weight based on the feature representation φ(c)
with a linear transformation, i.e., xs(c) = wsTφ(c), where

ws ∈ RD is the model parameter. Then the attention

weights of different clip proposals are passed through a soft-

max layer and compared with each other as follows:

x̄s(ci) =
exp(xs(ci))∑N

n=1
exp(xs(cn))

, (2)

where xs(c) denotes the original selection score of clip pro-

posal c and x̄s(c) is the softmax selection score. It should

be noted that, in the classification module, the softmax op-

eration (Eq. (1)) is applied to the classification scores of

different action classes, for each clip proposal separately,

while in the selection module, this operation (Eq. (2)) is

performed across different clip proposals. In spite of shar-

ing a similar mathematical formulation, these two softmax

layers are designed for the purpose of classification and se-

lection, respectively.

Video prediction. Finally, we are able to produce the

prediction score x̄p(V ) for the untrimmed video V by com-

bining the classification and selection scores. Specifically,

for hard selection, we simply average the selected top-k in-

stances as follows:

xp
i (V ) =

N∑

n=1

xs
i (cn)x

c
i (cn),

x̄p
i (V ) =

exp(xr
i (V ))

∑C

k=1
exp(xr

k(V ))
,

(3)

where xs(cn) and xc(cn) are the hard selection indicator

and classification score for clip proposal cn, respectively.

As our hard selection module is based on the original clas-

sification score, we need to perform a softmax operation to

normalize the aggregated video-level score.

In the case of soft selection, as we have learned an atten-

tion weight to rank those clip proposals, we simply employ

a weighted summation to combine the scores of the classi-

fication and selection modules, as follows:

x̄p(V ) =

N∑

n=1

x̄s(cn)x̄
c(cn). (4)

Here, different from hard selection, we use the softmax clas-

sification score for each clip proposal, as this normalized

score would make attention weight learning easier and more

stable. Note that Eq. (4) forms a convex combination of

probability vectors. Hence no further normalization is re-

quired.
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3.3. Training

After the introduction of UntrimmedNet architecture in

the previous subsection, we turn to discuss how to optimize

the model parameters. The components of feature extrac-

tion, classification module, and selection module are im-

plemented with feed-forward neural networks that are all

differentiable with model parameters. Therefore, following

training methods of strongly supervised architecture (e.g.,

Two-Stream CNNs), we employ the standard back propa-

gation method with cross-entropy loss:

ℓ(w) =

M∑

i=1

C∑

k=1

yik log x̄
p
k(Vi), (5)

where yik is set to 1 if video Vi contains action instances

of kth category, and to 0 otherwise, M is the number of

training videos. A weight decay rate of 0.0005 is enforced

during the training. In the case of video containing action

instances from multiple classes, we first normalize the label

vector y with its ℓ1-norm [51], i.e. ȳ = y/‖y‖1, and then

use this normalized label vector ȳ to calculate cross-entropy

loss.

4. Action Recognition and Detection

Having introduced UntrimmedNet for directly learning

from untrimmed videos, we now turn to describing how to

exploit these learned models for action recognition and de-

tection in untrimmed videos.

Action recognition. As our UntrimmedNets are built

on the two stream CNNs [40] or temporal segment net-

works [50], the learned models can be viewed as snippet-

level classifiers. Following the recognition pipeline of pre-

vious methods [40, 50, 52], we perform snippet-wise eval-

uation for action recognition in untrimmed videos. In prac-

tice, we sample a single frame (or 5 frame stacking of opti-

cal flow) every 30 frames. The recognition scores of sam-

pled frames are aggregated with top-k pooling (k set to 20)

or weighted sum to yield the final video-level prediction.

Action detection. Our UntrimmedNet with soft selec-

tion module not only delivers a recognition score, but also

outputs an attention weight for each snippet. Naturally,

this attention weight could be exploited for action detection

(temporal localization) in untrimmed videos. For more pre-

cise localization, we perform test every 15 frames and keep

the prediction score and attention weight for each frame.

Based on the attention weight, we remove background by

thresholding (set to 0.0001) on it. Finally, after remov-

ing background, we produce the final detection results by

thresholding (set to 0.5) on the classification score.

5. Experiments

In this section we describe the experimental results of

our method. First, we introduce the evaluation datasets and

the implementation details of our UntrimmedNets. Then,

we perform exploration studies to determine important con-

figurations of our approach. Finally, we examine our

method on weakly supervised action recognition (WSR)

and action detection (WSD), and compare with the state-

of-the-art methods.

5.1. Datasets

We evaluate our UntrimmedNet on two large datasets,

namely THUMOS14 [22] and ActivityNet [16]. These two

datasets are suitable to evaluate our method as they provide

the original untrimmed videos. It should be noted that these

two datasets also have temporal annotations of action in-

stances for training data, but we do not use these temporal

annotations when training our UntrimmedNets.

The THUMOS14 dataset has 101 classes for action

recognition and 20 classes for action detection. It is com-

posed of four parts: training data, validation data, testing

data, and background data. To verify the effectiveness of

our UntrimmedNet on learning from untrimmed videos, we

mainly use the validation data (1,010 videos) to train our

models and the test data (1,574 videos) to evaluate their

performance. The ActivityNet dataset is a recently intro-

duced benchmark for action recognition and detection in

untrimmed videos. We use the ActivityNet release 1.2 for

our experiments. In this release, the ActivityNet consists of

4,819 videos for training, 2,383 videos for validation, and

2,480 videos for testing, of 100 activity classes. We per-

form two kinds of experiments: 1) learning UntrimmedNets

on the training data and testing it on the validation data, 2)

learning UntrimmedNets on the combination of training and

validation data and submitting testing results to the evalua-

tion server. The evaluation metric is based on mean av-

erage precision (mAP) for action recognition on these two

datasets. For action detection, we follow the standard evalu-

ation metric by reporting mAP values for different intersec-

tion over union (IoU) values on the dataset of THUMOS14.

5.2. Implementation details

We use the video extension version [50] of the Caffe

toolbox [21] to implement the UntrimmedNet. We choose

two successful deep architectures for feature extraction in

our UntrimmedNet, namely Two Stream CNNs [40] and

Temporal Segment Network [50]. The two networks are

both based on two stream inputs (RGB and Optical Flow)

and Temporal Segment Network is equipped with segmen-

tal modeling (3 segments) to capture long-range temporal

information. Following the Temporal Segment Network,

the input to the spatial stream is 1 RGB frame and the tem-

poral stream takes 5-frame stacks of TVL1 optical flow.

4329



Spatial stream Temporal stream Two stream
0.5

0.55

0.6

0.65

0.7

0.75

P
e

rf
o

rm
a

n
c
e

 (
h

a
rd

 s
e

le
c
ti
o

n
)

Uniform sampling

Shot based sampling

Spatial stream Temporal stream Two stream
0.5

0.55

0.6

0.65

0.7

0.75

P
e

rf
o

rm
a

n
c
e

 (
s
o

ft
 s

e
le

c
ti
o

n
)

Uniform sampling

Shot based sampling

Figure 3. Comparison of different clip proposal sampling methods

on the THUMOS14 dataset.

We choose the Inception architecture [18] with Batch Nor-

malization for the UntrimmedNet design and we initialize

UntrimmedNet parameters of both streams with pre-trained

models from ImageNet [5] with the method introduced in

[50]. The UntrimmedNet parameters are optimized with the

mini-batch stochastic gradient algorithm, where the batch

size is set to 256 and the momentum to 0.9. The initial

learning rate is set to 0.001 for the spatial stream and de-

creases every 4,000 iterations by a factor of 10, and the

whole training stops at 10, 000 iterations. For the tempo-

ral stream, we set the initial learning rate to 0.005, which

is decreased every 6,000 iterations by a factor of 10, and it

stops training at 18, 000 iterations. As the training set size

of THUMOS14 and ActivityNet is relatively small, we use

high dropout ratios (0.8 for the spatial stream and 0.7 for

the temporal stream) and common data augmentation tech-

niques including cropping augmentation and scale jittering.

5.3. Exploration studies

In this subsection, we focus on the exploration studies to

determine the important setups of UntrimmedNet. Specifi-

cally, we perform investigation on the THUMOS14 dataset,

where we train the UntrimmedNet on the validation data

and conduct evaluation on the testing data. In all these

experiments, we report performance of both hard selection

and soft selection

Clip sampling. We design two simple sampling method

in Section 3.1. We start our experiments by comparing these

two proposal sampling methods. In this study, we use the

two stream CNNs for feature extraction in the Untrimmed-

Net and seven clips are randomly sampled from each video.

The numerical results are summarized in Figure 3. From the

results, we see that both sampling methods can give good

performance for UntrimmedNet training and the shot based

sampling is able to yield better performance (71.6% vs.

70.2% for the soft selection module). We ascribe the better

performance of shot based sampling to the fact that shot de-

tection is able to automatically detect the action boundary

and is more natural for video temporal segmentation than

uniform segmentation. In the remaining experiments, we

choose the shot based proposal sampling by default.

Spatial stream Temporal stream Two stream
0.5

0.55

0.6

0.65

0.7

0.75

P
e

rf
o

rm
a

n
c
e

 (
h

a
rd

 s
e

le
c
ti
o

n
)

Two stream CNN

Temporal Segment Network

Spatial stream Temporal stream Two stream
0.5

0.55

0.6

0.65

0.7

0.75

P
e

rf
o

rm
a

n
c
e

 (
s
o

ft
 s

e
le

c
ti
o

n
)

Two stream CNN

Temporal Segment Network

Figure 4. Comparison of different architectures for feature extrac-

tion on the THUMOS14 dataset.
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Figure 5. Performance of UntrimmedNets with different numbers

of clip proposal per video on the THUMOS14 dataset.

Feature extraction. An important component in our

UntrimmedNet is feature extraction as the classification and

selection modules both depend on feature representations.

In this experiment, we choose two networks, namely two

stream CNNs [40] and temporal segment networks [50],

and sample seven clip proposals per video during the train-

ing phase. The experimental results are reported in Fig-

ure 4, and we observe that the temporal segment networks

consistently outperform the original two stream CNNs for

both hard and soft selection modules, due to their long-term

modeling over the entire clip (74.2% vs. 71.6% for the soft

selection module). Therefore, we choose the temporal seg-

ment networks for feature extraction in the remaining ex-

periments.

Number of proposals. Another important parameter in

the design of UntrimmedNet is the number of clip proposals

sampled from each video. As the GPU memory is limited,

we need to strike a balance between the number of sam-

pled clip proposals per video and the number of videos per

batch. According to our experiment, on average, we gen-

erate 40 clip proposals for each video on the THUMOS14

dataset and 20 clip proposals for each video on the Activ-

ityNet dataset. In our experiment, we set the number of

sampled clip proposals per video to 5, 7, 9. In the hard

selection module, we set the parameter k in top-k pooling

as ⌊N
2
⌋, where N is the number of sampled clip proposals.

The experimental results are summarized in Figure 5 and

we see that for separate streams, the performance slightly

varies when the number of sampled proposals changes, but

the performance of two stream networks is quite stable for

the hard selection module. For the soft selection module,

the values 7 and 9 show a small advantage over 5 and there-
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Method THUMOS14 ActivityNet (a) ActivityNet (b)

TSN (3 seg) [50] 67.7% 85.0% 88.5%

TSN (21 seg) 68.5% 86.3% 90.5%

UntrimmedNet (hard) 73.6% 87.7% 91.3%

UntrimmedNet (soft) 74.2% 86.9% 90.9%

Table 1. Effectiveness of selection module on the problem of

weakly supervised action recognition (WSR). On the THUMOS14

dataset, we train UntrimmedNet on the validation data and eval-

uate on the test data. For the setting (a) of ActivityNet, we

train UntrimmedNet on the training videos and test on the vali-

dation videos. For the setting (b) of AcitivtyNet, we train on the

train+val videos and evaluate on the test server. “hard” and “soft”

in UntrimmedNet rows refer to hard and soft selection modules.

THUMOS14 ActivityNet

iDT+FV [45] 63.1% iDT+FV [45] 66.5%∗

Two Stream [40] 66.1% Two Stream [40] 71.9%∗

EMV+RGB [56] 61.5% C3D [42] 74.1%∗

Objects+Motion [19] 71.6% Depth2Action [57] 78.1%∗

TSN (3 seg) [50] 78.5% TSN (3 seg) [50] 88.8%∗

UntrimmedNet (hard) 81.2% UntrimmedNet (hard) 91.3%

UntrimmedNet (soft) 82.2% UntrimmedNet (soft) 90.9%

Table 2. Comparison of our UntrimmedNet with other state-of-

the-art methods on the datasets of THUMOS14 and AcitivtyNet

(v1.2) for action recognition. For ActivityNet, we train the models

on train+val videos and evaluate on the test server. ∗ indicates

using strong supervision for training.

fore, to keep a balance between accuracy and efficiency, we

fix the number of sampled proposal to 7 in the remaining

experiments.

5.4. Evaluation on WSR

After the exploration study on different configurations,

we turn to the investigation of UntrimmedNet on the prob-

lem of weakly supervised action recognition (WSR) on the

datasets of THUMOS14 and ActivityNet in this subsection.

Effectiveness of selection module. We first exam-

ine the effectiveness of leveraging selection modules in

UntrimmedNets for learning from untrimmed videos. In or-

der to study the setting of learning from untrimmed videos,

we use the validation data for training on the THUMOS14

dataset, and use the untrimmed videos without temporal an-

notations for training on the ActivityNet dataset.

We choose two baseline methods to compare: the stan-

dard temporal segment network with the average aggre-

gation function (TSN), which is the state-of-the-art action

recognition method, and TSN with more segments, which

uses more segments during training. The numerical results

are summarized in Table 1. From these results, we first see

that our UntrimmedNet equipped with a hard or soft se-

lection module outperforms the original TSN frameworks

on both datasets. Furthermore, for the sake of a fair com-

parison with our UntrimmedNet, we increase the segment

number of TSN to 21, which is equal to the number of seg-

IoU (α) α= 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

Oneata et al. [33]∗ 14.4 20.8 27.0 33.6 36.6

Richard et al. [35]∗ 15.2 23.2 30.0 35.7 39.7

Shou et al. [39]∗ 19.0 28.7 36.3 43.5 47.7

Yeung et al. [54]∗ 17.1 26.4 36.0 44.0 48.9

Yuan et al. [55]∗ 18.8 26.1 33.6 42.6 51.4

UntrimmedNet (soft) 13.7 21.1 28.2 37.7 44.4

Table 3. Comparison of our UntrimmedNet with other state-of-the-

art methods on the datasets of THUMOS14 for action detection. ∗

indicates using strong supervision for training.

ments in our UntrimmedNet (3×7), and we see that increas-

ing the segment numbers indeed contributes to improving

the recognition performance. But the performance of TSN

with 21 segments is still below that of our UntrimmedNet,

which indicates that explicitly designing selection modules

for learning from untrimmed videos is effective.

Comparison with the state of of the art. After a sep-

arate study on the effectiveness of selection modules on

WSR, we now compare the UntrimmedNet with other state-

of-the-art methods on those two challenging datasets. To

get a fair comparison with other methods, we use the train-

ing and validation videos to learn UntrimmedNets on the

THUMOS14 dataset. As its training data (UCF101) is al-

ready trimmed, we simply use the whole video clips as pro-

posals to train our UntrimmedNet. On the dataset of Activ-

ityNet, we combine the training and validation videos to

train our models and report the performance on the test-

ing videos. It is worth noting that other methods all use

strong supervision (i.e. temporal annotation and video la-

bels), while our UntrimmedNet only uses weak supervision

(i.e. only video labels)

We compare with several previous successful action

recognition methods, which previously achieved the state-

of-the-art performance on these two datasets, including im-

proved trajectories (iDT+FV) [45], two stream CNNs [40],

3D convolutional networks (C3D) [42], temporal seg-

ment networks (TSN) [50], Object+Motion [19], and

Depth2Action [57]. The numerical results are summarized

in Table 2. We see that our UntrimmedNets outperform

all these previous methods. Our best performance is 3.7%

above that of other methods on the THUMOS14 dataset

and 2.5% on the ActivityNet dataset. This superior perfor-

mance of UntrimmedNet justifies the importance of jointly

learning classification and selection modules. Furthermore,

we are only using weak supervision and have obtained bet-

ter performance than those methods relying on strong su-

pervision, which could be explained by the fact that our

UntrimmedNet could well utilize useful context informa-

tion in the whole untrimmed videos rather than only learn-

ing from trimmed activity clips.
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Figure 6. Visualization of attention weights on the test data of THUMOS14 and AcitivtyNet. The left four frames are the highest

attention weights and the right four frames are with the lowest attention weights. The above three videos are from THUMOS14 test

data with action categories of Rafting, FrontCrawl, BandMarching, and the below three videos are from ActivityNet test data with action

classes of TripleJump, ShovelingSnow and PlayingHarmonica.

5.5. Evaluation on WSD

After evaluation on the problem of weakly supervised

action recognition (WSR), we turn to the problem of

weakly supervised action detection (WSD) in this sub-

section. Specifically, we explore the performance of our

UntrimmedNet with soft selection module on this problem.

Qualitative results. We first visualize the some exam-

ples of learned attention weights on the test data of THU-

MOS14 and ActivityNet. These examples are presented in

Figure 6. In this illustration, each row describes one video,

where the first 4 images show frames with highest atten-

tion weights while the last 4 images are frames with low-

est weights. We see that our selection module is able to

automatically highlight important frames and to avoid ir-

relevant frames corresponding to static background or non-

action poses.

Quantitative results. We also report the performance

of action detection on the THUMOS14 dataset, based on

the standard intersection over union (IoU) criteria [22]. We

simply try a simple detection strategy by thresholding on

the attention weights and detection scores as described in

Section 4, and aim to illustrate that the learned models

with UntrimmedNets could also be applied to action de-

tection. In the future, we may try more advanced detec-

tion methods and post-processing techniques. We compare

our detection results with other state-of-the-art methods in

Table 3. We notice although our UntrimmedNets simply

employ the weak supervision of video-level labels, we can

still achieve comparable performance to that of strongly su-

pervised methods, which demonstrates the effectiveness of

UntrimmedNets on learning from untrimmed videos.

6. Conclusions

In this paper we have presented a novel architecture,

called UntrimmedNet, for weakly supervised action recog-

nition and detection, by directly learning action models

from untrimmed videos. As demonstrated on two chal-

lenging datasets of untrimmed videos, our Untrimmed-

Net achieves better or comparable performance for ac-

tion recognition and detection, when compared with those

strongly supervised methods. The superior performance of

UntrimmedNet may be ascribed to its advantages of the

joint design of classification and selection modules, and op-

timizing these model parameters in an end-to-end manner.
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