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Figure 1: The paper tackles building-scale panorama RGBD image alignment. Our approach utilizes a floorplan image to

significantly reduce the number of necessary scans and hence human operating costs.

Abstract

This paper presents a novel algorithm that utilizes a 2D

floorplan to align panorama RGBD scans. While effective

panorama RGBD alignment techniques exist, such a sys-

tem requires extremely dense RGBD image sampling. Our

approach can significantly reduce the number of necessary

scans with the aid of a floorplan image. We formulate a

novel Markov Random Field inference problem as a scan

placement over the floorplan, as opposed to the conven-

tional scan-to-scan alignment. The technical contributions

lie in multi-modal image correspondence cues (between

scans and schematic floorplan) as well as a novel coverage

potential avoiding an inherent stacking bias. The proposed

approach has been evaluated on five challenging large in-

door spaces. To the best of our knowledge, we present the

first effective system that utilizes a 2D floorplan image for

building-scale 3D pointcloud alignment. The source code

and the data are shared with the community to further en-

hance indoor mapping research.

1. Introduction

3D scanning hardware has made remarkable progress in

recent years, where successful products exist in industry for

commercial applications. In particular, Panorama RGBD

scanners have found real-world applications as the system

produces both 3D geometry and immersive panorama im-

ages. For instance, Faro 3D [10] is a professional grade

panorama RGBD scanner, which can reach more than 100

meters and produce 100 million points per scan within a

millimeter accuracy. The device is perfect for 3D measure-

ment, documentation, or surveillance in indoor mapping,

civil engineering or GIS applications. Matterport [2, 5] is

an emerging low-end solution that can reach only 5 meters,

but is much quicker (i.e., 1 to 2 minutes per scan), and has

demonstrated compelling results for Real Estate markets.

Given the success on the 3D scanning hardware, auto-

mated panorama RGBD alignment has become a crucial

technology. The Matterport system provides a robust so-

lution but requires extremely dense scanning (e.g., one scan

every 2 to 3 meters). Dense scanning becomes infeasible for

high-end scanners (e.g., Faro 3D [10]), whose single scan

could take thirty minutes or an hour depending on the res-

olution. However, these scanners are the only option for

large buildings such as department stores, airport terminals,

or hotel lobbies, simply due to the required operating ranges

(e.g., 20 to 30 meters). Furthermore, the precision of these

high-end scanners is necessary for quantitative recovery of

metric information for scientific and engineering data anal-

ysis. In practice, with high-end 3D scanning devices, people

use calibration objects such as big bright balls and/or utilize
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Figure 2: We have used a professional grade laser range finder to acquire building-scale panorama RGBD scans over five

floors in two buildings. An orange circle indicates a rough scan location. Only one scan has been acquired in each room in

most cases, making the intersection of adjacent scans minimal and the use of floorplan-image essential for our problem.

semi-automatic 3D alignment tool such as Autodesk ReCap

360 [1] to minimize the number of necessary scans.

This paper focuses on high-end 3D indoor scanning (See

Fig. 1). A key observation is that building targets for high-

end 3D scanning often have 2D floorplans. Our approach

can significantly reduce the number of necessary RGBD

scans with the aid of a 2D floorplan image. The key techni-

cal contribution lies in a novel Markov Random Field for-

mulation as a scan placement problem as opposed to the

conventional scan-to-scan alignment. Besides the standard

visual and geometric feature matching between scans, we

incorporate multi-modal geometric or semantic correspon-

dence cues associating scans and a floorplan, as well as a

novel “coverage potential” that avoids an inherent stack-

ing bias. We have experimented with five challenging large

indoor spaces and demonstrated near perfect alignment re-

sults, significantly outperforming existing approaches (See

Fig. 2). While our work has focused on existing indoor

structures, the technology can also be transformative to

other domains, for example, Civil Engineering applications

at construction sites for progress monitoring or safety in-

spection [15], where precise building blueprints exist.

2. Related work

Two approaches exist for indoor 3D scanning: “RGBD

streaming” or “Panorama RGBD scanning”. RGBD stream-

ing continuously moves a depth camera and scans a scene.

This has been the major choice among Computer Vision re-

searchers [19, 8, 24] after the success of Kinect Fusion [14].

The input is a RGBD video stream, where Simultaneous

Localization and Mapping (SLAM) is the core technology.

Panorama RGBD scanning has been rather successful in in-

dustry, because 1) data acquisition is easy (i.e., picking a 2D

position as opposed to 6 DoF navigation in RGBD stream-

ing); 2) alignment is easier thanks to the panoramic field

of views; and 3) the system produces panorama images, es-

sential for many visualization applications. Structure from

Motion (SfM) is the core technology in this approach. This

paper provides an automated solution for Panorama RGBD

alignment, and the remainder of the section focuses on

the description of the SfM techniques, where we refer the

reader to a survey article [7] for the SLAM literature.

Structure from Motion (SfM) addresses the problem of

automatic image alignment [12]. State-of-the-art SfM sys-

tem can handle even millions of unorganized Internet pho-
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2 Scans Rooms Floorplan res.Area (ft  ) 3D-points

Table 1: Statistics of our building-scale panorama RGBD

datasets. A single scan contains 44 million colored points.

tographs [4, 11]. The wider field-of-view (e.g., panorama

images) further makes the alignment robust [21, 20, 16] as

more features are visible. When depth data is available,

geometry provides additional cues for alignment, where It-

erative Closest Point (ICP) [6] has been one of the most

successful methods. However, even state-of-the-art SfM or

ICP systems face real challenges for indoor scenes that are

full of textureless walls with limited visibility through nar-

row doorways. Existing approaches either 1) take extremely

dense samples [2] or 2) rely on manual alignment [18, 13].

The idea of utilizing building information for scan align-

ment has been demonstrated in Civil Engineering applica-

tions [15]. However, the system requires a full 3D model for

construction design and planning, as well as manual image-

to-model correspondences to start the process. This paper

utilizes 2D floorplan to align undersampled building-scale

panorama RGBD scans with minimal user interactions (i.e.,

a few mouse strokes on a floorplan image).

3. Building-scale Panorama RGBD Datasets

We have used a professional grade laser range finder,

Faro 3D [10], to acquire panorama RGBD scans over five

floors in two buildings (Fig. 2 and Table 1). A floorplan is

given as a rasterized image. This section summarizes stan-

dard preprocessing steps, necessary to prepare our datasets

for our algorithm. We here briefly describe these steps and

refer the details to the supplementary material (See Fig. 3).

• We remove clutter in a floorplan image by discarding

small connected components of black pixels.

• Our floorplan image contains a scale ruler, which lets us

calculate a metric scale per pixel with a few mouse strokes.

The process may be imprecise, and our algorithm will be

designed to tolerate errors. In the absence of a ruler, we can

align one scan with a floorplan by hand to obtain a scale.

• We extract a Manhattan frame from each scan and a floor-

plan image, respectively. In each scan, we identify the verti-

cal direction and the floor height based on the point density.

• We turn each scan into point or free-space evidence im-

ages in a top-down view. A point evidence is a score in the

range of [0, 1], while a free-space evidence is a binary mask.

• We compute a building mask over a floorplan image,

which can quickly prune unlikely scan placements. A floor-

Door Pixels

Detected 

doors Door Pixels

Center 1

Figure 3: [Top] A floorplan image for Center 1 after the

clutter removal. The blue overlay shows the building mask,

and red pixels show the detected door pixels. [Bottom] The

left shows the close-up of one scan with the result of 3D

door detections. The middle shows the free-space image

mask with detected door pixels. The right shows the point-

evidence image with a heat-map color scheme

plan pixel becomes inside the mask if the pixel is between

the left and the right most pixels in its row and between the

top and the bottom most pixels in its column.

• We detect doors both in a floorplan image and 3D scans.

For a floorplan, we manually specify a bounding box con-

taining a single door symbol, and use a standard template

matching method to find the remaining symbols. For 3D

scans, we use a heuristic to identify door-specific 3D pat-

terns directly in 3D points.

4. MRF formulation

The multi-modal nature of the problem makes our for-

mulation fundamentally different from existing ones [22,

23]. The first critical difference lies in the definition of the

variables. In existing approaches, a variable encodes a 3D

relative placement between a pair of scans [22, 23]. In our

formulation, a variable encodes a 2D absolute placement of

a single scan over a floorplan image.

Let S = {s1, s2, · · · } be our variables, where si encodes

the 2D placement of a single scan. si consists of two com-

ponents: 1) rotation, which takes one of the four angle val-

ues by exploiting the Manhattan frames (0, 90, 180, or 270

degrees); and 2) translation, which is a pixel coordinate in
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Figure 4: The scan-to-floor potential measures the consistency of the floorplan and a 3D scan in two ways. Left: The semantic

cue checks the consistency of door detections over the door-detected pixels in the point evidence. Right: The geometric cue

measures how much of the point evidence (P ) is NOT explained by the dilated floorplan image.

the floorplan image. We seek to find the placements S that

minimizes the following three potentials:

X

si∈S

ES(si) +
X

(si,sj)∈S×S

ES×S(si, sj) +
X

fk∈F

Ek
F (S).

The first term (ES) is a unary potential, measuring the con-

sistency between the scan placement and the floorplan im-

age. The second term (ES×S) is a binary potential, measur-

ing the consistency between pairs of scan placements. The

third term (EF ) counts the number of floorplan pixels cov-

ered by the scan placements, and is summed over floorplan

image pixels F . Ek
F is a higher order term, but will be ap-

proximated by a sum of pairwise terms as explained below.

The first (ES) and the third (Ek
F ) terms are the main contri-

butions, while the second term (ES×S) resembles existing

approaches.

4.1. Scan-to-floorplan consistency potential

Scan-to-floorplan consistency (ES ) needs to overcome

vastly different modalities between a floorplan image and

real sensor data. Our measure is the sum of the semantic

and geometric penalties (See Fig. 4).

Semantic cue: The semantic cues exploit door detections.

The door detection are used to align pairs of scans in a re-

cent work by Yan et al. [23]. We use door detections to align

a 3D scan against a floorplan image. Door detection results

are represented as a set of pixels in a floorplan image or

per-scan evidence images. The semantic penalty is defined

for every door-pixel in the evidence image. Let fp denote

the corresponding floorplan pixel under the scan placement.

The penalty is 0 if fp is also a door-pixel. Since not all the

doors are marked in a floorplan, fp may be an unmarked

door-pixel. In that case, fp must be in a door-way (i.e.,

white pixel). Therefore, if fp is not a door pixel and has

intensity more than 0.4, we set the penalty to 0.5, otherwise

1.0. The average penalty over all the door-pixels in the evi-

dence image is the semantic penalty.

Geometric cue: Measuring the consistency between the

floorplan image and the point evidence image is a real chal-

lenge: 1) A floorplan image contains extra symbols that are

not in evidence images; 2) An evidence image contains ob-

jects/clutter that are not in a floorplan image; 3) The style

of a floorplan (e.g., line thickness) may vary; and 4) Both

are essentially line-drawings, making the comparison sen-

sitive to small errors. In practice, we have found that the

following consistency potential provides a robust metric.

We first apply a standard morphological dilation oper-

ation (as a gray-scale image) to a floorplan image, using

the OpenCV default implementation with a 5 × 5 kernel.

We then measure how much of the point evidence image is

NOT explained by the floorplan, by 1) subtracting the di-

lated floorplan image (DF ) from the point evidence image

(P ); then 2) clamping the negative intensities to 0. The sum

of intensities in this residual image (max(0, P −DF )) di-

vided by the sum of intensities in the original evidence im-

age (P ) calculates the amount of the discrepancy. We swap

the role of the floorplan and a point evidence image, com-

pute the other discrepancy measure, and take the average.
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4.2. Scan-to-scan consistency potential

Different from standard MRF formulation, we do not

know which pairs of variables (i.e., scans) should have in-

teractions, because our variables encode the placements of

the scans. Therefore, we set up a potential for every pair of

scans. The potential measures the photometric and geomet-

ric consistencies between the two scans given their place-

ments. The photometric consistency uses normalized cross-

correlation of local image patches. The geometric consis-

tency measures the discrepancy between the point and free-

space evidence information stored over the voxel grids. The

consistency measures are based on standard techniques, and

we refer the details to the supplementary material.

4.3. Floorplan coverage potential

The third potential seeks to increase the number of floor-

plan pixels covered by the scan. This acts as a counter-force

against the scan-to-scan consistency potential, which has a

strong bias to stack multiple scans at the same location, be-

cause 1) this potential was added for every pair of scans;

and 2) the potential goes down only when scans overlap.

The floorplan coverage potential can be implemented by

the sum of the sub-potentials over the floorplan pixels, each

of which returns 1 if the pixel is not covered by any scans,

otherwise 0. We define that “a scan covers a floorplan pixel”

if the pixel is inside the free-space mask. This sub-potential

depends on any scan, one of whose placement candidates

covers the pixel, and usually becomes higher-order. In prac-

tice, most rooms are scanned only once or twice, and the ap-

proximation by pairwise terms has worked well. More pre-

cisely, for every floorplan pixel, we identify a set of scans,

one of whose placement candidates covers the pixel. For ev-

ery pair of such scans, we form a pairwise potential that be-

comes 0.0 if exactly one of the scans covers the pixel (ideal

case), 0.5 if both cover the pixel, and 1.0 if none covers.

5. Inference

Naive inference will be infeasible to solve our MRF

problem. The label space is massive (i.e., 4 rotations x 50

million translations per variable). The energy is not sub-

modular. The key insight is that while indoor scenes are

full of repetitions, there are not too many places or rooms

that have exactly the same surrounding geometry and door

placements. Therefore, simply identifying significant (neg-

ative) peaks in the unary potential can restrict a set of feasi-

ble placements for each scan. In practice, exhaustive eval-

uation of all the unary costs are still infeasible (200 million

possible placements per scan), and we employ a standard

hierarchical search scheme to identify a small number (5 in

our experiments) of placement candidates per scan.

The hierarchical search scheme works as follows. First,

we build an image pyramid of 5 levels for each floorplan im-

age, an evidence image, or a door-detection image. Second,

we exhaustively evaluate all the unary costs at the top level,

and keep all the local minima less than a threshold. Then,

by level by level, we iterate evaluating the unary costs at the

children pixels under the current local minima, and apply-

ing non-local min suppression with a thresholding. This hi-

erarchical search runs for each of the four orientations. The

best five placements at the bottom level of these searches

are reported as the candidates.

While this search strategy is relatively straightforward, a

few algorithmic details are worth noting. First, we use the

maximum intensity 1 over 2 × 2 pixels instead of the av-

eraging in the image pyramid creation, as images are near

binary. Second, the non-local min suppression looks at a

much larger area than the direct neighbors, as the function

tends to be peaky. Let WB and HB be the width and height

of the tight bounding box containing the floorplan mask. We

look at a square region whose size is (WB+HB)/80. Third,

the threshold at the non-local min suppression is the mean

minus the standard deviation of the evaluated scores at the

same pyramid level. Fourth, we speeded up the unary po-

tential evaluation by skipping scan placements when more

than 30% of the corresponding free-space mask goes out-

side the building-mask. Lastly, 7× 7 children pixels (every

other pixel is chosen at the perimeter for speed) instead of

2 × 2 are searched under each local minimum for more ro-

bustness.

With five placement candidates per scan, we resort to the

tree-reweighted message passing algorithm [17] to optimize

our non-submodular energy. Each variable is initialized as

the placement with the best unary potential. The optimiza-

tion usually converges after 50 iterations.

6. Experimental results and discussions

We have used C++ for implementation and Intel Core

I7 CPU with 16GB RAM PC. Three computational ex-

pensive steps are preprocessing, unary-potential evaluation,

and TRW optimization, where the running time is roughly

proportional to the number of the input scans. For large

datasets with 70 to 80 scans, these steps roughly take 5

hours, 2.5 hours, and 30 minutes, respectively. The prepro-

cessing is the bottleneck due to I/O and processing of the

massive scan files, which can be parallelized if necessary.

Figures 5 and 6 show our main results. For each dataset,

merged point cloud and colored floorplan-masks are shown.

When multiple masks cover the same pixel, the color of the

closest scan is chosen.

We have manually inspected every result to check the

placement correctness, where erroneous ones are high-

lighted in the figure. Table 2 shows our placement error

1We assume that black pixels (walls) have a greater intensity than the

white pixels (floor) in the point and free-space evidence, and the input

floorplan
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Figure 5: Placement results for Center1 and Center2. A merged 3D point-cloud, and 2D colored free-space masks are shown.

Data SF SF+SS All (SF+SS+F)

Center 1 12% 0% 2%
Center 2 3% 2% 0%

Hall 1 29% 15% 15%
Hall 2 12% 15% 7%
Hall 3 44% 47% 34%

Table 2: To assess the contributions of each potential, we

have run our algorithm with different combinations of the

potentials. SF, SS, and F denotes the scan-to-floorplan,

scan-to-scan, and floorplan coverage potentials, respec-

tively.

rates (i.e., the ratio of incorrectly placed scans). Our algo-

rithm has successfully aligned most of the scans. We have

not scanned the right wing of the building in Center 1 and

Center 2 (See Fig. 2), which makes a large space for scans to

be misplaced. Nonetheless, our method has only one mis-

placement in that area (Center 1). Note that Hall 3 is an

exception in which we make many errors due to the glitch

in the floorplan image. We will discuss failure cases later.

Our MRF formulation consists of the three potentials.

We have run our algorithm with a few different combina-

tions to assess their contributions. Table 2 shows relatively

low error rates for the unary-only results (SF) and demon-

strates the power of utilizing floorplans. The table also

shows that the standard pairwise potential (SS), the main

cue for existing approaches, has consistently improved the

alignment accuracy for easier datasets (Center 1, Center 2,

and Hall1), but not for the harder two cases. The floorplan

coverage potential is crucial for challenging datasets (Hall2

and Hall3), which are full of repetitions and ambiguity.

Furthermore, we have experimented the feasibility of

conventional scan-to-scan alignment techniques, in partic-

ular, Autodesk ReCap 360 [1] and K-4PCS [22], which do

not use floorplan data. Both methods have failed to gen-

erate any type of meaningful result, again confirming the

importance of utilizing a floorplan image for our problems.

Note that for fair comparison, we have evaluated the fully

automated mode in Autodesk ReCap 360. We have also

utilized its interactive mode in aligning the scans, but the

process has been extremely painful and time-consuming (6

or 7 hours of intensive mouse clicking for large dataset).

Furthermore, the final alignments have suffered from major

errors due to the forced automatic refinement, which cannot

be avoided.
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Figure 6: Placement results for Hall1, Hall2, and Hall3.

= Incorrect

Figure 7: Results when replacing our unary potential with a distance transform on Center 2. Major placement errors occur in

the middle of a big hall. The right cutaway point rendering shows the magnitude of the error.

To further evaluate the contribution of our unary poten-

tial and the effectiveness of utilizing a floorplan image, we

have experimented with three alternative image matching

metrics to replace the unary term (See Table 3). The same

hierarchical search scheme (Sect. 5) has been used. The

naive SSD without the mask fails badly as expected. SSD

and Distance transform utilizing our masks has achieved

reasonable accuracy, which is remarkable, considering the

fact that the pairwise scan alignment without floorplan (i.e.,

current state-of-the-art) has completely failed in all the ex-

amples. Columns “Top 1” and “Top 5” indicate if the

ground-truth placement is in the top 1 or 5 candidates based

solely on the unary potential. It is worth noting that expand-

ing the candidate list did not help in reducing the error rate

for Top 5, because failure cases are usually extreme.

Figure 7 illustrates typical failure modes of Distance
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Naive SSD SSD Distance transform Ours (unary)

Name #Scans Top 1 Top 5 Top 1 Top 5 Final Top 1 Top 5 Final Top 1 Top 5 Final

Center 1 50 96% 94% 24% 12% 12% 14% 4% 12% 6% 2% 2%
Center 2 80 94% 91% 18% 10% 10% 20% 12% 13% 1% 0% 0%

Hall 1 7 100% 100% 43% 0% 15% 29% 29% 29% 15% 0% 15%
Hall 2 75 100% 94% 48% 26% 37% 12% 8% 16% 22% 10% 7%
Hall 3 65 97% 96% 71% 56% 61% 45% 22% 37% 45% 32% 34%

Table 3: We have compared our results against several image distance metrics that replace the scan-to-floorplan (unary)

potential. Columns “Top 1” and “Top 5” indicate if the ground-truth is in the top 1 or 5 placements based solely on the unary

potential. Column “Final” reports the error rate after the MRF optimization with the replaced unary potential. Naive SSD

simply takes the sum of squared differences between the floorplan image and the point-evidence image. SSD computes the

same measure but only inside the free-space evidence mask. Distance transform makes the floorplan image into binary with a

threshold 0.4, constructs its distance-transform image [9], then takes the sum of element-wise product with the point-evidence

image inside the free-space evidence mask.

w/ semantic cue 

w/o semantic cue

Door pixels in a scan

Door pixels in a floorplan

Figure 8: The semantic cue (i.e., door detection) resolves

ambiguities. The figure shows the best placement based on

the unary potential with or without the semantic cue.

SS + SF Full (SS + SF + F)

Figure 9: Final scan placements with or without the floor-

plan coverage potential, which mitigates the stacking bias

visible on the left.

transform, which tends to concentrate scans in large rooms.

Our analysis is that a large room tends to have non-

architectural lines or symbols. The distance transform im-

age contains significantly smaller values in this scenario

than it would in absence, and allows incorrect placements

to have a lower energy.

Figure 8 illustrates the effects of the semantic cue in the

unary potential (i.e., the door detection). Indoor scenes are

full of symmetries and repetitions, which makes the com-

parison of pure geometry (i.e., geometric cue) susceptible

to local minima. The figure demonstrates a representative

case, where the door detections break such an ambiguity.

When the placement is ambiguous even with the geo-

metric and the semantic cues, we rely on the MRF opti-

mization with the full three potentials. Figure 9 compares

the final scan placements with or without the floorplan cov-

erage potential. The floorplan coverage potential seeks to

avoid “stacking” and evenly distribute the placements.

Our method is not perfect and has exposed several fail-

ure modes. First, our approach tends to make mistakes for

small storage-style rooms, where a small room with a lot of

clutter makes the geometric cue very noisy. Second, there

are genuinely ambiguous cases where the scene geometry,

appearance, and door locations are near identical. Lastly,

our method has made major errors in Hall 3, simply be-

cause the floorplan has not reflected recent structural reno-

vations. Unfortunately, it was difficult to identify erroneous

scans based on the potentials. At the presence of problem-

atic scans, the MRF optimization seems to shuffle around

scan placements including correct ones to achieve a low

energy state. Nonetheless, the total potential, inparticular,

the magnitude of the total potential divided by the number

of scans is a good indicator of success. The quantity for

Hall 3 is a few times larger than the others and indicates

that “something is wrong”. Our main future work is to de-

velop a robust algorithm to detect potentially erroneous scan

placements, which will allow a quick user feedback to cor-

rect mistakes. Our source code and building-scale datasets

are publicly available to further enhance indoor mapping re-

search [3].
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