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Abstract

In this paper, we take advantage of the clear texture

structure of the epipolar plane image (EPI) in the light field

data and model the problem of light field reconstruction

from a sparse set of views as a CNN-based angular de-

tail restoration on EPI. We indicate that one of the main

challenges in sparsely sampled light field reconstruction is

the information asymmetry between the spatial and angular

domain, where the detail portion in the angular domain is

damaged by undersampling. To balance the spatial and an-

gular information, the spatial high frequency components

of an EPI is removed using EPI blur, before feeding to the

network. Finally, a non-blind deblur operation is used to

recover the spatial detail suppressed by the EPI blur. We e-

valuate our approach on several datasets including synthet-

ic scenes, real-world scenes and challenging microscope

light field data. We demonstrate the high performance and

robustness of the proposed framework compared with the

state-of-the-arts algorithms. We also show a further appli-

cation for depth enhancement by using the reconstructed

light field.

1. Introduction

Light field imaging [20, 13] is one of the most extensive-

ly used method for capturing the 3D appearance of a scene.

Early light field cameras such as multi-camera arrays and

light field gantries [33], required expensive custom-made

hardware. In recent years, the introduction of commer-

cial and industrial light field cameras such as Lytro [1] and

RayTrix [2] have taken light field imaging into a new era.

Unfortunately, due to restricted sensor resolution, they must

make a trade-off between spatial and angular resolution.

To solve this problem, many studies have focused on

novel view synthesis or angular super-resolution using a s-

Figure 1. Comparison of light field reconstruction results on Stan-

ford microscope light field data Neurons 20× [21] using 3 × 3

input views. The proposed learning-based EPI reconstruction pro-

duces better results in this challenging case.

mall set of views [25, 26, 28, 35, 37] with high spatial res-

olution. Recently, Kalantari et al. [16] proposed a learning-

based approach to synthesize novel. views from a sparse

set of views that performed better than other state-of-the-

art approaches [14, 27, 29, 31, 36]. They employed two

sequential convolutional neural networks (CNNs) to esti-

mate the depth of the scene and predict the color of each

pixel. Then, they trained the network by directly minimiz-

ing the error between the synthetic view and the ground

truth image. However, due to the depth estimation-based

method they introduced, their networks still resulted in arti-

facts such as tearing and ghosting, especially in the occlud-

ed regions and non-Lambertian surfaces. Fig. 1 shows the

reconstruction results obtained by Kalantari et al. [16] and

our proposed approach on the Neurons 20× case from the

Stanford microscope light fields data [21]. The method by

Kalantari et al. [16] results in blur in the occluded region-

s, while the proposed approach produces reasonable result
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even in this challenging case.

In this paper, we propose a novel learning-based frame-

work to reconstruct high angular resolution light field from

a sparse sample of views. One of our key insight is that the

light field reconstruction can be modeled as learning-based

angular detail restoration on the 2D EPI. Due to the special

structure of the EPI, the learning-based reconstruction can

be effectively implemented on it. Unlike the depth-based

view synthesis approaches, the proposed method does not

require depth estimation.

We further indicated (see Sec. 3) that the main problem

in sparsely sampled light field reconstruction is the infor-

mation asymmetry between the spatial and angular domain,

where the high frequency portion in the angular domain is

damaged by undersampling. This information asymmetry

will cause ghosting effects when the light field is directly

unsampled or super-resolved in the angular domain [24].

To suppress the ghosting effect caused by this information

asymmetry and simultaneously take advantage of the spa-

tial and angular information, we instead propose a “blur-

restoration-deblur” framework on EPI. We first balance the

information by removing the spatial high frequency infor-

mation of the EPI. This step is implemented by convolving

the EPI with a known blur kernel. We then apply a CNN to

restore the angular detail of the EPI damaged by the under-

sampling. Finally, a non-blind deblur operation is used to

restore the spatial detail suppressed by the EPI blur.

Extensive experiments on synthetic scenes and real-

world scenes as well as microscope light field data validate

that the proposed framework significantly improves the re-

construction in the occluded regions, non-Lambertian sur-

faces and transparent regions, and it produces novel views

with higher numerical quality (4dB higher) compared to

other state-of-the-art approaches. Moreover, we demon-

strate that the reconstructed light field can be used to sub-

stantially enhance the depth estimation. The source code of

our work will be made public.

2. Related Work

The main obstacle in light field imaging is the trade-off

between spatial and angular resolution due to limited sen-

sor resolution. Super-resolution techniques to improve spa-

tial and angular resolution have been studied by many re-

searchers [5, 6, 31, 35, 12]. In this paper, we mainly focus

on approaches for improving the angular resolution of the

light field. The related work is divided into two categories:

those that use depth estimation and those that do not.

2.1. Depth image­based view synthesis

Wanner and Goldluecke [31] introduced a variational

light field spatial and angular super-resolution framework

by utilizing the estimated depth map to warp the input im-

ages to the novel views. They employed the structure ten-

sor to obtain a fast and robust local disparity estimation.

Based on Wanner and Goldluecke’s work, a certainty map

was proposed to enforce visibility constrains on the initial

estimated depth map in [22]. Zhang et al. [37] proposed a

phase-based approach for depth estimation and view syn-

thesis. However, their method was specifically designed for

a micro-baseline stereo pair, and causes artifacts in the oc-

cluded regions when extrapolating novel views. Zhang et

al. [36] described a patch-based approach for various light

field editing tasks. In their work, the input depth map is de-

composed into different depth layers and presented to the

user to achieve the editing goals. However, these depth

image-based view synthesis approaches suffer when faced

with occluded and textureless regions. In addition, they of-

ten focus on the quality of depth estimation, rather than the

synthetic views.

In recent years, some studies for maximizing the quali-

ty of synthetic views have been presented that are based on

CNNs. Flynn et al. [11] proposed a deep learning method

to synthesize novel views using a sequence of images with

wide baselines. Kalantari et al. [16] used two sequential

convolutional neural networks to model depth and color es-

timation simultaneously by minimizing the error between

synthetic views and ground truth images. However, in that

study, the network is trained using a fixed sampling pattern,

which makes it unsuitable for universal applications. In ad-

dition, the approach results in ghosting artifacts in the oc-

cluded regions and fails to handle some challenging cases.

In general, the depth image based view synthesis ap-

proaches [22, 31, 36, 37] use the estimated depth map to

warp the input images to the novel views. In contrast, the

learning-based approaches [11, 16] are designed to mini-

mize the error between the synthetic views and the ground

truth images rather than to optimize the depth map, resulting

in better reconstruction results. However, these approaches

still rely on the depth estimation; therefore, they always fail

in occluded regions, non-Lambertian surfaces and transpar-

ent regions.

2.2. Light field reconstruction without depth

For sparsely sampled light fields, a reconstruction in

Fourier domain has been investigated in some studies. Shi et

al. [26] considered light field reconstruction as an optimiza-

tion for sparsity in the continuous Fourier dimain. Their

work sampled a small number of 1D viewpoint trajectories

formed by a box and 2 diagonals to recover the full light

field. However, this method requires the light field to be

captured in a specific pattern, which limits its practical us-

es. Vagharshakyan et al. [28] utilized an adapted discrete

shearlet transform to reconstruct the light field from a s-

parsely sampled light field in EPI space. However, they as-

sumed that the densely sampled EPI was a square image,

therefore, needed large number of input views. In addition,
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the reconstruction exhibited poor quality in the border re-

gions, resulting in a reduction of angular extent.

Recently, learning-based techniques have also been ex-

plored for the reconstruction without depth. Cho et al. [8]

adopted a sparse-coding-based (SC) method to reconstruct

light field using raw data. They generate image pairs using

Barycentric interpolation. Yoon et al. [35] trained a neural

network for spatial and angular super-resolution. Howev-

er, the network used every two images to generate a novel

view between them, thus it underused the potential of the

full light field. Wang et al. [30] proposed several CNN ar-

chitectures, one of which was developed for the EPI slices;

however, the network is designed for material recognition,

which is different with the EPI restoration task.

3. Problem Analysis and Formulation

For a 4D light field L(x, y, s, t), where x and y are the

spatial dimensions and s and t are the angular dimensions, a

2D slice can be acquired by gathering horizontal lines with

fixed y∗ along a constant camera coordinate t∗, denoted as

Ey∗,t∗(x, s). This 2D slice is called an epipolar plane image

(EPI). Then, the low angular resolution EPI EL is s down-

sampled version of the high angular resolution EPI EH :

EL = EH ↓, (1)

where ↓ denotes the down-sampling operation. Our task is

to find an inverse operation F that can minimize the error

between the reconstructed EPI and the original high angular

resolution EPI:

min
F

||EH − F (EL)||. (2)

For a densely sampled light field, where the disparity be-

tween the neighboring views does not exceed 1 pixel, the

angular sampling rate satisfies the Nyquist sampling cri-

terion (the detail of this deduction can be found in [24]).

One can reconstruct such a light field based on the plenoptic

function; however, for light field sampled under the Nyquist

sampling rate in the angular domain, the disparity is always

larger than 1 pixel (see Fig. 2(a)). This undersampling of

the light field destroys the high frequency detail in the angu-

lar domain, while the spatial information is complete. This

information asymmetry between the angular and spatial in-

formation causes ghosting effect in the reconstructed light

field if the angular resolution is directly upsampled (see Fig.

2(b)). The black line in the ground truth EPI (Fig. 2(e))

is continues, while the upsampled EPI (Fig. 2(b)) cannot

reconstruct the line with large disparity. Note that this in-

formation asymmetry will always occur when the disparity

between the neighboring views is larger than 1 pixel.

To ensure information symmetry between the spatial and

angular information of the EPI, one can decrease the spatial

resolution of the light field to an appropriate level. How-

ever, it is then difficult to recover the novel views with the

Figure 2. An illustration of EPI upsampling results. (a) The input

low angular resolution EPI, where d is the disparity between the

neighboring views (4 pixels); (b) The upsampling result using an-

gular super-resolution directly cannot reconstruct an EPI with vi-

sual coherency; (c) The result after using EPI blur (on the spatial

dimension) and bicubic interpolation (on the angular dimension);

(d) The final high angular resolution EPI produced by the proposed

algorithm; and (e) The ground truth EPI.

original spatial quality, especially when a large downsam-

pling rate has to be used in the case as shown in Fig. 2

(a). Rather than decreasing the spatial resolution of the light

field, we extract the low frequency information by convolv-

ing the EPI with a 1D blur kernel in the spatial domain. Due

to the coupling relationship between the spatial and angular

domain [24], this step equals an anti-aliasing processing in

the angular domain. Because the kernel is predesigned, the

spatial detail can be easily recovered by using a non-blind

deblur operation. Fig. 2(c) shows the blurred and upsam-

pled result of the sparsely sampled EPI in Fig. 2(a). We

now reformulate the reconstruction of EPI EL as follows:

min
f

||EH −Dκf((EL ∗ κ) ↑)||, (3)

where ∗ is the convolution operator, κ is the blur kernel, ↑
is a bicubic interpolation operation that upsamples the EPI

to the desired angular resolution, f represents an operation

that recovers the high frequency detail in the angular do-

main, and Dκ is a non-blind deblur operator that uses the

kernel κ to recover the spatial detail of the EPI suppressed

by the EPI blur. In our paper, we model the operation f with

a CNN to learn a mapping between the blurred low angular

resolution EPI and the blurred high angular resolution EPI.

4. Proposed Framework

4.1. Overview

The EPI is the building block of a light field that contains

both the angular and spatial information. We take advan-

tage of this characteristic to model the reconstruction of the

sparsely sampled light field as the learning-based angular

information restoration on EPI (Eq. 3). An overview of our

proposed framework is shown in Fig. 3.
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Figure 3. The proposed learning-based framework for light field

reconstruction on EPI.

We first extract the spatial low frequency information of

the EPI using EPI blur. Then we upsample it to the desired

angular resolution using bicubic interpolation in the angular

domain (see Fig. 3(a)). Then, we apply a CNN to restore

the detail of the EPI in the angular domain (see Fig. 3(b)).

The network architecture is similar to that in [9]. The main

difference is that we apply a residual-learning method to

predict only the angular detail of the EPI. The network de-

tail is presented in Sec. 4.3. Finally, the spatial detail of the

EPI is recovered through a non-blind deblur operation [18]

(see Fig. 3(c)), and the output EPIs are applied to recon-

struct the final high angular resolution light field. It should

be noted that the CNN is trained to restore the angular de-

tail that is damaged by the undersampling of the light field

rather than the spatial detail suppressed by the EPI blur. An

alternative approach is to model the deblur operation into

the CNN; however, using that approach, the network will

inevitably need to be deeper and will be slower to converge,

making it more difficult to produce good results. Compar-

atively, the non-blind deblur is much more suitable to the

task because the kernel is known.

To reconstruct the full light field using the sparsely sam-

pled light field, the EPIs Ey∗,t∗(x, s) and Ex∗,s∗(y, t) from

the input views are applied to reconstruct an intermediate

light field. Then, EPIs from the novel views are used to

generate the final light field.

4.2. Low frequency extraction based on EPI blur

To extract the low frequency of the EPI from only the

spatial domain, we define the blur kernel in 1D space rather

than defining a 2D image blur kernel. The following candi-

dates are considered when extracting the low frequency part

of the EPIs: the sinc function, the spatial representation of

a Butterworth low pass filter of order 2 and the Gaussian

function. The spatial representations of the filters are as fol-

lows:

κs(x) = c1sinc(x/(2|σ|)),

κb(x) = c2e
−|x/σ|(cos(|x/σ|) + sin(|x/σ|)),

κg(x) = c3e
−x2/(2σ2),

(4)

where c1, c2 and c3 are scale parameters, and σ is a shape

parameter. In our paper, the kernels are discretized at

Figure 4. The proposed detail restoration network is composed of

three layers. The first and the second layers are followed by a

rectified linear unit (ReLU). The final output of the network is the

sum of the predicted residual (detail) and the input.

the integer coordinate and limited to a finite window, i.e.,

x ∈ [−4σ, 4σ]. The kernel size is determined by the largest

disparity (e.g., for the light field with largest disparity of 4

pixels, the shape parameter σ = 1.5, and the kernel size is

13). The scale parameters are used to normalize the kernels.

We evaluate these three kernels based on the following

two principles: the final deblurred result must show visual

coherency with the ground truth EPI, and the mean square

error (MSE) between the blurred low angular resolution EPI

and the blurred ground truth EPI is as minimal as possible:

min
κ

1

n

n∑

i=1

||(E
(i)
L ∗ κ) ↑ −E(i) ∗ κ||2, (5)

where i is the index of the EPIs, n is the number of EPIs,

EL is the low angular resolution EPIs, and E is the ground

truth high angular resolution EPIs. We evaluate the kernel-

s on the Stanford Light Field Acheive [4], and the errors

between the processed (blurred and upsampled) EPIs and

the blurred ground truth EPIs are 0.153, 0.089 and 0.061
for the sinc, Butterworth and Gaussian kernels, respectively.

The sinc function represents an ideal low pass filter in the

spatial domain, and the low frequencies can pass through

the filter without distortion. However, this ideal low pass

filter causes ringing artifacts in the EPIs. The Butterworth

kernel generates imperceptible ringing artifacts, while the

Gaussian ensures that no ringing artifacts exist. Based on

this observation and the numerical evaluation, the Gaussian

function is selected to be the kernel for the EPI blur.

4.3. Detail restoration based on CNN

For CNN based image restoration, Dong et al. [9] pro-

posed a network for single image super-resolution named

SRCNN, in which a high-resolution image is predicted from

a given low-resolution image. Kim et al. [17] improved on

that work by using a residual network with a deeper struc-

ture. Inspired by those pioneers, we design a residual net-

work with three convolution layers to restore the angular

detail of the EPIs.

4.3.1 CNN architecture

The architecture of the detail restoration network is outlined

in Fig. 4. Consider an EPI that is convolved with the blur
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kernel and up-sampled to the desired angular resolution, de-

noted as E′
L for short, the desired output EPI f(E′

L) is then

the sum of the input E′
L and the predicted residual R(E′

L):

f(E′
L) = E′

L +R(E′
L). (6)

The network for the residual prediction comprises three

convolution layers. The first layer contains 64 filters of

size 1 × 9 × 9, where each filter operates on 9 × 9 spa-

tial region across 64 channels (feature maps) and used for

feature extraction. The second layer contains 32 filters of

size 64× 5× 5 used for non-linear mapping. The last layer

contains 1 filter of size 32 × 5 × 5 used for detail recon-

struction. Both the first and the second layers are followed

by a rectified linear unit (ReLU). Due to the limited angular

information of the light field used as the training dataset, we

pad the data with zeros before every convolution operations

to maintain the input and output at the same size.

We apply this residual learning method for the follow-

ing reasons. First, the undersampling in the angular domain

damages the high frequency portion (detail) of the EPIs;

thus, only that detail needs to be restored. Second, extract-

ing this detail prevents the network from having to consider

the low frequency part, which would be a waste of time and

result in less accuracy.

4.3.2 Training detail

The desired residuals are R = E′ − E′
L, where E′ are the

blurred ground truth EPIs and E′
L are the blurred and inter-

polated low angular resolution EPIs. Our goal is to mini-

mize the mean squared error 1
2 ||E

′ − f(E′
L)||

2. However,

due to the residual network we use, the loss function is now

formulated as follows:

L =
1

n

n∑

i=1

||R(i) −R(E
′(i)
L )||2, (7)

where n is the number of training EPIs. The output of the

network R(E′
L) represents the restored detail, which must

be added back to the input EPI E′
L to obtain the final high

angular resolution EPI f(E′
L).

We use the Stanford Light Field Archive [4] as the train-

ing data. The blurred ground truth EPIs are decomposed to

sub-EPIs of size 17 × 17 with stride 14. To avoid overfit-

ting, we adopted data augmentation techniques [10, 19] that

include flipping, downsampling the spatial resolution of the

light field as well as adding Gaussian noise. To avoid the

limitations of a fixed angular up-sampling factor, we use a

scale augmentation technique. Specifically, we downsam-

ple some EPIs with a small angular extent by factor 4 and

the desired output EPIs by factor 2, then upsample them to

the original resolution. The network is trained by using the

datasets downsampled by both factor 2 and factor 4. We use

the cascade of the network for the EPIs that are required to

be up-sampled by factor 4. In practice, we extract more than

8×106 examples which is sufficient for the training. We se-

lect the mini-batches of size 64 as a trade-off between speed

and convergence.

In the paper, we followed the conventional methods of

image super-resolution to transform the EPIs into YCbCr s-

pace: only the Y channel (i.e., the luminance channel) is ap-

plied to the network. This is because the other two channels

are blurrier than the Y channel and, thus, have less useful in

the restoration [9].

To improve the convergence speed, we adjust the learn-

ing rate consistent with the increasing of the training iter-

ation. The number of training iterations is 8 × 105 times.

The learning rate is set to 0.01 initially and decreased by

a factor of 10 every 0.25 × 105 iterations. When the train-

ing iterations are 5.0×105 , the learning rate is decreased to

0.0001 in two reduction steps. We initialize the filter weight

of each layer using a Gaussian distribution with zero mean

and standard deviation 1e−3. The momentum parameter is

set to 0.9. Training takes approximately 12 hours on G-

PU GTX 960 (Intel CPU E3-1231 running at 3.40GHz with

32GB of memory). The training model is implemented us-

ing the Caffe package [15].

5. Experiment Results and Applications

In this section, we evaluate the proposed “blur-

restoration-deblur” interpolation framework compared with

the approach proposed by Kalantari et al. [16] and the typ-

ical depth-based approaches on several datasets including

real-world scenes, microscope light field data and synthetic

scenes. For the typical depth-based approaches, we first use

current state-of-the-art approaches (Wang et al. [29], Jeon et

al. [14]) to estimate the depth, then warp the input images to

the novel view and blend by weighting the warped images

[7]. We also evaluate each steps in the framework includ-

ing: the performance without the “blur-deblur” steps; the

residual-learning network by replacing the network with the

SRCNN [9] and the sparse-coding-based method (SC) [34]

in the detail restoration part. The quality of the synthetic

views is measured by the PSNR against the ground truth

image. In addition, we demonstrate how reconstructed light

field can be applied to enhance the depth estimation1.

5.1. Real­world scenes

We evaluate the proposed approach using 30 test scenes

provided by Kalantari et al. [16] that were captured with a

Lytro Illum camera (“30 scenes” for short) as well as two

representative scenes, Reflective 29 and Occlusion 18, from

the Stanford Lytro Light Field Achieve [3]. We use 3 × 3
views to reconstruct 7× 7 light fields.

1More results of reconstructed light fields (figures and SSIM evalua-

tion) and depth enhancement can be found in the supplementary file.
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Figure 5. Comparison of the proposed approach against other methods on the real-world scenes. The results show the ground truth images,

error maps of the synthetic results in the Y channel, close-up versions of the image portions in the blue and yellow boxes, and the EPIs

located at the red line shown in the ground truth view. The EPIs are upsampled to an appropriate scale in the angular domain for better

viewing. The lowest image in each block shows a close-up of the portion of the EPIs in the red box.

Table 1 lists the numerical results on the real-world

datasets. The PSNR values are averaged over the 30 scenes.

The CNNs in the approach by Kalantari et al. [16] are de-

signed to minimizing the error between the synthetic views

and the ground truth views. Therefore, they achieve better

performance than other depth-based method among those

common scenes. However, their networks were specifical-

ly trained for Lambertian regions, thus tend to fail in the

reflective surface in the Reflective 29 case. Among these

real-world scenes, our proposed framework is significantly

better than other approaches. In addition, due to the in-

formation asymmetry, our proposed approach without the

“blur-deblur” framework (denoted as ”Ours/CNN only” in

the table) produces lower quality light fields than those us-

ing the complete framework.

Fig. 5 depicts some of the results such as the Leaves from

the 30 scenes, and Reflective 29 and Occlusion 16 scenes in

the Stanford Lytro Light Field Achieve. The Leaves case

includes some leaves with complex structure in front of a

street. The case is challenging due to the overexposure

of the sky and the occlusion around the leaves shown in

the blue box. The results by Wang et al. [29] and Jeon et

al. [14] show blurring artifacts around the leaves, and the

30 scenes Reflective29 Occlusion16

Wang et al. [29] 33.03 28.97 25.94

Jeon et al. [14] 34.42 40.27 32.10

Kalantari [16] 37.78 37.70 32.24

Ours/CNN only 37.15 44.84 35.89

Our proposed 41.02 46.10 38.86

Table 1. Quantitative results (PSNR) of reconstructed light fields

on the real-world scenes [16, 3].

result by Kalantari et al. [16] contains ghosting artifacts.

The Reflective 29 case is a challenge scene because of the

reflective surfaces of the pot and the kettle. The result by

Wang shows blurring artifacts around the pot and the ket-

tle. The approaches by Jeon et al. [14] and Kalantari et

al. [16] produce better results, but the reconstructed light

fields show discontinuities in terms of the EPIs. The Oc-

clusion 16 case contains complicated occlusions that are

challenging for view synthesis; consequently, their result-

s are quite blurry around the occluded regions such as the

branches and leaves. As demonstrated in the error maps and

the close-up images of the results, the proposed approach

achieves a high performance in terms of the visual coheren-
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Figure 6. Comparison of the proposed approach against other methods on the microscope light field datasets. The results show the ground

truth or reference images, synthetic results, close-up versions in the blue and yellow boxes, and the EPIs located at the red line shown in

the ground truth view.

Neurons 20× Neurons 40×

Wang et al. [29] 17.45 13.21

Jeon et al. [14] 23.02 23.07

Kalantari et al. [16] 20.94 19.02

Our proposed 29.34 32.47

Table 2. Quantitative results (PSNR) of reconstructed light fields

on microscope light field datasets [21].

cy of both the synthetic views and the EPIs.

5.2. Microscope light field dataset

In this subsection, the Stanford Light Field microscope

datasets [21] and the camera array based light field micro-

scope datasets provided by Lin et al. [23] are tested. These

datasets include challenge light fields such as complicated

occlusion relations and translucency. The numerical result-

s are tabulated in Table 2, and the reconstructed views are

shown in Fig. 6. We reconstruct 7×7 light fields using 3×3
views in the Neurons 40× case, and 5× 5 light fields using

3 × 3 views in the Neurons 40× case. For the Worm case,

5× 5 views are used to produce 9× 9 light fields2.

The Neurons 40× case shows a Golgi-stained slice of rat

brain, which contains complex occlusions. The result by

Wang et al. [29] is quite blurry due to the errors in the es-

2The quantitative evaluation is not performed on the Worm case because

all the ground truth views are used as input. In the figure, we show a nearest

view as the reference for the reconstructed view.

timated depth. Although the result by Jeon et al. [14] has

a higher PSNR value, it fails to estimate the depth of the

scene, which is visible in the EPI. The result produced by

Kalantari et al. [16] has a higher quality in terms of the vi-

sual coherency. However, the result contains blurring and

tearing artifacts in the occluded regions. Besides, the pro-

posed approach shows denoising effect which can be seen in

the close-up version. The Worm case is more simply struc-

tured but contains transparent objects such as the head of

the worm. The depth-based approaches are not able to es-

timate accurate depth maps in those regions, which results

in tearing and ghosting artifacts. Among these challenging

cases, our approach produces plausible results in both the

occluded and translucent regions.

5.3. Synthetic scenes

We use the synthetic light field data from the HCI

datasets [32] in which the spatial resolution is the same as

the original inputs (768 × 768). The angular resolution of

the output light field is set to 9× 9 for comparison with the

ground truth images, although we are able to produce light

field of denser views. We use input light fields with differ-

ent degrees of sparsity (3× 3 and 5× 5) to evaluate the per-

formance of the proposed framework for different upsam-

pling scale factors. Table 3 shows a quantitative evaluation

of the proposed approach on the synthetic dataset compared

with other methods. The approach by Kalantari et al. [16]
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Input 3× 3 5× 5 3× 3 5× 5

Wang et al. [29] 33.41 44.15 30.74 43.69

Jeon et al. [14] 41.19 44.06 40.95 42.67

Kalantari et al. [16] 34.05 34.51 32.53 32.59

Ours/SC [34] 41.67 41.79 42.39 44.40

Ours/SRCNN [9] 41.50 42.45 42.64 43.86

Our proposed 43.20 46.42 44.37 51.07

Table 3. Quantitative results (PSNR) of reconstructed light fields

on the synthetic scenes of the HCI datasets [32]. The SC [34] and

SRCNN [9] are applied to the proposed framework by replacing

the proposed residual learning method and are denoted as ours/SC

and ours/SRCNN, respectively.

produces lower quality than other depth-based approaches,

because their CNNs are specifically trained on real-world

scenes. The proposed approach achieves the highest PSNR

values compared to the depth based methods. Moreover, the

residual learning method produces better result than the SC

and SRCNN approaches under the same framework.

5.4. Application for depth enhancement

In this section, we demonstrate that the proposed light

field reconstruction framework can be used to enhance

depth estimation. Table 4 gives the RMSE values of the

depth estimation results from using the 3 × 3 inputs, the

reconstructed 9 × 9 light fields produced by Kalantari et

al. [16], our reconstructed 9× 9 light fields and the ground

truth 9×9 light fields on the HCI datasets [32]. Fig. 7 shows

the depth estimation results on the Cars, Reflective 29, Oc-

clusion 16, and the Flowers and plants 12 cases. We use the

approach by Wang et al. [29] to estimate the depth of the

scenes. The results show that our reconstructed light fields

are able to produce more accurate depth maps that better p-

reserve edge information than those produced by Kalantari

et al. [16], e.g., the reflective surface of the red pan in the

Reflective 29 and the branches in front of the left car in the

Cars. Moreover, the enhanced depth maps are close to the

ones produced by using the ground truth light fields.

6. Limitation and Discussion

The proposed framework uses EPI blur to extract the low

frequency portion of the EPI in the spatial domain, where

the size of the blur kernel is determined by the largest dis-

parity between the input neighboring views. The non-blind

deblur is not able to recover high quality EPIs when the k-

ernel size is too large, and the maximum disparity we can

handle is 5 pixels. For spatial aliasing input, our method

cannot remove such artifacts but can give novel views with

similar quality as those of the input. In addition, at least 3

views should be used in each angular dimension to provide

enough information for the bicubic interpolation.

Figure 7. Depth estimation results using the reconstructed light

fields. The arrows in the third row mark the depth errors caused

by the artifacts of the reconstructed light fields.

Buddha Mona Horses

Input 3× 3 views 0.2926 0.2541 0.3757

Kalantari et al. [16] 0.1576 0.0829 0.1212

Ours 0.0401 0.0517 0.0426

GT light fields 0.0393 0.0529 0.0383

Table 4. RMSE values of the estimated depth using the approach

by Wang et al. [29] on HCI datasets.

7. Conclusion

We have presented a novel learning-based framework

for light field reconstruction on EPI. To avoid the ghost-

ing effects caused by the information asymmetry, the spa-

tial low frequency information of the EPI is extracted via

EPI blur and used as input to the network to recover the

angular detail. The non-blind deblur operation is used to re-

store the spatial detail that suppressed by the EPI blur. The

experimental results demonstrate that the proposed frame-

work outperforms state-of-the-art approaches in occluded

and transparent regions and on non-Lambertian surfaces

such as challenging microscope light field datasets.
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[7] G. Chaurasia, S. Duchêne, O. Sorkine-Hornung, and

G. Drettakis. Depth synthesis and local warps for plausible

image-based navigation. ACM TOG, 32, 2013.

[8] D. Cho, M. Lee, S. Kim, and Y.-W. Tai. Modeling the cal-

ibration pipeline of the lytro camera for high quality light-

field image reconstruction. In ICCV, 2013.

[9] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In ECCV,

pages 184–199. Springer, 2014.

[10] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Advances in Neural Information Processing Systems, pages

2366–2374, 2014.

[11] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstere-

o: Learning to predict new views from the world’s imagery.

In CVPR, 2015.

[12] X. Guo, Z. Yu, S. B. Kang, H. Lin, and J. Yu. Enhancing light

fields through ray-space stitching. IEEE TVCG, 22(7):1852–

1861, 2016.

[13] I. Ihrke, J. F. Restrepo, and L. Mignard-Debise. Principles

of light field imaging: Briefly revisiting 25 years of research.

IEEE Signal Process. Mag., 33(5):59–69, 2016.

[14] H. G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y.-W. Tai, and

I. S. Kweon. Accurate depth map estimation from a lenslet

light field camera. In CVPR, pages 1547–1555, 2015.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, pages

675–678. ACM, 2014.

[16] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi.

Learning-based view synthesis for light field cameras. ACM

Transactions on Graphics (TOG), 35(6), 2016.

[17] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2015.

[18] D. Krishnan and R. Fergus. Fast image deconvolution using

hyper-laplacian priors. In Advances in Neural Information

Processing Systems, pages 1033–1041, 2009.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012.

[20] M. Levoy and P. Hanrahan. Light field rendering. In Sig-

graph, pages 31–42, 1996.

[21] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz.

Light field microscopy. ACM Transactions on Graphics

(TOG), 25(3):924–934, 2006.

[22] J. Li, M. Lu, and Z.-N. Li. Continuous depth map reconstruc-

tion from light fields. IEEE TIP, 24(11):3257–3265, 2015.

[23] X. Lin, J. Wu, G. Zheng, and Q. Dai. Camera array

based light field microscopy. Biomedical Optics Express,

6(9):3179–3189, 2015.

[24] Z. Lin and H.-Y. Shum. A geometric analysis of light

field rendering. International Journal of Computer Vision,

58(2):121–138, 2004.

[25] S. Pujades, F. Devernay, and B. Goldluecke. Bayesian view

synthesis and image-based rendering principles. In CVPR,

pages 3906–3913, 2014.

[26] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand.

Light field reconstruction using sparsity in the continuous

fourier domain. ACM TOG, 34(1):12, 2014.

[27] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. Depth

from combining defocus and correspondence using light-

field cameras. In ICCV, pages 673–680, 2013.

[28] S. Vagharshakyan, R. Bregovic, and A. Gotchev. Image

based rendering technique via sparse representation in shear-

let domain. In ICIP, pages 1379–1383. IEEE, 2015.

[29] T.-C. Wang, A. A. Efros, and R. Ramamoorthi. Occlusion-

aware depth estimation using light-field cameras. In ICCV,

pages 3487–3495, 2015.

[30] T.-C. Wang, J.-Y. Zhu, E. Hiroaki, M. Chandraker, A. A.

Efros, and R. Ramamoorthi. A 4d light-field dataset and cnn

architectures for material recognition. In ECCV, pages 121–

138. Springer, 2016.

[31] S. Wanner and B. Goldluecke. Variational light field analysis

for disparity estimation and super-resolution. IEEE TPAMI,

36(3):606–619, 2014.

[32] S. Wanner, S. Meister, and B. Goldlücke. Datasets and
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