
Neural Scene De-rendering

Jiajun Wu

MIT CSAIL

Joshua B. Tenenbaum

MIT CSAIL

Pushmeet Kohli

Microsoft Research

Abstract

We study the problem of holistic scene understanding. We

would like to obtain a compact, expressive, and interpretable

representation of scenes that encodes information such as

the number of objects and their categories, poses, positions,

etc. Such a representation would allow us to reason about

and even reconstruct or manipulate elements of the scene.

Previous works have used encoder-decoder based neural

architectures to learn image representations; however, repre-

sentations obtained in this way are typically uninterpretable,

or only explain a single object in the scene.

In this work, we propose a new approach to learn an

interpretable distributed representation of scenes. Our ap-

proach employs a deterministic rendering function as the

decoder, mapping a naturally structured and disentangled

scene description, which we named scene XML, to an image.

By doing so, the encoder is forced to perform the inverse of

the rendering operation (a.k.a. de-rendering) to transform

an input image to the structured scene XML that the decoder

used to produce the image. We use a object proposal based

encoder that is trained by minimizing both the supervised

prediction and the unsupervised reconstruction errors. Ex-

periments demonstrate that our approach works well on

scene de-rendering with two different graphics engines, and

our learned representation can be easily adapted for a wide

range of applications like image editing, inpainting, visual

analogy-making, and image captioning.

1. Introduction

What properties are desirable in an image representation

for visual understanding? We argue that the representation

needs to be compact, expressive, and interpretable. Com-

pactness makes it possible to store and exploit large amounts

of data. Expressiveness allows it to capture the variations

in the number, category, appearance, and pose of objects in

an image. Lastly, an interpretable and disentangled repre-

sentation enables us to reason about and even reconstruct or

manipulate elements of an image.

Image representations learned by neural networks are

often compact and expressive, but are hard to interpret. Re-

cently, researchers studied how to obtain interpretable repre-

sentations [4, 21, 35]. They mostly employed an encoding-

Figure 1: Our goal is to interpret an image in a holistic way. As-

suming an image is rendered by a graphics engine on an indefinite

length input, we aim to recover the input so that the the exact image

can be reconstructed and manipulated. Here we show a simplified

version of the XML we use.

decoding framework, using neural nets for both inference

and approximate rendering. However, these methods typi-

cally assume each input image contains only a single, cen-

tered object in front of a clean background. Consequently,

they are not robust and powerful enough for practical applica-

tions, where we often see images with an indefinite number

of objects, heavy occlusions, and a cluttered background.

In contrast to neural decoders like the ones used in [8,

21], the deterministic rendering functions used in graphics

engines naturally take a structured and disentangled input

to generate images. From this perspective, if we assume a

given image is rendered by a generic graphics engine, we

can aim to recover the structured representation required by

renderer to reconstruct the exact image (a.k.a. de-rendering).

By learning an image representation this way, we achieve

interpretability for free, and we will also be able to apply the

representation to a range of applications like image editing.

This image de-rendering problem, however, is very chal-

lenging for multiple reasons. First, as we are no longer

assuming a localized object, and the number of objects in an

image is unknown, our representation should be extensible

to an arbitrary number of objects in different positions. This

cannot be achieved in a straightforward way with traditional

convolutional networks that learn image representations of

a fixed dimension. Previous works discussed the use of re-

current networks like LSTM [14] in these cases. However,

1699



for a scene with many objects, it is unintuitive and often am-

biguous to manually define a sequential ordering over them.

In this work, we instead draw inspiration from research in

bottom-up visual recognition and propose a framework based

on object proposals.

Second, we want the encoded representation to be gener-

alizable to various graphics engines, though they may require

very different input. We therefore design a unified structured

language, named scene XML, which can be easily translated

to inputs that renderers can take. We evaluate our framework

on two datasets with different rendering engines: one is the

Abstract Scene dataset [39] and the other is a new dataset

we build with Minecraft∗ images and its 3D renderer.

Third, the space of encoded representations and the space

of images do not share the same metric: a pair of close latent

representations may correspond to images with significantly

different visual appearance, and vice versa. Thus, learning a

direct mapping from images to labeled representations does

not guarantee good performance in reconstruction. In this

paper, we explore the possibility of having loss functions

in both spaces within an end-to-end neural net framework.

This is technically nontrivial because graphics engines are

often not differentiable, with few exceptions [22]. To over-

come this problem, we use the multi-sample REINFORCE

algorithm [32] for optimization.

Our contributions are three-fold: first, we propose a new

problem formulation, scene de-rendering, aiming to interpret

a scene and the objects inside holistically by incorporating a

graphics engine and a structured representation; second, we

design a novel end-to-end framework for scene de-rendering,

which involves optimization in both the latent representa-

tion space and the image space; third, we demonstrate the

effectiveness of our framework by showing how it enables

multiple applications on two quite different datasets, one of

which is a new dataset on the Minecraft platform.

2. Related Work

Our work is closely related to research on learning an in-

terpretable representation with a neural network [13, 21, 35,

4, 33]. Kulkarni et al. [21] proposed a convolutional inverse

graphics network. Taking an image of a face, the network

learns to infer its properties like pose and lighting. Yang et

al. [35] and Wu et al. [33] explored learning disentangled

representations of pose and content from chair images. Chen

et al. [4] proposed to learn disentangled representation with-

out direct supervision. While all these methods dealt with

images of a single object (chair, face, or digit), we study

the problem of general scene de-rendering with an indefinite

number of objects and possibly heavy occlusions.

Another line of related research is on sequential gen-

erative models for image recognition or synthesis [15, 11,

∗https://minecraft.net

(a) A standard autoencoder (b) A generalized autoencoder

Figure 2: Generalized encoding-decoding structure. Different

from a standard autoencoder (a), our generalized structure (b) uses

a graphics engine as the decoder, which by nature takes an inter-

pretable and disentangled representation as input, and renders a

high quality image.

9, 27, 1], which typically involve recurrent networks like

LSTM [14]. Many of these works also trained a network

as an approximate renderer simultaneously. In contrast, we

explicitly model a graphics engine in the framework, and

let neural nets focus on inverse graphics. The use of a real

renderer provides us with an interpretable representation for

free, and also generates images of higher quality.

Our framework also relates to the field of “vision as in-

verse graphics”, analysis-by-synthesis, or generative models

with data-driven proposals [36, 37, 30, 20, 34, 16], as we are

incorporating a graphics engine as a black-box synthesizer.

However, our focus is still on using a feedforward model for

bottom-up recognition and inference. Please see [3] for a

nice review of analysis-by-synthesis methods.

3. Neural Scene De-rendering

We now present our analysis and approach to the scene de-

rendering problem. We begin with a high-level abstraction

of our method as a generalized encoding-decoding structure;

we then discuss optimization and implementation details.

3.1. Generalized EncodingDecoding Structure

Autoencoder Traditionally autoencoder have neural net-

works as both the encoder and the decoder, as shown in

Figure 2a. The goal of the network is to encode input into

a compact representation (the bottleneck layer) and then to

reconstruct the input. The latent vector learned this way can

be viewed as an informative representation of the input.

Rendering Engine as a Generalized Decoder The latent

representation of a standard autoencoder is neither disentan-

gled nor interpretable, making it hard to generalize to other

tasks. Here, we propose a generalized encoding-decoding

structure, where we use a graphics engine as our decoder,

as shown in Figure 2b. Unlike a neural decoder, a graphics

engine in its nature requires a structured and interpretable

image representation as input for rendering. In this way,

the generalized autoencoder naturally learns to encode the

image into an interpretable image representation.

The generalized structure needs to achieve two goals: first,

minimizing the supervised prediction error on the inverted

700

https://minecraft.net


Figure 3: An image and part of its scene XML, encoding the

background and the category, appearance, position, and pose of

objects in the image.

representations of input images; and second, minimizing the

unsupervised reconstruction error on the rendered images.

In Section 3.2, we explore how to integrate and balance both

goals for better performance.

Scene XML We want our framework to be independent

of the graphics engine involved. To be specific, we hope

to connect our encoder to a meta-renderer that translates

learned representations to input that a specific graphics en-

gine could take. To do this, we design a cross-platform

structured image representation, named Scene XML, as the

output of the encoder. Our goal is to design scene XML in

a way that requires minimal effort to connect it to various

graphics engines.

Our current design is in essence an object-centered repre-

sentation. It starts with some brief description of background,

similar to the <head> tag in HTML. Then for each object,

we track its category, appearance (size and color), position

in 3D space ({x, y, z}), and pose (yaw, pitch, roll). In the

future, we plan to also include its physical properties, and to

model its actual 3D shape instead of using categories with

fixed geometry as an abstraction. Figure 3 shows a sample

image and part of its corresponding scene XML.

For each input image, our framework learns to interpret it

in scene XML, and then translates the XML to the structured

input that a graphics engine could take. We describe details

of adapting scene XML to graphics engines in Section 4.

3.2. BlackBox Optimization via REINFORCE

As discussed in Section 1, visually similar images might

have very different latent representations; also, two similar

points in the representation space could lead to, after ren-

dering, images with drastically different appearance. We

show an example in Figure 4. With a small change in the

value of a single dimension in the representation, here the

depth of the cloud, the rendered images look totally different.

Therefore, during training, we would like to minimize both

the prediction error after the inference/encoding step, and

the reconstruction error after the synthesis/rendering step.

This is, however, not practically straightforward as

graphics engines are typically not differentiable, making

it hard to back-propagate the gradients. Inspired by re-

cent works [26, 1, 17], we formulate this as a reinforcement

Figure 4: A small change in the latent space (e.g., the depth of

cloud) may lead to significant difference in rendered images. It is

hence important to consider losses in both spaces.

learning problem, and adopt a multi-sample REINFORCE

paradigm [23, 32] to address this issue.

Specifically, instead of having a deterministic prediction,

we have a stochastic layer at the end of our encoder, where

our final prediction can be sampled from certain distribu-

tions (e.g., Gaussian for position and pose, multinomial for

category). We obtain multiple samples from an input, and

for each sample, we compute its reconstruction error after

rendering. We use the negative log error as reward r of the

sample, with its variance reduced by a baseline computed

from the other samples. The REINFORCE algorithm then

allows us to calculate gradients on these stochastic layers

and to back-propagate them to all layers before, via

∆w = α(r − b)e, (1)

where w are the parameters of the distributions we are sam-

pling from, α is the learning rate, b is the reinforcement base-

line computed from other samples, and e is the distribution-

dependent characteristic eligibility. Please refer to [23, 32]

for more details.

REINFORCE as Weight Balancing The mapping from

latent representations to images is highly discontinuous. For

each dimension in the latent representation, its impact on

the rendered image changes as we move over the manifold.

It is intractable to model the exact correlation; however,

from a different perspective, the use of a graphics engine

and the reinforcement learning (RL) framework implicitly

guides the recognition network to balance the weights of

each dimension under different circumstances.

Semi-supervised Curriculum Learning The RL formu-

lation also opens up the possibility for unsupervised learn-

ing: we can attempt to minimize the reconstruction error

directly, and hopefully the network learns the disentangled

representation required by the graphics engine automatically.

We unfortunately observe that this is infeasible in practice.

One reason for this failure is the large search space arising

from the parametrization of the encoder. To address this,

we employ a curriculum based approach where we initial-

ize the training by using both reconstruction error and the

label prediction loss on a small number of labeled images.

Thereafter, we fine-tune the model with only unlabeled data,

relying on the reconstruction error. We observe that the

reinforcement learning framework can help to reduce the

701



Figure 5: Our neural scene de-rendering framework consists of three component. Given an input image, it first generates a number of

segment proposals (Stage I). It then tries to interpret if there is an object in the each proposal, and if so what its properties are (Stage II).

Eventually, these inference results are integrated and sent to a graphics engine for rendering, so that the original image can be reconstructed

(Stage III). We have supervision on both the latent representation space and the image space. Also note that the latent representations have

wide applications including image editing, captioning, etc.

Figure 6: We use segment proposals instead of box proposals, as

heavily occluded objects (like the sun in the example) cannot be

correctly interpreted from box proposals. During reconstruction, we

also need the segment for occluded objects to accurately compute

their rewards for REINFORCE.

supervision required for training the encoder through cur-

riculum learning [2]. This semi-supervised learning setting

could be useful in practice, where labeled data are often

scarce. We show results in Section 4.

3.3. Implementation Details

Network Structure Based on the generalized encoding-

decoding structure, our framework has a neural encoder and

a graphics engine as a generalized decoder, as shown in

Figure 2b. We now describe our encoder in detail, and will

provide the description of the two graphics engine decoders

we explored for experiments later in Section 4.

Our encoder has two components: a proposal generator

for producing proposals that potentially contain objects, and

an object interpreter for discriminating whether there is an

object in each proposal, and if so, what its attributes are.

Our proposal generator (Figure 5-I) produces segment

proposals instead of bounding boxes. This is because heavily

occluded objects cannot be correctly interpreted from box

proposals. For example, in Figure 6, the network is not

able to locate and interpret the heavily occluded sun, even

with a perfect box proposal. Also, during reconstruction, it

would also be preferable for the model to incorrectly interpret

the box proposal of the sun to be cloud, only because the

cloud occupies a larger area in the box. In contrast, segment

proposals do not suffer from this issue.

For the proposal generator, we use the network structure

from an instance segmentation method, MNC [6]. It is a

cascaded model where the network first learns both feature

maps and coordinates of box instances (regions of interests,

or RoI), and sends them through a RoI pooling layer to

extract features of boxes. It then predicts masks of candidate

objects within each box. Please refer to [6] for more details

on the structure of the proposal generator. We compute 100
segment proposals for each image.

The object interpreter (Figure 5-II) takes a segment pro-

posal (masked image) as input, and predicts whether there is

an object in the segment. If the network believes an object

exists, it also predicts its properties required by our scene

XML. For each segment, we consider objects in the image

that have an IoU over 0.3 with the segment, and select the

one with the maximum IoU as ground truth for training

the object interpreter. At the end, we apply non-maximal

suppression (NMS) over the interpretations of all segments,

and send it to the decoder (a graphics engine) for rendering

(Figure 5-III).

Analysis-by-Synthesis Refinement When a renderer is

available, we may further refine our predictions via analysis-

by-synthesis. Here we treat a network prediction as an ini-

tialization of a sampling algorithm, for which we use Gibbs

sampling in this paper. In each iteration of sampling, we

702



draw a new sample of the latent representation, render it,

and compare the reconstruction with the original image. We

sample from a uniform distribution for discrete variables,

and from a Gaussian distribution with the initialization as

its mean for continuous variables. We run 10 iterations of

sampling. Experiments demonstrate that this helps to obtain

a more accurate explanation of images. The refinement helps

to lower reconstruction error, but often only if most proper-

ties have already been inferred correctly. This makes it good

for final fine-tuning, while the main de-rendering framework

recovers most information.

Training Details Throughout our experiments, we use

SGD for optimization, and set our batch size to 50, learning

rate to 0.001, momentum to 0.9, and weight decay rate to

10−4. We implement our framework in Torch [5].

4. Evaluations

We now present evaluation results. We start by describing

the experimental setup; we then show how our framework

performs on scene de-rendering with two different renderers,

one used in the Abstract Scene dataset [39], and the other

used in Minecraft. We also explain how we build a new

Minecraft image dataset, of which Figure 7 shows samples.

4.1. Setup

Methods As described in Section 3, our model uses seg-

ment proposals with REINFORCE and analysis-by-synthesis

refinement. We first compare our full neural scene de-

rendering framework (NSD full) with four simplified ones as

an ablation study to reveal how each component contribute

to the results. The first two are our framework trained with-

out either analysis-by-synthesis or REINFORCE, one using

box proposals (box) and the other using segment proposals

(seg). The third is is our segment-based model with only

REINFORCE but not analysis-by-synthesis (seg+). The last

is our framework in a semi-supervision setting (semi): we

first train it using losses in both spaces on 10% randomly

sampled training images with labels, and then fine-tune it on

the entire training set, but using only the reconstruction loss

without any labels of latent representations.

We also compare with two other frameworks: a tradi-

tional CNN with a fixed number of dimensions for the latent

representation, and an end-to-end CNN+LSTM that aims to

encode the image and then to sequentially explain objects

from the encoding. Specifically,

• CNN: Our CNN baseline assumes there are no more

than X objects in an image, and objects are ordered

by their category indices. For an input image, it thus

predicts an X × Y matrix, where Y is the dimension

of an object representation in scene XML. Here we use

an ResNet-18 model [12] without pre-training.

• CNN+LSTM: Our CNN+LSTM baseline is similar to

the captioning model from Karpathy et al. [19]. The

Figure 7: Images in our new Minecraft dataset. Objects in the

dataset vary in size, position, and pose, and may be heavily oc-

cluded or cropped.

CNN component, again a ResNet-18 [12], learns an

encoding of an input image; the recurrent net, which is

an LSTM [14] with a 256-dim latent vector, generates

objects sequentially from the image encoding. Here

objects are also ordered by their category indices.

Evaluation Criteria As discussed in Sections 1 and 3,

we would like to minimize both the error in representation

inference, and the error in image reconstruction. Note that

the reconstruction error, but not the inference error, puts an

emphasis on large objects. During evaluation, we compute

percentages of incorrectly inferred values in each of the

two spaces for every method. For continuous variables, we

quantize the space of each into 20 bins, we count an inferred

value as correct if it lies in the same bin as the ground truth.

We also conduct a human study, where we present each

test image and two reconstructions from different methods

to five subjects on Amazon Mechanical Turk, and ask them

which looks closer to the original. We then compute, for a

pair of methods, how likely one is “preferred” over the other.

4.2. Derendering Abstract Scenes

Abstract scenes have been an emerging research topic in

computer vision [39], natural language processing [24], and

reasoning [31]. Rendering engines for abstract scenes are

usually efficient, yet still able to capture variations in object

appearance and occlusions. We hence choose to first explore

our scene de-rendering framework on abstract scenes.

Data We use the Abstract Scene dataset (V1.1), also

known as the Mike and Jenny dataset [39]. The dataset

contains 1,020 captions, each with 10 images, leading to a

total of 10,020 images. Each image has 3 to 18 objects. We

randomly sample 90% images for training, and use the rest

10% for testing. Objects are divided into 8 supercategories,

each of which contains up to 34 subcategories. These ob-

jects have varied appearance, size (determined by depth),

and pose; there are often heavy occlusions among them.

Scene XML To connect scene XML to the input for the

abstract scene graphics engine, we select the following

fields from the XML for each object: category (8-dim), sub-

category (34-dim), position (2-dim), depth (quantized into

3 bins), and whether the object faces left or right (1-dim).

Each object is therefore characterized by a 48-dim vector.

703



Figure 8: Results on the Abstract Scene dataset. From left to right: (a) input images, and results of (b) the CNN model, (c) the

CNN+LSTM model, (d) our de-rendering framework with box proposals, (e) our framework with segment proposals, (f) same as (e) but

trained with REINFORCE, and (g) our full model with analysis-by-synthesis refinement on top of (f). See Section 4.1 for details of these

methods and Section 4.2 analyses of the results.

Abstract Scene Minecraft

Inference Recon Inference Recon

CNN 45.73 45.20 41.22 16.59

CNN+LSTM 45.31 41.38 43.52 20.22

NSD (box) 47.85 28.12 32.20 11.42

NSD (seg) 44.19 23.76 32.11 7.71

NSD (seg+) 45.09 22.44 28.79 5.73

NSD (semi) 45.22 21.96 30.05 7.62

NSD (full) 42.74 21.55 26.41 5.05

Table 1: Quantitative results. We show percentages (%) of in-

correctly inferred representation values and reconstructed pixels,

for both the Abstract Scene dataset and the Minecraft dataset. We

compare methods explained in Section 4.1 and evaluated in Fig-

ures 8 and 9, and also a variant of our framework trained in a

semi-supervised way. Our full model performs the best, while each

component contributes to it.

Results Figure 8 shows qualitative results. The CNN and

CNN+LSTM baseline can capture some basic concepts (for

example, there is a boy and a girl in the image), but can

hardly go beyond those (Figure 8b and c). In contrast, the

framework based on box proposals learns to decode most of

the objects, though small objects, such as the grill in the first

row, are likely to be left out (Figure 8d). Segment proposals

help to reconstruct a complete set of objects (Figure 8e), but

sometimes with duplicates. This issue gets mostly resolved

with REINFORCE (Figure 8f). Analysis-by-synthesis fur-

Abstract Scene Minecraft

CNN+LSTM NSD (seg) CNN+LSTM NSD (seg)

NSD (seg) 87.2 50.0 57.8 50.0

NSD (full) 96.6 68.6 59.6 53.4

Table 2: Human study results. Subjects see the original image

and two reconstructed images from different methods. We show

percentages (%) of how likely they prefer the left method to the top.

We compare three different methods: CNN+LSTM, our framework

with segment proposals (NSD seg), and our full model (NSD full).

Our full model performs the best consistently. Margins are smaller

on the Minecraft dataset because all algorithms perform better.

ther helps to correct minor deviations (Figure 8g).

We show quantitative results on Table 1. As expected, our

full model outperforms the others by a margin in both the

space of latent representations and the space of reconstructed

images. Also, each component in the framework (segment

proposals, REINFORCE, and analysis-by-synthesis) con-

tributes to the performance. Our semi-supervised model

performs almost equally well with the fully supervised one.

Table 2 shows results of the human study described in

Section 4.1, where we compare three methods: CNN+LSTM,

our segment-based framework (NSD seg), and our full model

with REINFORCE and analysis-by-synthesis (NSD full).

The majority of human subjects also prefer our full model to

the one using segment proposals only, while both are better

than the CNN+LSTM baseline.

704



Figure 9: Results on the Minecraft dataset. From left to right:

(a) input images, and results of (b) the CNN+LSTM model, (c)

our de-rendering framework with segment proposals, and (d) our

full model with REINFORCE and analysis-by-synthesis. See Sec-

tion 4.1 for details of these methods and Section 4.3 for analyses.

4.3. Derendering Minecraft

Minecraft is a popular game where a player controls an

agent to interact with a virtual 3D environment. Compared to

the Abstract Scene dataset, which is mostly in the 2D space

with limited depth information, the Minecraft environment is

more realistic for its 3D rendering engine, and its modeling

of lighting, shading, and physics to some extent.

Data We introduce a new dataset of Minecraft images

using Malmo [18], which allows users to interact with

Minecraft by perceiving the environment and sending com-

mands. Our dataset contains 10,000 images, each consisting

of 3 to 5 objects. These objects are from a set of 12 enti-

ties: pigs, cows, sheep, chicken, wolves, horses, villagers,

armor stands, boats, minecarts, and two types of trees. This

includes all entities available in Malmo that humans are

familiar with (i.e., we exclude entities like monsters).

For each object, we uniformly randomly sample its posi-

tion and pose. Object positions are represented by r and θ

in a polar coordinate system, where the player stands at the

origin. Some objects also have their height as an attribute.

We do not consider flying or floating objects at this moment,

and we set the daytime to noon so that the sun is top in the

sky. We then convert the position of each object to {x, y, z}
in the 3D space (round to 0.1) for Malmo to obtain the image

rendered by the Minecraft graphics engine.

Scene XML To connect the scene XML to the Minecraft

rendering engine, we select the following fields for each

object: category (12-dim), position in the 2D plane (2-dim,

{r, θ}), height (1-dim), and rotation (3-dim for yaw, pitch,

and roll). Each object is thus encoded as a 18-dim vector.

Results Figure 9 and Tables 1 and 2 show qualitative and

quantitative results, respectively. Observations here are sim-

ilar to those in Section 4.2 for the Abstract Scene dataset.

Figure 10: Results on image editing. Given an image, we can

modify the position, pose, and category of objects with the inferred

representation and the graphics engine.

Figure 11: Results on inpainting. Our framework performs well,

though it fails for almost fully occluded objects or parts. In the

future, we may include context modeling to possibly correct some

of the errors (e.g., the girl in the first row, when facing a bear,

should be surprised or afraid, not happy).

Our full model outperforms the others by obtaining more

accurate latent representations and reconstructions.

5. Applications

Our learned representation has extensive applications due

to its expressiveness and interpretability. We demonstrate ex-

emplars in image editing, inpainting, visual analogy-making,

and image captioning. Our framework obtains good perfor-

mance in these seemingly irrelevant tasks.

Image Editing Given an image, we can easily make

changes to it once we recover its interpretable latent rep-

resentation. For instance, we show in Figure 10 that we can

change the position, pose, and category of an object.

Inpainting Our framework can recover the original im-

age from a corrupted one (Figure 11), even when objects

are heavily cropped, e.g., the trees in the second row. As

expected, our framework fails to recover objects that are

missing entirely from input, such as the girl’s facial expres-

sion at the top, and the chicken at the bottom. In the future,

we may incorporate context modeling to alleviate this issue.

Visual Analogy-Making Visual analogy-making [25], or

visalogy [28], is an emerging research topic in AI and vision.

A typical setting is to give a system a pair of images A and

705



Figure 12: Results on visual analogy-making. Given a pair of

reference images and a query, our framework can make analogies

based on the position and pose of an object (top), and on the number

of objects (bottom). See text for details.

A′ and an additional source image B, and ask for an analogy

B′. While previous works looked into learning analogies

between objects, we study the problem of making scene

analogies involving multiple objects.

We consider a principled formulation for this seemingly

ambiguous problem. Given two image representations ZA

and ZA′ , we consider their minimum edit distance — the

minimum number of operations required to derive ZA′ from

ZA. We then apply these operations on ZB to get an analogy

ZB′ . The operations we consider are changing the pose,

position, and category of an object, duplicating or removing

an object, and swapping two objects.

Learning an expressive, interpretable, and disentangled

representation could be a well-fit solution to this problem.

We show results of depth first search (depth capped at 3)

on top of the representations reconstructed by our scene de-

rendering framework in Figure 12. It successfully makes

analogies with respect not only to the position and pose of

an object, but also to the number of objects in the image.

Image Captioning We explore to describe images from

our inferred latent representation instead of end-to-end learn-

ing. First, as the representation carries full knowledge of the

original image, we obtain some basic descriptions for free,

e.g., there is a happy boy at bottom-right, facing to the left.

For captions involving high-level semantic understanding,

we can build another model to map latent representations to

captions. We consider two pilot studies. First, we train a

seq2seq model [29] that reads an image representation, and

directly generates a caption. Its core is a 256-dim LSTM.

We compare with a CNN+LSTM model that reads a raw

image and generates a caption. We train both models on the

Abstract Scene dataset, sampling 90% captions and using the

corresponding images for training, and the rest for testing.

Alternatively, for a test image, we may find the training

image which has the minimum edit distance in the repre-

sentation space, and transfer its caption. We compare with

caption transfer from the nearest neighbor in pixel space.

Figure 13: Results on image captioning. Both LSTM and the

nearest neighbor method work better using the de-rendered repre-

sentations, compared to using raw pixels.

Figure 13 shows qualitative results, where both LSTM

and nearest neighbor perform better when using our dis-

tributed representations, compared to using raw pixels.

6. Discussion

It has been popular to use neural networks for both infer-

ence and synthesis in image understanding. Research in this

direction is fruitful and inspiring; however, current neural

approximate renderers are still unready for practical use. In

contrast, graphics engines have been rather mature, espe-

cially for virtual environments [10, 38]. We feel it could be

a promising direction to incorporate a black-box graphics en-

gine into a generalized encoding-decoding structure. Based

on this observation, in this paper we proposed a neural scene

de-rendering framework for image representation learning

and reconstruction.

We considered two simple yet rich graphics engines, and

proposed a new dataset based on Minecraft. Results proved

that our method performed well, and the learned representa-

tion has wide applications in a diverse set of vision tasks.

Extending our framework to real world images would

require a more flexible scene representation, beyond the

current object-attribute formulation, and a more powerful

graphics engine, as we assume access to an accurate ren-

derer. Alternatively, we may instead employ an approximate

renderer, or both, for scene synthesis and recognition via a

Helmholtz-style modeling of wake/sleep phases [7]. This

opens up the possibility of an extension to general cases,

even when the actual rendering function is not available.

Acknowledgements This work is supported by ONR

MURI N00014-16-1-2007, the Center for Brain, Minds and

Machines (NSF STC award CCF-1231216), and the Toyota

Research Institute. J.W. is supported by an Nvidia fellow-

ship. Part of this work was done when J.W. was an intern at

Microsoft Research. We thank Donglai Wei and anonymous

reviewers for helpful suggestions.

706



References

[1] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. In ICLR, 2015. 2, 3

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In ICML, 2009. 4

[3] T. G. Bever and D. Poeppel. Analysis by synthesis: a (re-)

emerging program of research for language and vision. Bi-

olinguistics, 4(2-3):174–200, 2010. 2

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. Infogan: Interpretable representation learning

by information maximizing generative adversarial nets. In

NIPS, 2016. 1, 2

[5] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, 2011. 5

[6] J. Dai, K. He, and J. Sun. Instance-aware semantic segmenta-

tion via multi-task network cascades. In CVPR, 2016. 4

[7] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The

helmholtz machine. Neural computation, 7(5):889–904, 1995.

8

[8] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In NIPS, 2015. 1

[9] S. Eslami, N. Heess, T. Weber, Y. Tassa, K. Kavukcuoglu, and

G. E. Hinton. Attend, infer, repeat: Fast scene understanding

with generative models. In NIPS, 2016. 2

[10] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as

proxy for multi-object tracking analysis. In CVPR, 2016. 8

[11] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wier-

stra. Draw: A recurrent neural network for image generation.

In ICML, 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2015. 5

[13] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The “wake-

sleep” algorithm for unsupervised neural networks. Science,

268(5214):1158, 1995. 2

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 1, 2, 5

[15] J. Huang and K. Murphy. Efficient inference in occlusion-

aware generative models of images. In ICLR Workshop, 2015.

2

[16] V. Jampani, S. Nowozin, M. Loper, and P. V. Gehler. The in-

formed sampler: A discriminative approach to bayesian infer-

ence in generative computer vision models. CVIU, 136:32–44,

2015. 2

[17] D. Jayaraman and K. Grauman. Look-ahead before you leap:

end-to-end active recognition by forecasting the effect of

motion. In ECCV, 2016. 3

[18] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The

malmo platform for artificial intelligence experimentation. In

IJCAI, 2016. 7

[19] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments

for generating image descriptions. In CVPR, 2015. 5

[20] T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mansinghka.

Picture: A probabilistic programming language for scene

perception. In CVPR, 2015. 2

[21] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.

Deep convolutional inverse graphics network. In NIPS, 2015.

1, 2

[22] M. M. Loper and M. J. Black. Opendr: An approximate

differentiable renderer. In ECCV, 2014. 2

[23] A. Mnih and D. J. Rezende. Variational inference for monte

carlo objectives. In ICML, 2016. 3

[24] L. G. M. Ortiz, C. Wolff, and M. Lapata. Learning to interpret

and describe abstract scenes. In NAACL-HLT, 2015. 5

[25] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee. Deep visual

analogy-making. In NIPS, 2015. 7

[26] D. J. Rezende, S. Eslami, S. Mohamed, P. Battaglia, M. Jader-

berg, and N. Heess. Unsupervised learning of 3d structure

from images. In NIPS, 2016. 3

[27] D. J. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and

D. Wierstra. One-shot generalization in deep generative mod-

els. In ICML, 2016. 2

[28] F. Sadeghi, C. L. Zitnick, and A. Farhadi. Visalogy: Answer-

ing visual analogy questions. In NIPS, 2015. 7

[29] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In NIPS, 2014. 8

[30] Z. Tu and S.-C. Zhu. Image segmentation by data-driven

markov chain monte carlo. IEEE TPAMI, 24(5):657–673,

2002. 2

[31] R. Vedantam, X. Lin, T. Batra, C. Lawrence Zitnick, and

D. Parikh. Learning common sense through visual abstraction.

In ICCV, 2015. 5

[32] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. MLJ, 8(3-

4):229–256, 1992. 2, 3

[33] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba,

and W. T. Freeman. Single image 3d interpreter network. In

ECCV, 2016. 2

[34] J. Wu, I. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenen-

baum. Galileo: Perceiving physical object properties by

integrating a physics engine with deep learning. In NIPS,

2015. 2

[35] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-

supervised disentangling with recurrent transformations for

3d view synthesis. In NIPS, 2015. 1, 2

[36] A. Yuille and D. Kersten. Vision as bayesian inference: analy-

sis by synthesis? Trends in cognitive sciences, 10(7):301–308,

2006. 2

[37] S.-C. Zhu and D. Mumford. A stochastic grammar of images.

Foundations and Trends R© in Computer Graphics and Vision,

2(4):259–362, 2007. 2

[38] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei,

and A. Farhadi. Target-driven visual navigation in indoor

scenes using deep reinforcement learning. In ICRA, 2017. 8

[39] C. L. Zitnick and D. Parikh. Bringing semantics into focus

using visual abstraction. In CVPR, 2013. 2, 5

707


