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Abstract

Cross-modal retrieval has attracted intensive attention
in recent years. Measuring the semantic similarity between
heterogeneous data objects is an essential yet challenging
problem in cross-modal retrieval. In this paper, we propose
an online learning method to learn the similarity function
between heterogeneous modalities by preserving the rela-
tive similarity in the training data, which is modeled as
a set of bi-directional hinge loss constraints on the cross-
modal training triplets. The overall online similarity func-
tion learning problem is optimized by the margin based
Passive-Aggressive algorithm. We further extend the ap-
proach to learn similarity function in reproducing kernel
Hilbert spaces by kernelizing the approach and combining
multiple kernels derived from different layers of the CNN
features using the Hedging algorithm. Theoretical mistake
bounds are given for our methods. Experiments conducted
on real world datasets well demonstrate the effectiveness of
our methods.

1. Introduction

Our world is proliferated with data of heterogeneous
modalities, such as image, text, audio, etc. In real appli-
cation scenarios, there is a surge of interests in generat-
ing natural sentences describing an image [20, 30, 38].
More generally, given queries in one modality, users would
search for semantically relevant content in other modalities
[25, 29, 21, 13], e.g., images that best illustrate the topic
of a textual query, or textual descriptions that best explain
the content of a visual query. Therefore, effective and effi-
cient techniques are in urgent needs to relate heterogeneous
modalities and facilitate real-world cross-modal retrieval.

One of the critical problems in cross-modal retrieval
task is how to measure the similarity between queries and
database entries from different modalities. For example,
image can be represented by a set of multi-layered feature
responses of a convolutional neural network (CNN) [17],
and text can be represented by bag-of-words model or an

aggregation of word vectors [22]. However, the modality
heterogeneity makes it a non-trivial issue that needs to be
carefully considered.

As the standard solution to cross-modal correlation
learning, the aim of subspace learning [25, 29, 21, 13] is
to find a low dimensional latent common space that well
preserve or capture the cross-modal relationship among da-
ta objects. By projecting multi-modal data into the latent
space, simple distance measurement, e.g., the Cosine dis-
tance [25, 29] or Euclidean distance [13], can be used to
measure the semantic distance. Furthermore, semantic re-
lation preservation is pursued directly on distance or simi-
larity level by cross-modal metric learning [2, 10]. In this
paper, we address two issues of existing works that limit
their application to real-world scenarios.

First of all, existing works assume that documents of d-
ifferent modalities are expressed by high-dimensional vec-
tors, although the information delivered in each modality
is different. Accordingly, a shared subspace is learned by
treating different modalities indiscriminately and maximiz-
ing the correlation between two modalities [25, 29, 21, 13]
with a pre-specified number of dimensions of the shared
subspace. However, different settings result in differen-
t model capacity and retrieval performance. To address this
issue, we propose a simple but efficient asymmetric bilin-
ear similarity measurement. The measurement is extended
from existing Mahalanobis-matrix-based metric [37, 9, 6]
on single modality. We relax the positive semi-definiteness
property of the covariance matrix, and allow it to be de-
termined by maximizing the cross-modal ranking perfor-
mance. It can be regarded as a linear function on the joint
feature of the two modalities, so their multiplicative interac-
tions can be directly measured [2]. It can also be interpreted
as inner-product of the projected representations, but we do
not need any prior information on the number of latent di-
mensions as sub-space learning approaches. Consequently,
it better facilitates real-world applications where the cross-
modal content tends to be diversified.

To further address the modality heterogeneity problem,
we consider the situation where documents of one modal-
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ity is expressed by complex representation, e.g., the CNN
features on visual modality. To utilize the state-of-the-art
CNN representation, the simplest way is to concatenate the
multi-layered feature responses of CNN into a unified fea-
ture. However, this will lead to the curse-of-dimensionality
in cross-modal correlation learning. A straightforward solu-
tion is to extend the linear metric learning functions to non-
linear settings by kernelized models, which has been exten-
sively studied in single-modal metric learning [28, 10, 15]
and cross-modal correlation learning [11, 10, 29]. The k-
ernel metric learning has also been extended with multiple
kernels [31, 34, 40]. However, the metric learning on multi-
ple kernels has been rarely studied in cross-modal learning
context.

In our study, our bilinear asymmetric similarity can be
kernelized [11, 29] by using modality specific kernel func-
tions under the structural risk minimization framework. To
fully combine the multi-layered CNN representation, we
propose an asymmetric multi-kernel similarity measure-
ment that can be derived from the dual problem of struc-
tural risk minimization. The proposed asymmetric similari-
ty, optimized by an online kernel learning procedure as [36],
learns a flexible nonlinear proximity function with multiple
kernels, thus the performance of cross-modal retrieval can
be significantly improved by addressing the modality het-
erogeneity.

Second, similarities expressed in relative order [27, 21]
provide a more flexible way than absolute similarity scores
to represent multiple levels of relevance between heteroge-
neous data objects. There are two kinds of relative simi-
larities [35], i.e., the relative similarity of texts to an image
and the relative similarity of images to a given text. Due
to the modality heterogeneity, the relative similarity in one
direction can not be used to infer the relative similarity in
another. Both of them are equally important for learning
similarity function to combine the domain-specific proper-
ties in both visual and textual modalities. To optimize the
retrieval performance, we propose to learn the asymmetric
linear and multi-kernel similarities from two relative simi-
larity directions to preserve the relative order for data with
single label and multiple labels. Consequently, the cross-
modal retrieval performance can be directly optimized by
remarkable model capacity and better semantic relation p-
reservation.

In summary, we propose a Cross-Modal Online Similari-
ty function learning (CMOS) method to learn the asymmet-
ric similarity function between heterogeneous data objects
by preserving the relative semantic relation. The relative
similarity is modeled as a set of bi-directional hinge loss
constraints on the cross-modal training triplets. By measur-
ing the semantic similarity in the label space, the relative
similarity can also be applied to multi-label data. The over-
all online similarity function learning problem is formulat-

ed by the margin-based online Passive-Aggressive algorith-
m, and good scalability is gained in processing large scale
datasets. We further extend our similarity learning model
to combine multiple kernel functions to learn the similarity
function in reproducing kernel Hilbert spaces. Experiments
conducted on real-world datasets well demonstrate the ef-
fectiveness and efficiency of our approaches.

2. Related Work
2.1. Cross Modal Correlation Learning

Many methods have been proposed for cross-modal cor-
relation learning. Canonical correlation analysis (CCA)
[25] is a classic method which learns the subspace that
maximizes the correlation between two sets of aligned data
items. Kernel canonical correlation analysis (KCCA)[11]
is an extension of CCA using kernel trick. Several meth-
ods extend CCA to include supervised information, e.g.,
GMA [29] and ml-CCA [24]. In addition, LCFS[32] and
LGCFL[19] are based on linear regression to learn linear
projections from feature spaces to label-based common s-
pace.

Information retrieval technique is employed by other
methods, such as learning-to-rank [2, 10, 35, 41]. The bilin-
ear similarity functions are learned by SSI [2], PAMIR [10]
and RCCA [41] to minimize the pairwise ranking loss. In
addition, a bi-directional list-wise ranking loss is optimized
in Bi-CMSRM [35]. Another strand of research is on deep
embedding method [39, 20, 33, 12] based on recent suc-
cess in deep learning. Yan er al. [39] propose to learn
the joint embeddings by deep canonical correlation analy-
sis (DCCA)[1] which extends CCA with stacked nonlinear
transformations. Wang et al. [33] propose to learn the joint
embeddings by max-margin principle that combines cross-
view ranking constraints with within-view neighborhood
structure preservation constraints. Karpathy et al. [20] rep-
resent image regions using convolutional neural network-
s, words using bidirectional recurrent neural networks, and
aligns fragments in an image and fragments in a text with a
structured objective function.

2.2. Online Similarity Learning

In literature, a variety of algorithms have been proposed
for online metric/similarity learning [28, 16, 3, 36] in single
modality. Typically, a Mahalanobis distance metric [28, 16]
is learned by online metric learning. While a bilinear met-
ric [3, 10] is considered by some online similarity learn-
ing methods with the form d(z;, z;) = x] Az, which can
be seen as learning a linear transformation and taking in-
ner product when A is positive semi-definite. OASIS [3] is
an online similarity learning method which learns a bilinear
similarity function for image retrieval. Xia et al. [36] ex-
tend bilinear similarity function to a more flexible nonlinear
proximity function with multiple kernels to improve visual
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Figure 1. Overview of the proposed method. The left figure shows the training phase. The right figure shows the retrieval phase by taking

image-to-text retrieval as an example.

similarity search in CBIR. The online Passive-Aggressive
learning technique is applied to learn the kernel-based sim-
ilarity function for each individual kernel, and the Hedging
online learning technique to learn the optimal combination
weights of multiple kernels. However, there has been less s-
tudy on cross-modal online similarity learning. PAMIR [10]
is one that aims to rank images from text queries and can be
kernelized. Since the model is based on mappings from the
visual space to the text space, it only considers the single
directional similarity constraints for model learning.

3. Approach
3.1. Notations

Without loss of generality, we use image and text modal-
ities for illustration in this paper. Suppose that V = {v; fV:”l
is a set of images and 7 = {t;} 1, is a set of text docu-
ments. We overload notation by using v; to denote both the
image and its representation as a column vector v; € R%.
Similarly, we use ¢; to denote both the text and its represen-
tation as a column vector ¢; € R%. Let r(v;, ;) denote the
true pairwise semantic relevance between image v; and text
t;. Relative similarity relationships are represented by two
kinds of triplets (v;, ¢, ¢;) € II” and (¢;, v, v; ) € IT'. A
triplet (v;,t;,¢; ) indicates that (v, t;) > r(v;,t; ), and
we call t;r a positive example and ¢; a negative example
in this triplet for query v;. Similar notations are applied on
triplet (¢;,v;, v; ). We denote a triplet by 7; which can be
either kind of triplets.

3.2. Learning Bi-direction Relative Similarity

As we mentioned above, instead of explicitly learning
the common space, we propose to learn a similarity function
s(v;, t;) to produce similarity score between image and text.
We model the cross-modal similarity by relative similarity.
The reason is two-folds. First, we need to sort the similarity
score between database entries and the queries in retrieval
context. Second, relative similarity may be constructed on
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Figure 2. Drawback of singe direction similarity. Circles and
squares represent images and texts, respectively. The left figure
shows the true relationship of the four data objects, and the right
figure shows the learned relationship of the four data objects. If
the model is only learned to preserve relative similarity C1 and C2
in text-to-image direction, there is no guaranty that relative image-
to-text similarity C3 and C4 can be satisfied. For example, vy to
t1 and 2 similarity in C4 is not satisfied here.

label information, or in an unsupervised manner based on
implicit users feedback.

There are two kinds of relative similarity for the similari-
ty function, i.e., the relative similarities of texts to an image
and the relative similarities of images to a text. As show
in Figure 2, bi-directional relative similarity constraints are
indispensable for modeling the cross-modal semantic rela-
tion. Therefore, we expect the similarity function to satisfy
the following two conditions simultaneously:

s(vi, th) > s(vi, t7),
Yu; € V,t],t;7 € T such that (v, t]) > r(vi, t;),

s(v,ti) > s(v;, ta),
Vt; € T,vf v € Vsuchthatr(v], ;) > r(v; ,t;).

RS A

We formulate the similarity function s(v;,t;) as an asym-
metric bilinear function:

S(’l)i7t]‘) :'l}ithj7 (1)

where W € R% x4t is not square, because the similarity
function is defined between heterogeneous data space. The
proposed definition is simple and flexible. Consequently,
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the similarity learning can fully capture the correlation pat-
terns in cross-modal data. Note that this bilinear function
can be regarded as a linear function on the joint feature
of (v, th), so the multiplicative interactions between the
two modalities can be measured [2]. The advantage over
distance-based metric is that we do not have to specify the
dimension of the learned latent common space.

To further improve the generalization performance of the
similarity function learning, we introduce margins to the
relative similarities as:

s(vi, t;7) > s(vi, t7) + 1, )
s(v;',tj) > s(vy ,t;) + 1.

To relax the training constraints for the nonfeasible case,
we define hinge losses for the two directions as:
lU(W7 Vi, tja tz_) = maX{O, S(Uia tz_) - 5(1)7;, tj) + 1}5

;- - + )
lt(w;tj7vj 7Uj ) = ma’x{ovs(vj 7tj) - S(Uj 7tj) + ]‘}

On the whole, our goal is to minimize the empirical rank-
ing loss with respect to the training data:

L(W; Dirain) = Y L(Wivi,t),t,) + > L(Witi, v, 07).

T €IV T, €It

3.3. Online Learning Algorithm

To learn the similarity function efficiently, we use the
Passive-Aggressive(PA) algorithm [5, 10, 3] to learn the
similarity function. PA algorithm is a family of margin-
based online learning algorithm closely related to stochastic
gradient method. The update steps of PA is based on analyt-
ical solutions to simple constrained optimization problems.

By PA algorithm, we incrementally learn the weight ma-
trix W with an iterative procedure. First, we initialize W as
a zero matrix. Then, at each iteration ¢, we sample a triplet
m; € IV or m; € I8, If m; € 11Y, W is updated according
to Eq.(4). Otherwise, we select W according to Eq.(5).

W; = argn‘lhi,H%HW —~ Wisi|[i 4+ CL(Wi v, t7,87), ()
Wi = aI‘gH\lﬂl]ﬂ%HW - Wl—l”%‘ + Clt(W, ti,”?,vi_), (5)

where || - || denotes Frobenius norm. In each iteration
i, W is learned to reach a trade-off between minimizing
the loss on the current triplet and remaining close to pre-
vious parameter W,_1. C' is the aggressiveness parameter
that controls the trade-off. In the iterative procedure, as we
sample triplets from two directions, we update W from two
directions, i.e., the relative similarity of text-to-image and
image-to-text.
By rewriting Eq.(4) as a constraint problem and defining
the Lagrangian of the optimization problem as in [3], it can

be shown that the solution of Eq.(4) is

W, =W,_1 + 7V,

where V; = v; x (¢t — ti_)T7 ©)
vttt
and 7; = min{C, i (W]l\}vﬁ;tl A8 )}

Similarly, the solution of Eq.(5) is:

W; =W, 1 + 7V,
where V; = (v;7 —v] ) x tI, @)
lt(Wi_l;ti,v;“,vi_)

and 7, = min{C, .
{ viE

Algorithm 1 summarizes the proposed algorithm for
Cross-Modal Online Similarity function learning (CMOS).

Algorithm 1 Cross-Modal Online Similarity Function
Learning
Input: Wy =0
Output: W
fori=1,...,Ndo
Sample triplet m; = (v;, ¢, ¢;) or m = (t;,v;,v])
if w; € TIV then
Update W, as in Eq.(6)
else
Update W, as in Eq.(7)
end if
end for

3.4. Online Multiple Kernel Learning

In real-world applications, the feature dimensions are
usually prohibitively high. For example, features extract-
ed from the middle layers of CNN are with more than 5K
dimensions. We Kkernelize [5, 36] our model to deal with
the curse-of-dimensionality problem in cross-modal simi-
larity learning. It is easy to prove that W can be expressed
as a linear combination of tensor products between train-
ing images and training texts. This proof is performed by
induction over the iterations of our training procedure. Ini-
tially, W = 0. so W can be seen as a linear combination of
tensor products between training images and training texts
with coefficient 0. Now we assume that the property is p-
reserved at iteration ¢ — 1. As we can see from the above
subsection, W keeps the same when the selected triplet sat-
isfies the constraint, or W is updated by adding times of
tensor product between samples when the selected triplet
violates the constraint, i.e., W; = W,_1 +7;V;, where V;
is a tensor product between samples. Thus, at iteration 4,
the property is still preserved on W;. Therefore, W can be
expressed as follows:

W = Z sty — )" + Z (v — o)l ®8)

T, €IIY m; €II
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Given two new samples v and ¢, the similarity function can
be calculated as:
—t)"t+ Y mw

s(v,t) = Z v’ vi(t

7, €IV 7, €It

Replacing inner product with kernel functions, the similar-
ity function can be rewritten as:

s(o,t) = Y k" (v,v) (k' 1) — k' (t5 1) +

7 EITY
> ik (0,0) = K (0,0, K (1),
7; €It
where k?(-,-) denotes kernel function for images, k(- -)

denotes kernel function for texts. From the above equation,
we can see that every kernelized similarity function needs a
pair of kernel functions for image and text respectively. Any
suitable kernel functions, e.g., the Gaussian kernel function
or polynomial kernel function, can be introduced. When
learning the kernelized similarity function, we record co-
efficients 7; and triplets sampled instead of recording W,.
When calculating 7;, we still use Eq.(6) and Eq.(7). But in
these equations, we calculate the loss and ||V;||? with ker-
nel functions. With the kernelized similarity function, the
loss incurred by samples can be easily calculated. || V;||? =
kY (vi, v [RE(ES, 8) — 24 (27, 7) + kt(t;,t‘)] for mi €
I and [V = K(t, 0K (0, o) — 200 (o] ) +
kY (v;,v; )] for m; € II°.

The kernel function k¥ (-, -) is associated with an RKHS
‘H, endowed with an inner product < -,- >,, and simi-
larly k() with H; and < -,- >;. Similar to [36], the
kernelized similarity function can also be represented as
sp(v,t) =< kY(v,-), L[k* (¢, )] >3, where L is a linear
operator mapping from Hilbert space H; to H.,,.

With the development in representation learning, there
are various features for image and text. Instead of selecting
features by hand, we extend the above model to multiple
kernel settings [36, 18]. Let K = {(k?,k}),j = 1,..., M}
be a collection of M pairs of kernel functions. We want
to learn the coefficients of linear combinations of the M
pairs of kernels, while at the same time learn each similarity
function. Let f(v,t) = Z]J\/il ;s;(v,t), we consider the
following optimization problem,

pig iy 5 2l S W) 5
where A = {§ € RY|0Tep, = 1} is a simplex, ey is a
vector of ones, and || - || s is the Hilbert Schmidt norm of
linear operator. Inspired by the success of the Hedging algo-
rithm in learning combination weights [36, 18, 23], we ap-
ply the Hedging algorithm to learn the combination weights
of multiple kernels in an online fashion. At every iteration,
for each of the M pairs of kernels, e.g., (k] , k;) we ap-
ply the above method to find the optimal coefficient for the

— v )Tt

> L(fim),

kernelized similarity function with respect to kernel pair
(K3, k;) and then apply the Hedging algorithm to update
the combination weight by 6, (i) = 0;(i — 1)3% (), where
B € (0,1) is a discounting parameter, and z;(¢) equals to 1
when s(v;, t) —s(vi, t;) < 0or s(vj, t;) —s(v; ,t;) <0,
and 0 otherwise. Algorithm 2 summarizes the proposed al-
gorithm for Cross-Modal Online Multiple Kernel Similarity
function learning(CMOMKS).

Algorithm 2 Cross-Modal Online Multiple Kernel Similar-
ity Function Learning
Input: Kernel pairs K = {(k},k?),j = 1,..., M}, Dis-
counting parameter 3, Combination weights 6;(0) = 1.
Output: f(v,t)
fori=1,...,Ndo
Sample triplet m; = (v;, ¢, ¢, ) or m = (t;,v;,v;)
forj=1,...,M do
if m; € 11V then
Compute 7;; as in Eq.(6)
Update s;(v,t) by adding term 75k} (v, v;)
(K4 (8F 1) ~ kSt )
if s;(vi, ) — s;(vi,t;) <0 then
0;(1) = 0;(i — 1)
end if
else
Compute 7; as in Eq.(7)
Update s;(v,t) by adding term 7;; (k¥ (v, v
kY (v,0;)) Kb (ti,t)
if (v, ti) — s5(v;
;i) = 6,(i - 1)8
end if
end if
end for
end for

)

t;) < 0 then

3.5. Mistake Bounds

We give mistake bounds for the above two algorithms in
this subsection. We denote by [,,;(l;;) the instantaneous loss
suffered by our algorithm on iteration ¢. In addition, we
denote by [7,(l};) the loss l,;(ls;) suffered by the arbitrary
fixed predictor to which we are comparing our performance.
Theorem 1 gives the mistake bound of Algorithm 1.

Theorem 1. Let 7;,..., 7N be a sequence of examples
where ; € TIV or m; € Tt Assume ||lv;(t] —t)7|%,
when m; € IV, ||(v;f —v))tF||%Z < R, when w; € TI for
all 5. Then, for any matrix U € R?" *d" the number of pre-
diction mistakes made by Algorithm I on this sequence of
examples is bounded from above by

max{R, 1/CH(|[U[} +20( 3 i+ > 1.

i 1Y m; €It
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The proof can be easily obtained by extending Theorem
1 in [3]. Our learning algorithm is similar to [3], except that
CMOS samples two kinds of triplets. Chechik et al. [3] have
proved Theorem 1 by rewriting its formalisation as a linear
classification problem. By folding the two kinds of triplets
in this paper, we obtain the input vector with the same size
for the linear classification problem.

Since we just replace inner product with kernel
function for kernelized CMOS, the mistake bound is
similar to CMOS but with the constraints becoming
kY (vg, v) (Kt (], t7) — th(ﬁ ) F Rt )) < Rand

K (b, ) (R (v o) — 200 (0, 07) + k¥(o7 o)) < R,

177
Also we replace ||UJ|% with HTH%IS, where T is a linear
operator mapping from the Hilbert space H; to H, , and
| - || s is the Hilbert Schmidt norm of linear operator.

For the multiple kernel settings, the number of mis-
takes 7' made by running the multiple kernel learning
algorithm is denoted by T = Zfil I(Zj]\il qj(i -

)zj (é) > 0.5), where I(x) is an indicator function. 6; =
Z 0;(3),q;(i) = 91 () defines the mixture of coefficien-
t, and z; (1) 1nd1cates if triplet 7; is misclassified by the
jth kernel similarity function. Following [8, 18, 36], we
can get the upper bound of the number of prediction mis-
takes 7. We define the optimal margin error as g(k?, k})
for the kernel pair (kjﬂk;) with respect to a collection
of training examples {m;,7 = 1,..., N}, which satisfies
kY (vi, va) (KE(ET 8F) — zkt(tj,tj) + kbt tf ) < Rj,
when m; € I1°, and K (t;, t;) (kY (v, v ) — 2k2 (v;F, o) +
k?(vi,vf)) < Rj, when m; € II'. Theorem 2 gives the

mistake bound of Algorithm 2.

Theorem 2. Let m;,..., 7N be a sequence of examples
where ; € IV or m; € TI'. Assume kY (vi, vi) (KL (tF ) —
2KE(ET 6F) + kt( Tt5) < Rj, when m € 1IY

kt(t“t)(kv( Ui s z ka( Ui z)+kv( Ui z))<RJ’
when 7t; € 1Y, for all i and j. Then, the number of pre-
diction mistakes made by Algorithm 2 on this sequence of
examples is upper-bounded by

< 2n(1/6)

2In M
< 2P0 min g0k + 2

1<J<M 1-5"

4. Experiments
4.1. Datasets

The Wiki dataset [25] contains 2,866 text-image pairs
which are selected from the Wikipedia’s featured articles
collection. Each pair is labelled with one of ten semantic
classes. 2173 pairs are taken as training set and 693 pairs are
taken as testing set as in [25]. We use the publicly available
10-dim LDA text features [25], and extract CNN features
using Caffe [17] with the pre-trained architecture learned
on ImageNet. Features from ‘conv2’, ‘convs’, ‘fc6’, ‘fc7’,
‘prob’ layers are extracted. After concatenating these CNN

features and performing PCA by preserving 95% energy, we
get 1648-dim image features for linear similarity learning
and other linear similarity learning baseline approaches.

The Pascal VOC 2007 dataset [7] consists of annotated
consumer photographs collected from Flickr. 399-dim tag
occurrence features provided by [14] are used for text rep-
resentations. 3394-dim CNN image features are extracted
from concatenated CNN representations after PCA. For la-
bel representations, we use the groundtruth 20-class annota-
tions of the images. The original train-test split provided in
the dataset is used for training and testing. After removing
images without tags, we get a training set with 5000 images
and a test set with 4919 images.

The NUS-WIDE dataset [4] consists of images from
Flickr accompanied with rich tags. In our experiment, We
sample 10000 and 5000 image-text pairs which have 10
class labels with the largest number of images as training set
and testing set, respectively. Texts are represented by 1000-
dim tag occurrence vectors. We perform PCA on the con-
catenated CNN features by preserving 90% energy and get
3561-dim image features for linear similarity learning. 10-
dim category indicator vectors are treated as ground-truth
class labels.

4.2. Experimental settings

We compare our methods with CCA [25], PLS [26],
GMLDA [29], Bi-CMSRM ([35], SSI [2], LCFS [32], ml-
CCA [24], KCCA [11] and KGMLDA [29]. For single-
class methods on multi-label datasets (GMLDA and LCFS
on the Pascal and NUS-WIDE dataset), the category of ev-
ery training pair is provided with a randomly selected cate-
gory from its multiple labels. We use the reduced concate-
nated CNN feature by PCA as the visual feature for each
image.

In our methods, triplets sampling is needed for every it-
eration. In the training procedure, triplets in two directions
are used alternatively. On the Wiki dataset, the positive ex-
ample is the one in the same class with query, and the neg-
ative example is the one in different classes with query. On
the Pascal and NUS-WIDE dataset, positive example shares
more labels with query than negative example.

For kernel methods, Gaussian kernel function k(x,y) =

e

e <2 are used. We conduct validation and select o
from {0.1,1,10,100}. And we average kernel matrices
from ‘conv2’, ‘conv5’, ‘fc6’, ‘fc7’, ‘prob’ layers for ker-
nels in KCCA and KGMLDA. For our methods, the aggres-
siveness parameter C' is set to 0.05 in all experiments, and
the discount parameter 3 is set to 0.998. For the compared
methods, we use the parameters’ optimal settings tuned by
a parameter validation process except for specification.

To evaluate the semantic consistency of our cross-modal
similarity function, we perform bi-directional retrieval tasks
in the experiments, i.e., image-to-text retrieval and text-to-
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image retrieval. Images and texts are regarded to be relevant
if they belong to the same class on the Wiki datast. While
on the multi-label datasets Pascal and NUS-WIDE, images
and texts are regarded to be relevant if they share at least one
class label. Mean Average Precision(MAP) is used as the
evaluation metric. Precision-recall curve is also presented
to show the performance.

4.3. Results

The first three columns of Table 1 show the performance
of cross-modal retrieval in terms of MAP on the Wik-
i dataset. From the experimental results, we can see that for
primal methods, CMOS performs better than most of primal
methods except SSI on image-to-text task. SSI is similar to
CMOS. It learns a bilinear function by preserving relative
similarity for each relative direction. However it has to set
a learning rate which is not so intuitive like aggressiveness
parameter and has no theoretical mistake bounds. Kernel
methods outperform primal methods, because of non-linear
transformation introduced by kernel functions. CMOMK-
S performs the best. By applying the Hedging method to
combine different layers of CNN features, CMOMKS can s-
elect useful features and reduce the influence of useless fea-
tures. The corresponding precision-recall curves are plotted
in Figure 3(a) and Figure 3(b).

The middle three columns of Table 1 illustrate the per-
formance of cross-modal retrieval in terms of MAP on the
Pasal VOC 2007 dataset. From the experimental results, we
can see that CMOS performs better than its primal counter-
parts and CMOMKS performs better than all baselines. Dif-
ferent from Wiki dataset, Pascal is a multi-label dataset. We
can see that relative similarity can model the multi-label in-
formation well. The corresponding precision-recall curves
are plotted in Figure 3(c) and Figure 3(d).

Results of cross-modal retrieval in terms of MAP on the
NUS-WIDE dataset are showed in last three columns of Ta-
ble 1. CMOS still outperforms the baseline methods and C-
MOMKS gets the best performance. Figure 3(e) and Figure
3(f) illustrate the corresponding precision-recall curves. We
provide some hard examples in Figure 4, where our method
made particular difference.

4.4. Further Analyses

To show how bi-directional learning works, we conduct
experiments using triplets from different directions on the
Pascal dataset. We sampled 106 training triplets used in

Method img2txt | txt2img | average
image-to-text direction | 0.579 0.586 0.583
text-to-image direction | 0.577 0.603 0.59

bi-direction 0.586 0.600 0.593
Table 2. Performance of models trained with different directional
triplets on the Pascal dataset.
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Figure 3. Performance of different methods on all benchmark

datasets based on precision-recall curve.

all the three methods. Since there are image-text pairs in
the Pascal dataset, it corresponds to 10° training triplets in
I, and 10° training triplets in II;. For fair comparison,
we trained single-directional methods for two times. Ag-
gressiveness parameter C' is fixed to 0.05 in all the three
methods. Table 2 illustrates the results of the three meth-
ods. From the table, we can see that relative similarity in
one direction can be useful for learning the relative simi-
larity in other direction. Model trained with image-to-text
triplets obtains good result in text-to-image retrieval task.
Also it is easy to see that the information from two direc-
tions can be contained in one single model. In image-to-text
retrieval, the performance of bi-directional model is better
than image-to-text directional model. In text-to-image re-
trieval, the performance of bi-directional model is compa-
rable with text-to-image directional model. On average, the
bi-directional model performs the best, indicating that the
triplets organized in two directions provide comprehensive
information for similarity learning.

We also examine the effect of the aggressiveness param-
eter C. We ran CMOS with different values of the param-
eter C on the Pascal dataset. Figure 5 depicts the retrieval
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Wiki Pascal VOC 2007 NUS-WIDE

Method img2txt | txt2img | average || img2txt | txt2img | average | img2txt | txt2img | average
CCA 0.325 0.275 0.300 0.346 0.395 0.371 0.416 0.399 0.408
PLS 0.329 0.269 0.299 0.532 0.490 0.511 0.550 0.516 0.533
GMLDA 0.326 0.274 0.300 0.550 0.539 0.545 0.544 0.504 0.524
ml-CCA 0.343 0.293 0.318 0.584 0.572 0.578 0.546 0.501 0.524
LCFS 0.333 0.283 0.308 0.551 0.528 0.540 0.574 0.512 0.543
Bi-CMSRM | 0.334 0.245 0.290 0.541 0.516 0.529 0.548 0.502 0.525
SSI 0.369 0.288 0.328 0.576 0.530 0.553 0.570 0.511 0.540
CMOS 0.368 0.298 0.333 0.586 0.600 0.593 0.578 0.528 0.553
KCCA 0.399 0.362 0.381 0.647 0.655 0.651 0.452 0.433 0.443
KGMLDA 0.414 0.359 0.386 0.675 0.676 0.676 0.578 0.544 0.561
CMOMKS 0.434 0.388 0.411 0.709 0.707 0.708 0.597 0.565 0.581

Table 1. Cross-modal retrieval performance of the proposed methods and the compared baselines on all benchmark datasets in terms of

MAP.
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Figure 4. Examples of top 3 results on the NUS-WIDE dataset.
First row is the query and the corresponded cross-modal documen-
t. Red-colored texts and boxes indicate wrong results.

Groudtruth

performance with respect to C' as a function of iterations.
As can be seen from the figures, the value of the parame-
ter C' significantly influences the performances of the algo-
rithms. Our model does not perform well with large value.
When C = 10 and C = 1, MAP is low and vibrates as the
number of iterations increases. With parameter C' = 0.1,
CMOS converges quickly, and a stable and good model can
be obtained after sufficient number of iterations. Setting C'
to be a small value (i.e. 0.001) leads to a slow progress rate,
since each online update changes the online hypothesis by
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(a) image-to-text retrieval (b) text-to-image retrieval

Figure 5. MAP with respect to the aggressiveness parameters C' as
a function of iterations on the Pascal dataset

a small amount.
5. Conclusions

We have proposed CMOS and its multiple kernel ex-
tension CMOMKS to learn a similarity function between
heterogeneous data modalities by preserving relative sim-
ilarity constraints from two directions. The online mod-
el is learned by the Passive-Aggressive algorithm. Mul-
tiple kernelized similarity function is further combined in
CMOMKS, and the model is learned by the Hedging al-
gorithm. Experimental results on three public cross-modal
datasets have demonstrated that the proposed methods out-
perform state-of-the-art approaches. In future work, we will
investigate to enhance scalability by accelerating the kernel
calculation in online similarity learning process, and extend
CMOMKS to deal with the situation where both modalities
are represented by multiple representations.
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