
Optical Flow in Mostly Rigid Scenes

Jonas Wulff Laura Sevilla-Lara Michael J. Black

Max Planck Institute for Intelligent Systems, Tübingen, Germany
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Figure 1: Overview. From three frames (a) our method computes a segmentation of the scene into static (red) and moving

(blue) regions (b), the depth structure of the scene (c) , and the optical flow (d). (e) shows ground truth flow.

Abstract

The optical flow of natural scenes is a combination of

the motion of the observer and the independent motion

of objects. Existing algorithms typically focus on either

recovering motion and structure under the assumption of

a purely static world or optical flow for general uncon-

strained scenes. We combine these approaches in an opti-

cal flow algorithm that estimates an explicit segmentation of

moving objects from appearance and physical constraints.

In static regions we take advantage of strong constraints to

jointly estimate the camera motion and the 3D structure of

the scene over multiple frames. This allows us to also regu-

larize the structure instead of the motion. Our formulation

uses a Plane+Parallax framework, which works even un-

der small baselines, and reduces the motion estimation to

a one-dimensional search problem, resulting in more ac-

curate estimation. In moving regions the flow is treated

as unconstrained, and computed with an existing optical

flow method. The resulting Mostly-Rigid Flow (MR-Flow)

method achieves state-of-the-art results on both the MPI-

Sintel and KITTI-2015 benchmarks.

1. Introduction

The world is composed of things that move and things that

do not. The 2D motion field, which is the projection of the

3D scene motion onto the image plane, arises from observer

motion relative to the static scene and the independent mo-

tion of objects. A large body of work exists on estimating

camera motion and scene structure in purely static scenes,

generally referred to as Structure-from-Motion (SfM). On

the other hand, methods that estimate general 2D image

motion, or optical flow, make much weaker assumptions

about the scene. Neither approach fully exploits the mixed

structure of natural scenes. Most of what we see in such

scenes is static - houses, roads, desks, etc.1 Here, we refer

to these static parts of the scene as the rigid scene, or rigid

regions. At the same time, moving objects like people, cars,

and animals make up a small but often important part of

natural scenes. Despite the long history of both SfM and

optical flow, no state-of-the art optical flow method synthe-

sizes both into an algorithm that works on general scenes

like those in the MPI-Sintel dataset [9] (Fig. 1). In this

work, we propose such a method to estimate optical flow

in video sequences of generic scenes that contain moving

objects within a rigid scene.

For the rigid scene, the camera motion and depth struc-

ture fully determine the motion, which forms the basis of

SfM methods. Modern optical flow benchmarks, however,

are full of moving objects such as cars or bicycles in KITTI,

or humans and dragons in Sintel. Assuming a fully static

scene or treating these moving objects as outliers is hence

not viable for optical flow algorithms; we want to recon-

struct flow everywhere.

Independent motion in a scene typically arises from well

defined objects with the ability to move. This points to a

possible solution. Recently, convolutional neural networks

(CNN) have achieved good performance on detecting and

segmenting objects in images, and have been successfully

1In KITTI-2015 and MPI-Sintel, independently moving regions make

up only 15% and 28% of the pixels, respectively.
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incorporated into optical flow methods [4, 33]. Here we

take a slightly different approach. We modify a common

CNN and train it on novel data to obtain a rigidity score

from the labels, taking into account that some objects (e.g.

humans) are more likely to move than others (e.g. houses).

This score is combined with additional motion cues to ob-

tain an estimate of rigid and independently moving regions.

After partitioning the scene into rigid and moving re-

gions, we can deal with each appropriately. Since the mo-

tion of moving objects can be almost arbitrary, it is best

computed using a classical unconstrained flow method. The

flow of the rigid scene, on the other hand, is extremely re-

stricted, and only depends on the depth structure and the

camera motion and calibration. In theory, one could use

an existing SfM algorithm to reconstruct the camera motion

and the 3D structure of the scene, and project this struc-

ture back to obtain the motion of the rigid scene regions.

Two factors make this hard in practice. First, the number

of frames usually considered in optical flow is small; most

methods only work on two or three consecutive frames.

SfM algorithms, on the other hand, require tens or hun-

dreds of frames to work reliably. Second, SfM algorithms

require large camera baselines in order to reliably estimate

the fundamental matrices. In video sequences, large base-

lines are rare, since the camera usually translates very little

between frames. An exception to this are automotive sce-

narios such as the KITTI benchmark, where the recording

car often moves rapidly and the frame rate is low.

Since full SfM is unreliable in general flow scenarios, we

adopt the Plane+Parallax (P+P) framework [17, 18, 31] In

this framework, frames are registered to a common plane,

which is aligned in all images after the registration. This

removes the motion caused by camera rotation and simple

intrinsic camera parameter changes, leaving parallax as the

sole source of motion. Since all parallax is oriented towards

or away from a common focus of expansion in the frame,

computing the parallax is reduced to a 1D search problem

and therefore easier than computing the full optical flow.

Here we show that using the P+P framework brings an

additional advantage: the parallax can be factored into a

structure component, which is independent of the camera

motion and constant across time, and a temporally varying

camera component, which is a single number per frame.

We integrate the structure information across time; by defi-

nition, the structure of the rigid scene does not change. By

combining the structure information from multiple frames,

our algorithm generates a better structure component for all

frames, and fills in areas that are unmatched in a single pair

of frames due to occlusion.

Additionally, the relationship between the structure com-

ponent and the parallax (and thus, the optical flow) enables

us to regularize the flow in a physically meaningful way,

since regularizing the structure implicitly regularizes the

flow. We use a robust second-order regularizer, which cor-

responds to a locally planar prior.

We integrate the regularization into a novel objec-

tive function measuring the photometric error across three

frames as a function of the structure and camera motion.

This allows us to optimize the structure and also to recover

from poor initializations. We call the method MR-Flow for

Mostly-Rigid Flow and show an overview in Fig. 2.

We test MR-Flow on MPI-Sintel [9] and KITTI

2015 [24] (Fig. 1). Among published monocular methods,

at time of writing, we achieve the lowest error on MPI-

Sintel on both passes; on KITTI-2015, our accuracy is sec-

ond only to [4], a method specifically designed for automo-

tive scenarios. Our code, the trained CNN, and all data is

available at [1].

In summary, we present three main contributions. First,

we show how to segment the scene into rigid regions and

independently moving objects, allowing us to estimate the

motion of each type of region appropriately. Second, we

extend previous plane+parallax methods to express the flow

in the rigid regions via its depth structure. This allows us to

regularize this structure instead of the flow field and to com-

bine information across more than two frames. Third, we

formulate the motion of the rigid regions as a single model.

This allows us to iterate between estimating the structure

and to recover from unstable initializations.

2. Previous work

SfM and optical flow have both made significant, but mostly

independent, progress. Roughly speaking, SfM methods re-

quire purely rigid scenes and use sparse point matches, wide

baselines between frames, solve for accurate camera intrin-

sics and extrinsics, and exploit bundle adjustment to opti-

mize over many views at once. In contrast, optical flow is

applied to scenes containing generic motion, exploits con-

tinuous optimization, makes weak assumptions about the

scene (e.g. that it is piecewise smooth), and typically pro-

cesses only pairs of video frames at a time.

Combining optical flow and SfM. There have been

many attempts to combine SfM and flow methods, dating

to the 80’s [12]. For video sequences from narrow-focal-

length lenses, the estimation of the camera motion is chal-

lenging, as it is easy to confuse translation with rotation and

difficult to estimate the camera intrinsics [13].

More recently there have been attempts to combine SfM

and optical flow [4, 27, 36, 38, 39]. The top monocular op-

tical flow method on the KITTI-2012 benchmark estimates

the fundamental matrix and computes flow along the epipo-

lar lines [39]. This approach is limited to fully rigid scenes.

Wedel et al. [38] compute the fundamental matrix and reg-

ularize optical flow to lie along the epipolar lines. If they

detect independent motion, they revert to standard optical

flow for the entire frame. In contrast, we segment static
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Figure 2: Algorithm overview. Given a triplet of frames, we first compute initial flow and an initial rigidity estimate based

on a semantic segmentation CNN. The images are then aligned to a common plane, and the initial flow is converted to an

estimate of the structure in the rigid scene using the Plane+Parallax framework. Where the P+P constraints are violated, the

rigidity is refined, while at the same time the structure is refined using a variational optimization. To obtain the final flow

estimate, the initial flow is used in moving regions, while the refined structure induces the flow in the rigid scene.

from moving regions and use appropriate constraints within

each type of region. Roussos et al. [30] assume a known

calibrated camera and solve for depth, motion and segmen-

tation of a scene with moving objects. They perform batch

processing on sequences of about 30 frames in length, mak-

ing this more akin to SfM methods. While they have im-

pressive results, they consider relatively simple scenes and

do not evaluate flow accuracy on standard benchmarks.

Plane+Parallax. P+P methods were developed in the

mid-90’s [17, 31]. The main idea is that stabilizing two

frames with a planar motion (homography) removes the

camera rotation and simplifies the geometric reasoning

about structure [19, 35]. In the stabilized pair, motion is

always oriented towards or away from the epipole and cor-

responds to parallax, which is related to the distance of the

point from the plane in the 3D scene.

Estimating a planar homography can be done robustly

and with more stability than estimating the fundamental

matrix [18, 19]. While one is not able to estimate met-

ric depth, the planar stabilization simplifies the matching

process, turning the 2D optical flow estimation problem

into a 1D problem that is equivalent to stereo estimation.

Given the practical benefits, one may ask why P+P meth-

ods are not more prevalent in the leader boards of optical

flow benchmarks. The problem is that such methods work

only for rigid scenes. Making the P+P approach usable in

general natural scenes is one of our main contributions.

Moving region segmentation. There have been sev-

eral attempts to segment moving scenes into regions corre-

sponding to independently moving objects by exploiting 3D

motion cues and epipolar motion [2, 34, 37]. Several meth-

ods use the P+P framework to detect independent motions,

but those methods typically only do detection and not flow

estimation, and are often applied to simple scenes where

there is a dominant motion like the ground plane and small

moving objects [15, 32, 40]. Irani et al. [16] develop mosaic

representations that include independently moving objects

but do not explicitly compute their flow. Given two frames

as input, Ranftl et al. [28] segment a general moving scene

into piecewise-rigid components and reason about the depth

and occlusion relationships. While they produce impressive

depth estimates, they rely on accurate flow estimates be-

tween the frames and do not refine the flow itself.

Combining multiple flow methods. There is also ex-

isting work on combining motion estimates from different

algorithms into a single estimate [21, 22], but these do not

attempt to fuse rigid and general motion. Bergen et al. [6]

define a framework for describing optical flow problems us-

ing different constraints from rigid motion to generic flow,

but do not combine these models into a single method.

Recent work combines segmentation and flow. Sevilla

et al. [33] perform semantic segmentation and use different

models for different semantic classes. Unlike them, we use

semantic segmentation to estimate the rigid scene and then

impose stronger geometric constraints in these regions. Hur

and Roth [14] integrate semantic segmentation over time,

leading to more accurate flow estimation for objects and

better segmentation performance.

Most similar to our approach is [4], which first segments

the scene into objects using a CNN. A fundamental matrix

is then computed and used to constrain the flow within each

object. Our work is different in a number of important ways.

(i) Their approach is sequential and cannot recover from an

incorrect fundamental matrix estimate. We propose a uni-

fied objective function where the parts of the solution in-

form and improve each other. (ii) [4] relies exclusively on

the CNN to segment moving regions. While this works in

specific scenarios such as automotive, it may not general-

ize to new scenes. We combine semantic segmentation and

motion to classify rigid regions and thus require less accu-

rate semantic rigidity estimates. This makes our algorithm

both more robust and more general, as demonstrated by the

fact that in contrast to [4] we evaluate on the challenging

MPI-Sintel benchmark. (iii) [4] requires moving objects
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to be rigid (i.e., rigidly moving vehicles) and assumes a

small rotational component of the egomotion. This works

for KITTI-2015 but does not apply to more general scenes.

(iv) [4] uses only two frames at a time and extrapolates into

occlusions. Our model combines information across time,

and thus it is able to compute accurate flow in occlusions.

3. Plane + Parallax background

The P+P paradigm has been used in rigid scene analysis for

a long time. Since it forms the foundation of our algorithm,

we briefly review the parts that are important for this work

and refer the reader to [18, 31] for more details.

The core idea of P+P is to align two or more images to a

common plane Π, so that

x = 〈Hx′
h〉 ∀(x,x′) on Π (1)

where x and x′ represent a point in the reference frame and

the corresponding point in another frame of the sequence,

xh denotes x in homogeneous coordinates, H is the ho-

mography mapping the image of Π between frames, and

〈a〉 = (a1/a3, a2/a3) is the perspective normalization.

This alignment removes the effects of camera rotation

and the effect of camera calibration change (such as a zoom)

between the pair of frames [41]. Getting rid of rotation

is especially convenient, since the ambiguity between ro-

tation and translation in case of small displacements is a

major source of numerical instabilities in the estimation of

the structure of the scene.

When computing optical flow between aligned images,

the flow of the pixels corresponding to points on the plane

is zero2. For an image point x corresponding to a 3D point

X off the plane, the residual motion is given as [31]

up (x) =
1

1− d(C2)
Tz

z
d(X)

(e− x) , (2)

where d(C2) is the distance of the second camera center to

Π, z is the distance of point X to the first camera, Tz is

the depth displacement of the second camera, d(X) is the

distance from point X to Π, and e is the common focus of

expansion that coincides with the epipole corresponding to

the second camera. This representation has two main ad-

vantages. First, instead of an arbitrary 2D vector, each flow

is confined to a line; therefore computing the optical flow is

reduced to a 1D search problem. Second, when considering

the flow of a pixel to different frames t which are registered

to the same plane, Eq. (2) can be written as

up (x, t) =
A(x)bt

A(x)bt − 1
(et − x) , (3)

2Note that the plane does not have to correspond to a physical surface,

but merely to a rigid, “virtual” plane.

where A(x) = d(X)/z is the structural component of the

flow field, which is independent of t. It is hence convenient

to accumulate structure over time via A. bt = Tz/d(C2),
on the other hand, encodes the camera motion to frame t,
and is a single number per frame. To simplify notation,

we express the residual flow in terms of the parallax field

w(x, t), so that

up (x) = w (x, t)
q

‖q‖
, w (x, t) =

A(x)bt‖q‖

A(x)bt − 1
, (4)

with q = (e− x). Here, w denotes the flow in pixels along

the line towards e.

We can thus parametrize the motion across multiple

frames as a common structure component A and per-frame

parameters θt = {Ht, bt, et}. Since we use the center frame

of a triplet of frames as the reference and compute the mo-

tion to the two adjacent frames, from here on we denote the

two parameter sets as θ+ = {H+, b+, e+} for the forward

direction and θ− for the backward direction.

4. Initialization

Given a triplet of images and a coarse, image-based rigidity

estimation (described in Sec. 5.1), the goal of our algorithm

is to compute (i) a segmentation into rigid regions and mov-

ing objects and (ii) optical flow for the full frame. We start

by computing initial motion estimates using an existing op-

tical flow method [25]. For a triplet of images {I−, I, I+},

we compute four initial flow fields, u+
0 from I to I+ and

u−
0 from I to I−, and their respective backwards flows ū+

0

and ū−
0 . Due to the non-convex nature of our model (see

Sec. 6) we need to compute good initial estimates for the

P+P parameters θ̂+, θ̂−, visibility maps V +, V − denoting

which pixels are visible and which are occluded in forward

and backward directions, and an initial structure estimate Â.

Initial alignment and epipole detection. First we com-

pute the planar alignments (homographies) between frames.

Since P+P only holds in the rigid scene, in this section we

only consider points that are marked as rigid by the initial

semantic rigidity estimation. While computing a homogra-

phy between two frames is usually easy, two factors make it

challenging in our case: (i) when aligning multiple frames,

the plane to which the frames are aligned has to be equiva-

lent for each frame for P+P to work, and (ii) the 3D points

corresponding to the four points used to estimate the homo-

graphies have to be coplanar for Eq. (3) to hold.

To compute homographies obeying these constraints, we

use a two-stage process. First, we compute initial homogra-

phies H̃+, H̃− using RANSAC. In each iteration, the same

random sample is used to fit both H̃+, H̃−, and a point is

considered an inlier only when its reprojection error is low

in both forward and backward directions. This ensures that

the computed homographies belong to the same plane. If

4674



a computed homography displaces the images corners by

more than half the image size, it is considered invalid. If no

valid homography is found, our method returns the initial

flow field. This happens on average in 2% of the frames.

The second step is to ensure the coplanarity of the points

inducing the homographies. For this, we can turn around

Eq. (3), and simultaneously refine the homographies and

estimate the epipoles e{+,−} so that Eq. (3) holds. Let

ur = 〈H(x+u0)h〉 − x be the residual flow after regis-

tration with H . Each pair x,ur defines a residual flow line,

and in the noise-free case, the epipole e is simply the in-

tersection of these lines. Since the computed optical flow

contains noise, we compute the epipole using the method

described in [23], which we found to be sufficiently robust

to noise. Therefore, e is a function of the optical flow and

of the computed homography. Enforcing coplanarity of the

homographies is now equivalent to enforcing that the resid-

ual flow lines in both directions each pass through a com-

mon point as well as possible. The refined homographies

are thus computed as

Ĥ+, Ĥ− = argmin
H+,H−

∑

x

∑

z∈{+,−}

ρ (oz(x)) , (5)

with oz(x) defining the orthogonal distance of the resid-

ual flow line at x to ez . While Eq. (5) is highly non-

linear, we found that initializing with H̃{+,−} and using

a standard non-linear minimization package such as L-

BFGS [26] produced results that greatly improved the fi-

nal flow error compared to using the unrefined homogra-

phies H̃{+,−}. Throughout the paper, we use the Lorentzian

ρ(x) = σ2 log
(

1 + x2/σ2
)

as the robust function, and

compute the scaling parameter σ via the MAD [7]. The ini-

tial epipolar estimates ê{+,−} are computed using Ĥ{+,−}.

To initialize b+, b−, we first compute the parallax fields

by projecting ur onto the parallax flow lines,

w = u⊤
r q/‖q‖. (6)

Inserting (6) into (4) and solving for A, we get

A = w/ (b (‖q‖ − w)) . (7)

Note that Eq. (3) contains a scale ambiguity between the

structure A and the camera motion parameter b. Therefore,

we can freely choose one of b+, b−, which only affects the

scaling of A; we choose b̂+ so that the initial forward struc-

ture A+ defined by Eq. (7) has a MAD of 1. Since A− is a

function of b− and should be as close as possible to A+, we

obtain the estimate b̂− by solving

b̂− = argmin
b−

∑

x

ρ
(

Â+(x)−A−(x)
)

. (8)

Using b̂−, we compute the initial backward structure Â−

using Eq. (7), and set the full sets of P+P parameters to

θ+ = {Ĥ+, b̂+, ê+}, and θ− accordingly.

Occlusion estimation. Pixels can become occluded in

both directions. In occluded regions, we expect the flow to

be wrong, since it can at best be extrapolated. Given the

initial flow fields, we compute the visibility masks V +(x),
V −(x) using a forward-backward check [20].

Initial structure estimation. Using the computed struc-

ture maps Â{+,−} and visibility maps V {+,−}, the initial

estimate for the full structure is

Â(x) =
1

max(1, V +(x) + V −(x))

∑

z∈{+,−}

V z(x)Az(x).

(9)

5. Rigidity estimation

Different cues provide different, complementary informa-

tion about the rigidity of a region. The semantic category

of an object tells us whether it is capable of independent

motion, rigid scene parts have to obey the parallax con-

straint (3), and the 3D structure of rigid parts cannot change

over time. We integrate all of them in a probabilistic frame-

work to estimate a rigidity map of the scene, marking each

pixel as belonging to the rigid scene or to a moving object.

5.1. Semantic rigidity estimation

We leverage the recent progress of CNNs for semantic seg-

mentation to predict rigid and independently moving re-

gions in the scene. In short, we model the relationship be-

tween an object’s appearance and its ability to move.

Obviously object appearance alone does not fully deter-

mine whether something is moving independently. A car

may be moving, if driving, or static, if parked. However,

for the purpose of motion estimation, not all errors are the

same. Assuming an object is static when in reality it is

not imposes false constraints that hurt the estimation of the

global motion, while assuming a rigid region is indepen-

dently moving does little harm. Thus, when in doubt, we

predict a region to be independently moving.

The main optical flow benchmarks, KITTI-2015 and

MPI-Sintel, provide different training data. While the

essence of our model is the same for both, our training pro-

cess varies to adapt to the available data. In both cases we

start with the DeepLab architecture [10], pre-trained on the

21 classes of Pascal VOC [11], substitute all fully connected

layers with convolutional layers, and densify the predic-

tions [33]. Both networks produce a rigidity score between

0 and 1 which we call the semantic rigidity probability ps.

MPI-Sintel contains many objects that are not contained

in Pascal VOC, such as dragons. Thus using the CNN to

predict a semantic segmentation is not possible. Also, no

ground truth semantic segmentation is provided, so training

a CNN to recognize these categories is not possible. How-

ever, the dataset provides ground truth camera calibration,

depth and optical flow for the training set. With these we
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estimate rigidity maps that we take as ground truth. We do

this by computing a fully rigid motion field, using the depth

and camera calibration, and comparing it with the ground

truth flow field. Pixels are classified as independently mov-

ing if these two fields differ by more than a small amount.

We make this data publicly available [1].

We modify the last layer of the CNN to predict 2 classes,

rigid and independently moving, instead of the original 21.

We train using the last 30 frames of each sequence in the

training set, and validate on the first 5 frames of each se-

quence. Sequences shorter than 50 frames are only included

in the validation set. At test time, the probability of being

rigid is computed at each pixel and then thresholded. Ex-

amples of the estimated rigidity maps can be seen in Fig. 3.

In KITTI 2015, some independently moving objects

(e.g. people) are masked out from the depth and flow ground

truth. Therefore, the approach we followed for MPI-Sintel

cannot be used. The objects in KITTI, however, appear in

standard datasets like the enriched Pascal VOC. We mod-

ify the last layer of the network to predict the 22 classes

that may be present in KITTI (e.g. person or road) similar

to [33]. We then classify an object as moving if it has the

ability to move independently (e.g. cars, or buses) and as

rigid otherwise. Training details appear in the Sup. Mat. [1].

Note that the same approach we use for KITTI can be

used for general video sequences by using a generic pre-

trained semantic segmentation network together with a def-

inition of which semantic classes can move and which are

static. This allows our method to directly benefit from ad-

vances in semantic segmentation and novel, fine-grained se-

mantic segmentation datasets.

5.2. Physical rigidity estimation

For objects that have not been seen previously or that exhibit

phenomena like motion blur, the semantic rigidity may be

wrong. Hence, we use two additional cues, motion direction

and temporal consistency of the structure.

Moving regions from motion direction. A simple ap-

proach to classify a pixel as rigid or independently moving

is to test whether its parallax flow points to the epipole [15].

Here, we employ a probabilistic framework for this classi-

fication. Due to space limitations, we just present the final

result here; for the derivation, please see the Sup. Mat. [1].

For a given point x, our model assumes the measured

corresponding point x′ = x + ur to have a Gaussian error

distribution around the true correspondence with covariance

matrix Σ = σ2
dI. Let c = ‖ur‖ and α be the angle between

ur and the line connecting x to e. Assuming a uniform dis-

tribution of motion directions for moving objects, the like-

lihood of a point being rigid is then given as

p (x is rigid) =
exp

(

−2t sin2(α)
)

exp (−t) I0 (t) + exp
(

−2t sin2(α)
)

(10)

with t = c2/(4σ2
d) and I0(x) the modified Bessel function

of the first kind. Solving for both forward and backward di-

rections yields the direction-based rigidity probabilities p+d
and p−d . These are then combined into the final direction-

based rigidity probability using the visibility maps

pd =

{

1
V ++V −

∑

z∈+,− V zpzd if V − + V + > 0

1/2 otherwise.
(11)

Moving regions from structure consistency. Another cue

for rigidity is the temporal consistency of the structure. This

is particularly helpful where semantics and motion direction

cannot disambiguate the rigidity, for example when an ob-

ject such as a car moves parallel to the observer’s motion.

Recall that according to the P+P framework the structure

of the rigid scene is independent of time. In rigid regions

that are visible in all frames, we assume the forward and

backward structure A+ and A− to be close to each other. A

structure based rigidity estimate ps can thus be computed as

ps =

{

exp
(

− (A+ −A−)
2
/σ2

s

)

if V −V + = 1

1/2 otherwise.
(12)

Combined rigidity probability from motion. The motion-

based probabilities pd, ps can be seen as orthogonal. Sur-

faces that move independently along the parallax direction

are considered to be rigid according to pd, while surfaces

that move by small amounts orthogonal to the parallax di-

rection are considered to be rigid according to ps. Hence,

for a region to be considered actually rigid, we require both

pd and ps to be high. The final motion-based rigidity prob-

ability pm is

pm =

{

pdps if V +V − = 1

(pd + ps)/2 otherwise.
(13)

5.3. Combining rigidity estimates

The previously computed rigidity probabilities pc, pm yield

per-pixel rigidity probabilities. To combine those into a co-

herent estimate, we first compute a rigidity unary

pr = λr,cpc + (1− λr,c) pm (14)

and the corresponding energy

Er(R,x) =

{

− log pr(x) if R(x) = 1

− log (1− pr(x)) otherwise,
(15)

with R(x) = 1 if x is rigid, and 0 otherwise. Since we

expect the rigidity to be spatially coherent, we estimate the

full labelling by solving R̂ =

argmin
R

∑

x

Er (R,x) + λr,p

∑

y∈N (x)

wx,y [R(x) 6= R(y)]

(16)
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Figure 3: Results of rigidity estimation on the test sets of MPI-Sintel and KITTI-2015. From an image (a), we estimate a

semantic rigidity (b) and combine it with the direction-based rigidity (c) and the structure-based rigidity (d) to obtain the final

estimate (e). Likely rigid regions are red, likely moving regions are blue.

where wx,y is the image-based Potts modulation from [29]

and N (x) is the 8-connected neighborhood of x. Eq. (16)

is solved using TRWS [3].

Figure 3 (top) shows the importance of combining dif-

ferent cues to recover from errors and accurately estimate

the rigidity. The semantic estimation (b) misses a large part

of the dragon’s head, while both the direction-based (b) and

structure-based estimations misclassify different segments

of the scene. Combining cues yields a good estimate (e).

6. Model and optimization

Model. The final structure should fulfill a number of cri-

teria. First, as in the classical flow approach, warping the

images using the flow induced by the structure should re-

sult in a low photometric error. Second, we assume that our

initial flow fields are reasonable, hence, the final structure

should be similar to the structures defined by the initial for-

ward and backward flow. Third, the structure directly cor-

responds to the surface structure of the world, and thus we

can regularize it using a locally planar model. This implic-

itly regularizes the flow in a more geometrically meaningful

way than traditional priors on the flow.

Under these considerations, the full model for the motion

of the rigid parts of the scene is defined as E(A, θ+, θ−) =

∑

x

R̂(x) (Ed + λcEc + λ1stE1st + λ2ndE2nd) . (17)

Ed is the photometric error, modulated by the estimated vis-

ibilities in forward and backward directions:

Ed =V +(x)ρ
(

I+a
(

s
(

x, A, θ+
))

− Ia(x)
)

+ V −(x)ρ
(

I−a
(

s
(

x, A, θ−
))

− Ia(x)
)

, (18)

where I−a , Ia, I
+
a are augmented versions of I−, I, I+, i.e.

stacked images containing the respective grayscale images

and the gradients in x and y directions. The warping func-

tion s(x, A, θ) defines the correspondence of x according to

the structure A and the P+P parameters θ,

s(x, A, θ) =

〈

H−1

(

x+
A(x)b

A(x)b− 1
(e− x)

)

h

〉

. (19)

The consistency term Ec encourages similarity between A
and A{+,−}.

Ec = V +ρc
(

A−A+
)

+ V −ρc
(

A−A−
)

. (20)

To ensure a constant error for all A ∈ [A−, A+], we use the

Charbonnier function as the robust penalty ρc.

The locally-planar regularization uses a 2nd order prior,

E2nd = wxρ (∇xxA)

+ wxwyρ (∇xyA) + wyρ (∇yyA) . (21)

Here, wx, wy are again the modulation terms from [29],

and, using a slight abuse of notation, ∇xx,∇xy,∇yy are the

second derivative operators. Since the second order prior by

itself is highly sensitive to noise, we add a first order prior

E1st = wxρ (∇xA) + wyρ (∇yA) , (22)

where ∇x,∇y are the first derivative operators in the hori-

zontal and vertical direction respectively.

Optimization. To minimize the energy (17) we employ

an iterative scheme, and alternate between optimizing for

A with θ{+,−} fixed, and for θ{+,−} with A fixed. When

optimizing A, we use a standard warping-based variational

optimization [8] with 1 inner and 5 outer iterations and no

downscaling. To optimize for θ, we first optimize for H, b
using L-BFGS and then recompute e as described in Sec. 4.

We use two iterations, since we found that more do not de-

crease the error significantly. This yields the final estimates

Ā, θ̄+, θ̄− for the structure and the P+P parameters.

Due to the non-convex nature of (17), a global optimum

is not guaranteed. However, in practice we found that our

initializations are close to a good optimum, and hence our

optimization procedure works well.

Final flow estimation. Finally, we convert the estimated

structure Ā into an optical flow field

us(x) = s
(

x, Ā, θ̄+
)

− x. (23)

In the moving regions, we use the initial forward flow u+
0 ,

and compose the full flow field as

u (x) = R̂(x)us +
(

1− R̂(x)
)

u+
0 . (24)
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Figure 4: Results on MPI-Sintel and KITTI. From left to right: Overlaid input images, rigidity estimation, estimated structure

(moving regions are masked in purple), estimated optical flow, comparison to initial flow (green areas denote improvements).

Sintel KITTI 2015

Clean Final

Train Test Train Test Train Test

DF [25] 1.96 3.57 3.80 6.08 23.09% 21.57%

FF+ [5] - 3.10 - 5.71 - -

SDF [4] - - - - 12.14% 11.01%

MR-Flow 1.83 2.53 3.59 5.38 14.09% 12.19%

Table 1: Errors on Sintel (EPE) and KITTI (%incorrect).

7. Experiments

To quantify our method, we evaluate on the MPI-

Sintel and KITTI-2015 flow benchmarks. The param-

eters are chosen to minimize errors on the training

sets, and are set to {σd, σs, λr,c, λr,p, λc, λ1st, λ2nd} =
{0.75, 2.5, 0.1, 1.1, 0, 0.1, 5e3} for Sintel and {1.0, 0.25,
0.5, 1.1, 0.01, 1, 5e4} for KITTI. Table 1 shows the errors

for our method, our initialization (DF), and for top per-

forming methods on MPI-Sintel (FF+) [5] and KITTI-2015

(SDF) [4]. Both evaluate only on one dataset; in contrast,

our method achieves high accuracy on both datasets. Fig-

ure 4 visualizes results; for more results see [1].

On MPI-Sintel, our method currently outperforms all

published works. In particular, the structure estimation

gives flow in occluded regions, producing the lowest errors

in the unmatched regions of any published or unpublished

work. On a 2.2 GHz i7 CPU, our method takes on average 2

minutes per triplet of frames without the initial flow compu-

tation, 74s for the initialization and rigidity estimation, and

46s for the optimization.

In KITTI-2015 the scenes are simpler and contain only

automotive situations; however, the images suffer from ar-

tifacts such as noise and overexposures. Among published

monocular methods, MR-Flow is second after [4], which is

designed for automotive scenarios and not tested on Sintel.

8. Conclusion

We have demonstrated an optical flow method that segments

the scene and improves accuracy by exploiting rigid scene

structure. We combine semantic and motion information

to detect independently moving regions, and use an exist-

ing flow method to compute the motion of these regions. In

rigid regions of the scene, the flow is directly constrained by

the 3D structure of the world. This allows us to implicitly

regularize the flow by constraining the underlying structure

to a locally planar model. Furthermore, since the structure

is temporally coherent, we combine information from mul-

tiple frames. We argue that this uses the right constraints

in the right place and produces accurate flow in challenging

situations and competitive results on Sintel and KITTI.

This opens several directions for future work. First, the

rigidity estimation could be improved using better inference

algorithms and training data. Jointly refining the foreground

flow with the rigid flow estimation could improve perfor-

mance. Our method could also use longer sequences, and

enforce temporal consistency of the rigidity maps.
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