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Abstract

Finding what is and what is not a salient object can be

helpful in developing better features and models in salient

object detection (SOD). In this paper, we investigate the im-

ages that are selected and discarded in constructing a new

SOD dataset and find that many similar candidates, com-

plex shape and low objectness are three main attributes of

many non-salient objects. Moreover, objects may have di-

versified attributes that make them salient. As a result, we

propose a novel salient object detector by ensembling lin-

ear exemplar regressors. We first select reliable foreground

and background seeds using the boundary prior and then

adopt locally linear embedding (LLE) to conduct manifold-

preserving foregroundness propagation. In this manner, a

foregroundness map can be generated to roughly pop-out

salient objects and suppress non-salient ones with many

similar candidates. Moreover, we extract the shape, fore-

groundness and attention descriptors to characterize the ex-

tracted object proposals, and a linear exemplar regressor is

trained to encode how to detect salient proposals in a spe-

cific image. Finally, various linear exemplar regressors are

ensembled to form a single detector that adapts to various

scenarios. Extensive experimental results on 5 dataset and

the new SOD dataset show that our approach outperforms

9 state-of-art methods.

1. Introduction

Salient object detection (SOD) is a fundamental problem

that attracts increasing research interests [16, 35, 36]. In

SOD, a key step is to distinguish salient and non-salient ob-

jects using the visual attributes. However, in complex sce-

narios it is often unclear which attributes inherently make an

object pop-out and how to separate salient and non-salient

objects sharing some attributes (see Fig. 1). As a result, an

investigation on what is and what is not a salient object is

necessary before developing SOD models.

* Corresponding author: Xiaowu Chen (email: chen@buaa.edu.cn).

Figure 1. Salient objects can pop-out for having different visual

attributes, which may be partially shared with non-salient objects.

(a) Images, (b) ground-truth, (c) results of [16], (d) results of [36],

(e) results of our approach. The main attributes of salient objects

in the three images are location (1st row), shape (2nd row) and

color (3rd row), while attributes shared with non-salient objects

are shape (1st row), color (2nd row) and location (3rd row).

In the past decade, extensive efforts have been made to

find a comprehensive and convincing definition of salient

objects. For example, Jiang et al. [17] proposed that salient

objects are characterized by the uniqueness, focusness, and

objectness. In [10], salient objects were considered to be

unique and have compact spatial distribution, or be distinc-

tive with respect to both their local and global surround-

ings [13]. Based on these findings, heuristic features can

be designed to identify whether a region [8, 24, 16, 44],

a superpixel [19, 14] or a pixel [37, 34, 42] is salient or

not. Typically, these models can achieve impressive perfor-

mance when salient and non-salient objects are remarkably

different. However, in complex scenarios that salient and

non-salient objects may share some visual attributes, mak-

ing them difficult to be separated (see Fig. 1). Although

such scenarios can be partially addressed by training ex-

tremely complex models by using Deep Convolutional Neu-

ral Networks [15, 12, 21, 22, 25] or Recurrent Neural Net-

works [26, 20, 38], such deep models are often difficult to

be trained or fine-tuned, Moreover, it is still unclear what vi-

sual attributes contribute the most in separating salient and

non-salient objects due to the ‘black box’ characteristic of

43214142



Figure 2. System framework of the proposed approach.

deep models. As a result, finding what is not a salient ob-

ject is as important as knowing what is a salient object, and

the answer can be helpful for designing better features and

developing better SOD models.

Toward this end, this paper first constructs a new SOD

dataset and performs a comprehensive investigation on the

images included or discarded in the construction process so

as to find a more precise definition on what is and what is

not a salient object. From the discarded images that are

considered as ambiguous and confusing in determining the

salient objects, we find that similar candidates, complex

shape and low objectness are three major reasons that pre-

vent an object being considered as unambiguously salient.

Moreover, from the 10, 000 images included in the dataset,

we find that objects can become salient in diversified ways

that may change remarkably in different scenes, which may

imply that a SOD model should adaptively process various

kinds of scenes for the perfect detection of salient objects

and suppression of distractors.

Inspired by these two findings on what are salient and

non-salient objects, we propose a simple yet effective ap-

proach for image-based SOD by ensembling plenty of lin-

ear exemplar regressors. The system framework of the pro-

posed approach can be found in Fig. 2. Given a testing

image, we first divide it into superpixels and extract a set

of foreground and background seeds with respect to the

boundary prior used in previous works [6, 16, 23, 39, 41].

Moreover, the locally linear embedding (LLE) algorithm is

adopted to discover the relationship between each superpix-

el and its nearest neighbors in the feature subspace, and such

relationships, together with the selected seeds, are used to

guide the manifold preserving foregroundness propagation

process so as to derive a foregroundness map that is capable

to roughly pop-out salient objects and suppress non-salient

ones that have many similar candidates. Moreover, we gen-

erate an attention map by using a pre-trained deep fixation

prediction model [29] and extract a set of object propos-

als with high objectness from the input image by using the

Multiscale Combinatorial Grouping algorithm [4]. With the

foregroundness and attention maps, the testing image can be

characterized by its shape, attention and foregroundness de-

scriptor, and such descriptor are then delivered into a salient

object detector formed by ensembling various linear exem-

plar regressors so as to detect the salient proposals and sup-

press the non-salient ones. Note that each linear exemplar

regressor is trained on a specific training image by using

the same proposal descriptor, while each regressor encodes

a specific way of separating salient objects from non-salient

ones. As a result, their fusion can adaptively handle the

SOD tasks in various scenarios, and the usage of shape de-

scriptor and high-objectness proposals ensure the well sup-

pression of non-salient objects. Extensive experimental re-

sults show that the proposed approach outperforms 9 state-

of-the-art methods on 5 datasets and our new dataset.

The main contributions of this paper are summarized as

follows: 1) We introduce a large SOD dataset with 10, 000
images, which we promise to release so as to provide an ad-

ditional source for training and testing SOD models; 2) We

conduct an investigation on what is and what is not a salient

object in constructing the dataset, based on which an ef-

fective salient object detector is proposed by ensembling

linear exemplar regressors; and 3) we propose to compute

the foregroundness map by using boundary prior and LLE,

which is an effective cue in popping-out salient objects and

suppress non-salient ones.
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Figure 3. Images and annotations in XPIE. (a) Scene complexity: simple (top) to complex (bottom), (b) Number of salient objects: single

(top) to multiple (bottom), (c) Object size: small (top) to large (bottom), (d) Object position: center (top) to border (bottom).

2. What is and What is Not a Salient Object

To obtain a comprehensive explanation on what is and

what is not a salient object, a feasible solution is to investi-

gate the whole process in constructing a new SOD dataset

by observing the main characteristics of objects in images

included into or discarded from the dataset. From these ob-

servations, we can infer the key attributes of salient and

non-salient objects as well as the subjective bias that may

inherently exist in image-based SOD datasets.

Toward this end, we construct a large SOD dataset (de-

noted as XPIE) and record all the details in the construction

process. We first collect three kinds of images from three

sources, including Panoramio [30], ImageNet [11], and two

fixation datasets [7, 18]. The collection is fully automatic

to avoid bringing in too much subjective bias. After that,

we resize each image to have a maximum side length of

300 pixels and discard all gray images as well as the col-

or images with minimum side length less than 128 pixels.

Finally, we obtain 29, 600 color images in three image sub-

sets, denoted as Set-P, Set-I and Set-E, respectively. Set-P

contains 8, 800 images of places-of-interest with geograph-

ic information (e.g., GPS and tag), Set-I contains 19, 600
images with object tags, and Set-E contains 1, 200 images

with human fixations.

Given these images, we ask two engineers to annotate

them through two stages. In the first stage, an image is

assigned a binary tag: ‘Yes’ for containing unambiguous

salient objects, and ‘No’ otherwise. After the first stage, we

have 21, 002 images tagged with “Yes” and 8, 598 images

tagged with “No.” In the second stage, these two engineers

are further asked to manually label the accurate boundaries

of salient objects in 10, 000 images tagged with “Yes.” Note

that we have 10 volunteers involved in the whole process for

cross-check the quality of annotations. Finally, we obtain

the binary masks for 10, 000 images. More statistics can be

found in Table 1. As shown in Fig. 3, images in XPIE cover

a variety of simple and complex scenes with different num-

bers, sizes and positions of salient objects. Thus XPIE can

be used as an additional training/testing source in develop-

ing and benchmarking SOD models.

Table 1. Statistics of the proposed XPIE dataset

Set-P Set-I Set-E XPIE

# Candidates 8,800 19,600 1,200 29,600

# Yes 2,433 17,875 694 21,002

# No 6,367 1,725 506 8,598

# Annotated 625 8,799 576 10,000

By observing the 10, 000 images tagged with ‘Yes’ and

8, 598 images tagged with “No” as well as the explanations

from engineers and volunteers, we conclude three key rea-

sons that an object is considered to be non-salient:

1) Many similar candidates. Some images contain a lot

of candidate objects (i.e., five or more in this study, see

Fig. 4(a)) and it is very difficult to determine which ones

are the most salient. In other words, several label ambiguity

may inevitably arise when different subjects manually an-

notate the saliency objects in such images. Although such

ambiguity can be alleviated by incorporating eye-tracking

apparatus [24], the issue is still far from be addressed.

2) Complex shape. The more complex the shape of a ob-

ject is, the less probably it is considered as salient. Note

that an object may have complex shape for having fuzzy or

complex boundaries or being occluded by some other ob-

jects (see Fig. 4 (b)). We also find these phenomena exist in

other datasets like DUT-OMRON [41] and PASCAL-S [24].

3) Low objectness. Sometimes the most salient region is

considered to be not an ‘object’ due to its semantic attributes

(e.g., the rock and road in Fig. 4 (c)). This may be caused by

the fact that objects within these semantic categories often

act as background in other images.

From these three reasons, we can also derive a definition

of salient object that can be combined with previous defini-

tions [5]. That is, a salient object should have a limited sim-

ilar distractors, relatively clear and simple shape and high

objectness. Moreover, we find that salient objects can pop-

out for having specific visual attributes in different scenar-

ios, which implies that a good SOD model should encode

all probable ways that salient objects differ from non-salient

ones and adaptively process all types of scenarios.
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Figure 4. Three reasons that an object is considered as non-salient. (a) Many similar candidates, (b) Complex shape, (c) Low objectness.

3. Estimating Foregroundness Map via Mani-

fold Preserving Propagation

As discussed in Sect. 2, objects with many similar candi-

dates in the same image are likely to be non-salient. In oth-

er words, the inter-object similarities between objects are

useful cues in separating salient and non-salient objects. In-

spired by this fact, we propose to estimate a foregroundness

map to depict where salient objects may reside by using

such inter-object similarity. Toward this end, we first di-

vide an image into a set of nearly regular superpixels using

the SLIC method [2], and the number of superpixels, de-

noted as N , is empirically set to 200. For a superpixel Si,

we represent it with its CIE LAB color vector ci and mean

position vector pi.

Foreground and Background Seeds Selection. Given the

features {ci, pi}, we aim to generate a set of highly reliable

foreground and background seeds. For the sake of simpli-

fication, we adopt an indicator vector y = [y1, . . . , yN ]T

whose component yi ∈ [0, 1] corresponds to the fore-

groundness of Si. To estimate y, we first refer to the bound-

ary prior widely, which assume that regions along the image

boundary are more likely to be the background. Inspired

by that, we initialize the indicator yi to 0 if it falls at im-

age boundary and 1 otherwise. After that, the refined fore-

groundness indicator vector ŷ can be updated by solving

min
ŷ

N
∑

i=1

‖ŷi − yi‖
2
2 + λµ

N
∑

i=1

∑

j∈N 1
i

αij (ŷi − ŷj)
2
,

s.t. 0 � ŷ � 1,

(1)

where N 1
i indicates the indices of superpixels that are ad-

jacent to Si. λµ is a constant to incorporate the second s-

moothness term that enforce similar foregroundness scores

at spatially adjacent superpixels. αij is a positive weight

that measures the color similarity between Si and Sj :

αij = exp

(

−
‖ci − cj‖

2
2

σ2

)

. (2)

Considering that (1) only consists of quadratic and linear

terms with linear constraints, we can efficiently solving

such a quadratic programming problem by using gradien-

t descent algorithm. Note that only the color difference

is considered in (2) since we aim to suppress all probable

background regions that have similar color to the boundary

regions. In practice, we initialize y four times with the left,

top, right and bottom boundaries, respectively. Let ŷ
l
, ŷ

t
,

ŷ
r

and ŷ
b

be the refined foregroundness indicator, we can

derive the ith component in the final indicator vector as

ŷ
∗
i = ŷ

l
i · ŷ

t
i · ŷ

r
i · ŷ

b
i . (3)

Based on this ŷ
∗
i , we adopt two predefined thresholds, Thigh

and Tlow, to get the most reliable foreground/background

seeds. That is, foreground seeds are selected as ŷ∗i > Thigh

and background seeds with ŷ∗i < Tlow. In experiments, we

empirically set Thigh to be twice the mean foregroundness

score of ŷ and Tlow to be 0.05.

Manifold-preserving Foregroundness Propagation. In

selecting foreground seeds, some non-salient objects will

pop-out as well since we only use the simple color contrast-

s. Recall that non-salient objects often have many similar

candidates, we propose to further derive a foregroundness

map via manifold preserving foreground propagation. D-

ifferent from the seed selection step, we adopt the locally

linear embedding (LLE) scheme to guide the propagation

process. As shown in Fig. 5, we aim to maintain the same

relationships (i.e., color and location) between a superpixel

and its nearest neighbors in the generated foregroundness

map. In this manner, large salient objects can pop-out as a

whole (see Fig. 5).

To model the spatial relationship between superpixels,

we need to solve the problem

min
{wij}

N
∑

i=1

‖ci −
∑

j∈Ni

wijcj‖
2
2 + ‖pi −

∑

j∈NK
i

wijpj‖
2
2,

s.t.
∑

j∈Ni

wij = 1, ∀i = 1, 2, . . . , N,

(4)
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Figure 5. Foregroundness map estimation via manifold preserving

foregroundness propagation. (a) Input image, (b) Initialized fore-

groundness map for foreground/background seed selection, (c) fi-

nal foregroundness map.

where NK
i is the indices of the K nearest neighbors of Si,

and we set K = 5 in experiments. In practice, we can

optimize (4) using the method described in [32]. As a result,

we can obtain a N × N relationship matrix W = [wij ]
that captures the manifold structure of all superpixels in the

feature space. Based on this matrix, the foregroundness can

be propagated as

min
y

‖y − Wy‖22 + λlle

∑

i∈S

(yi − gi)
2

s.t. 0 � y � 1,

(5)

where S is the indices of the selected foreground and back-

ground seeds. gi is an indicator which equals to 1 or 0 if

Si is the selected foreground seed and background seed, re-

spectively. yi is the ith component of foregroundness vec-

tor y. In (4), the first term enforces the manifold-preserving

foregroundness propagation, and the second term ensures

the final foregroundness to be consistent with the seed se-

lection results. λlle controls the balance of the first term and

the second term. The two terms are all squared errors. Thus,

we can obtain the foregroundness vector by least-square al-

gorithms. Finally, the foregroundness vector is converted

to a foregroundness map by assigning the superpixel-based

foregroundness to all pixels it contains.

4. Learning a Salient Object Detector by En-

sembling Linear Exemplar Regressors

4.1. Training Linear Exemplar Regressors

Given the foregroundness map, we can train a salient ob-

ject detector by ensembling linear exemplar regressors. Let

I be the set of training images, G be the ground-truth mask

of an image I ∈ I. Inspired by the annotation process of

salient objects in [24], we extract a set of object proposal-

s from I by using the Multiscale Combinatorial Grouping

algorithm [4], which are denoted as O. Moreover, we use

the fixation prediction model proposed in [29] to predict an

attention map (i.e., a fixation density map) that reveals the

most attractive regions. Furthermore, we derive a ground-

truth saliency of a proposal O ∈ OI as

G(O) =
1

|O|

∑

p∈O

G(p), (6)

where p is a pixel in O. In training the detectors, we on-

ly select positives from I with G(O) > 0.7 and negatives

with G(O) < 0.3, which are denoted as O
+
I and O

−
I , re-

spectively. After that, we represent each object proposal O
in O

+ and O
− with a heuristic feature vector vO, includ-

ing 14d shape descriptor proposed in [4] and additional 11d

shape descriptor like center of gravity, width-height-ratio,

orientation, eccentricity, etc. , 27d foregroundness descrip-

tor based on the foregroundness map and 27d attention de-

scriptor based on the attention map (as in [24]). Finally,

each object proposal O is represented by a 79d descriptor

vO.

With these feature vectors, a linear exemplar regressor

φ(v) can be trained to separate salient and non-salient ob-

jects on a specific image by minimizing

min
φ

1

2
‖w‖22 + C+

∑

O∈O+

ζO + C−
∑

O∈O−

ζO,

s.t. ∀ O ∈ O
+, wTvO + b ≥ 1− ζO, ζO ≥ 0,

∀ O ∈ O
−, wTvO + b ≤ ζO − 1, ζO ≥ 0,

(7)

where C+ and C− are empirically set to 1/|O+| and

1/|O−| to balance the influence of probable salient objects

and distractors. w and b are the parameters of φ(v).

4.2. Ensembling for Salient Object Detection

Given all linear exemplar regressors, a proposal O
in a testing image gains |I| saliency scores, denoted as

{φI(vO)|I ∈ I}. However, the scores of each linear ex-

emplar regressor may fall in different dynamic ranges so

that their direct fusion will lead to inaccurate saliency maps

(see Fig. 6(c)-(d)).

To fuse these predictions, we propose an enhancement

operation on {φI(O)}, which increases the probability to

adopt the most relevant linear exemplar regressors and de-

creases the influence of irrelevant ones. The enhancement

adopts a sigmoid function as

f(x) =
1

1 + e−a(x−b)
(8)

where x ∈ {φI(O)}. a, b are predefined parameters to con-

trol the degree of enhancement so that regressors that output

intermediate scores will be inhibited (e.g., x = 0.5), while

regressors with high and low scores will be maintained (e.g.,
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Figure 6. Different fusion strategy for SOD. (a) Image, (b) ground-

truth, (c) direct fusion by computing the maximum saliency value,

(d) direct fusion by computing the mean saliency value, (e) en-

hanced fusion by computing the mean saliency value after an en-

hancement operation using a sigmoid function.

x = 0.0 or x = 1.0). In this manner, we can calibrate all

regressors and emphasize more on the ones that output con-

fident predictions on an object proposal. In this manner,

regressors with the capability of separating salient and non-

salient objects in this scene can be emphasized, making the

ensembled model scene adaptive. Finally, we sum up the

enhanced saliency scores to derive the saliency at a pixel p:

Sal(p) =
1

|O|

∑

O∈O

ξ(p ∈ O) ·
∑

I∈I

f(φI(vO)), (9)

where ξ(p ∈ O) is an indicator function which equals to 1 if

p ∈ O and 0 otherwise. After that, we normalize the pixel-

wise saliency into the dynamic range of [0, 1] and adopt the

exponential operations proposed in [42] to enhance the con-

trast of saliency maps, followed by a morphological opera-

tion to obtain a smooth salient object (see Fig. 6).

5. Experiments

In experiments, we compare our approach, denoted as

ELE (i.e., Ensembling Linear Exemplars), with 9 state-of-

the-art methods, including MST [36], BL [35], BSCA [31],

MBS [42], RBD [43], DRFI [16], MR [41], DSR [23] and

GS [39]. Moreover, we extend ELE by replacing the nega-

tive instance used in training each linear exemplar regressor

with a huge bag of negatives collected from all training im-

ages, and the extend model is denoted as ELE+.

For the 11 models, comparisons are conducted over 5

public datasets and our new dataset XPIE, including:

1) SED1 [3] contains 100 images with a dominant salient

object per image.

2) PASCAL-S [24] contains 850 natural images annotated

with pre-segmented objects and eye-tracking data.

3) ECSSD [40] contains 1, 000 structurally complex images

manually annotated by 5 subjects.

4) MSRA-B [27] contains 5, 000 images and we selec-

t 2, 500 images for training and 500 images for validation

in training linear exemplar regressors. This is also the same

setting used in [16]. Only the rest 2000 images are used for

testing all the models.

5) THUR15K [9] contains 6, 233 images about butterfly,

coffee mug, dog jump, giraffe, and plane.

6) XPIE contains 10, 000 images with pixel-wise masks of

salient objects. It covers many complex scenes with differ-

ent numbers, sizes and positions of salient objects.

In the comparisons, we adopt the F-measure curves,

adaptive F-measure, weighted F-measure and mean abso-

lute error (MAE) as the evaluation metrics. In computing

F-measure curves, the precision and recall are first comput-

ed by binarizing the saliency maps with a threshold sliding

from 0 to 255 and compare the binary maps with ground-

truth maps. At each threshold, F-measure is computed as

F-measure =
(1 + β2)·Precision·Recall

β2·Precision + Recall
, (10)

where β is set to 0.3 as in [1]. Besides, we report adaptive

F-measure (FM) using an adaptive threshold for generating

a binary saliency map. The adaptive threshold is computed

as twice the mean of a saliency map. Meanwhile, the unified

weighted F-measure (wFM, see [28]) is computed to reflect

the overall performance. In addition, MAE is calculated as

the average absolute per-pixel difference between the gray-

scale saliency maps and the ground-truth saliency maps.

5.1. Comparison with Stateoftheart Methods

The performance scores of our approaches and the other

9 methods are shown in Table 2. The curves of F-measure

are shown in Fig. 8, and we also show some representative

results in Fig. 7. From these results, we find that ELE and

ELE+ outperform the other 9 approaches on all datasets and

achieve the lowest MAE and the highest wFM.

The success of our approach can be explained from three

aspects. First, the investigation about what is and what is

not a salient object provides useful cues in designing effec-

tive features for separating salient and non-salient objects.

In particular, the foregroundness map computed via mani-

fold preserving propagation can inhibit non-salient objects

with many similar candidates. Second, with the finding that

non-salient objects have low objectness, we extract object

proposals containing high objectness that are more tightly

correlated with the semantic attributes of objects. Actually,

the proposal-based framework is similar to the way that hu-

man perceives salient objects. Third, various ways of sep-

arating salient and non-salient objects in diversified scenes

are isomorphically represented with the exemplar-based lin-

ear regressors. The enhancement-based fusion strategy for

combining exemplar scores makes the learned salient de-

tector emphasize more on the most relevant linear exemplar
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Table 2. Comparison of quantitative results including adaptive F-measure (FM, larger is better), weighted F-measure (wFM, larger is better)

and MAE(smaller is better). The best three results are shown in red, blue, and green, respectively.

Dataset Metric GS DSR MR DRFI RBD MBS BSCA BL MST ELE ELE+

SED1

MAE 0.176 0.160 0.153 0.164 0.143 0.172 0.154 0.185 0.134 0.105 0.108

FM 0.751 0.803 0.820 0.817 0.803 0.805 0.819 0.808 0.804 0.849 0.854

wFM 0.571 0.616 0.626 0.598 0.652 0.579 0.611 0.555 0.697 0.773 0.767

PASCAL-S

MAE 0.221 0.205 0.221 0.219 0.199 0.220 0.222 0.247 0.184 0.161 0.159

FM 0.601 0.628 0.649 0.666 0.639 0.642 0.640 0.632 0.660 0.692 0.710

wFM 0.414 0.420 0.416 0.418 0.449 0.366 0.432 0.400 0.527 0.576 0.581

ECSSD

MAE 0.255 0.226 0.237 0.239 0.225 0.245 0.233 0.262 0.208 0.183 0.183

FM 0.624 0.687 0.697 0.717 0.679 0.668 0.697 0.691 0.688 0.740 0.749

wFM 0.435 0.490 0.478 0.472 0.490 0.432 0.495 0.449 0.578 0.649 0.650

MSRA-B

MAE 0.144 0.119 0.127 0.139 0.110 0.140 0.130 0.171 0.094 0.069 0.071

FM 0.754 0.795 0.826 0.828 0.811 0.801 0.809 0.807 0.812 0.853 0.861

wFM 0.563 0.629 0.613 0.570 0.650 0.548 0.601 0.520 0.725 0.797 0.795

THUR15K

MAE 0.176 0.142 0.178 0.167 0.150 0.159 0.182 0.220 0.141 0.121 0.111

FM 0.518 0.579 0.586 0.615 0.566 0.595 0.574 0.575 0.607 0.630 0.654

wFM 0.370 0.422 0.378 0.399 0.421 0.366 0.387 0.341 0.499 0.549 0.567

XPIE

MAE 0.181 0.155 0.177 0.160 0.149 0.162 0.181 0.213 0.146 0.128 0.121

FM 0.612 0.655 0.672 0.698 0.665 0.670 0.658 0.653 0.675 0.701 0.722

wFM 0.435 0.476 0.451 0.478 0.503 0.515 0.455 0.407 0.560 0.603 0.611

Figure 7. Representative results of our approach (ELE and ELE+) and 9 state-of-the-art methods.

regressors, while the regressors making ambiguous predic-

tions will be somehow ignored. In this manner, the saliency

maps become less noisy.

5.2. Performance Analysis

We conduct four small experiments on the 1000 testing

images of ECSSD to further validate the effectiveness of the

proposed approach.

In the first experiment, we check the effectiveness of the

generated foregroundness maps by treating them as salien-

cy maps. In this experiment, we compare the foreground-

ness maps with results from similar models like MST [36],

RBD [43] and MR [41]. we find that such foregroundness

maps have a best weighted F-measure of 0.602 among them,

while the weighted F-measure scores of MST, RBD and MR

reach only 0.578, 0.490 and 0.478, respectively. This val-
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Figure 8. The F-measure curves of our approaches (ELE and ELE+) and 9 state-of-the-art methods over 6 datasets (larger is better).

idates that the proposed foregroundness maps are very ef-

fective and contribute a lot to the impressive performance

of ELE and ELE+.

In the second experiment, we compare the heuristic fea-

tures and deep features extracted by deep models. In this

experiment, we use GoogleNet in [33] to compute an 1024

feature descriptor for each proposal. We find that with the

same training processing, the weighted F-measure of ELE

drops sharply from 0.649 to 0.578. This may be caused

by the over-fitting risk in using the high-dimensional CNN

features (e.g., 1024d, 2048d or 4096d), especially when the

amount of training data is very small.

In the third experiment, we test various fusion strategies

of exemplar scores. We compare 3 different fusion ways

as shown in Fig. 6 (b),(c) and (d) respectively. We find that

the weighted F-measure of using the max and mean value of

raw exemplar scores as the final saliency value of a proposal

is 0.540 and 0.588, while the weighted F-measure of using

enhancement-based fusion is 0.649. This indicates that the

enhancement operation on raw exemplar scores is useful in

selecting the most relevant exemplar linear regressors and

suppressing irrelevant regressors that tend to output medium

responses to all candidates.

In the four experiment, we compare ELE and ELE+. The

quantitative results in Table 2 show that using huge negative

bags has positive impact to the performance of each linear

exemplar regressor. Actually, saliency is a relative concep-

t and with the training data from only one image we can

simply infer how to separate specific salient objects from

specific non-salient ones. On the contrary, the extended bag

of negatives can tell us more about how to separate spe-

cific salient objects from massive non-salient ones. In this

manner, the generalization ability of the detector can be im-

proved, leading to better performance.

6. Conclusions

Knowing what is and what is not a salient object is im-

portant for designing better features and developing better

models for image-based SOD. Toward this end, this paper

first constructs a new SOD dataset and explores how salien-

t objects in the selected images behave and how the non-

salient objects in the discard images look like. By inves-

tigating the visual attributes of salient and non-salient ob-

jects, we find that non-salient objects often have many sim-

ilar candidates, complex shape and low objectness, while

salient objects can pop-out for having diversified attributes.

Inspired by the two findings derived from the construc-

tion process of a new dataset, we compute a novel fore-

groundness map by manifold-preserving foregroundness

propagation, which can be used to extract effective features

for separating salient and non-salient objects. Moreover,

we train an effective salient object detector by ensembling

plenty of linear exemplar regressors. Experimental results

show that the proposed detector outperforms 9 state-of-the-

art methods.

In the future work, we will extend the proposed approach

in two ways. Considering the highly flexible architecture

of the ensembling-based framework, we will try to design

a scheme with which the detector can gradually evolve by

learning from incremental training data. Moreover, more

features will be incorporated into the framework, especially

the high-level features such as semantic descriptor extracted

by pre-trained models.
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