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Abstract

Deep neural network is difficult to train and this predica-

ment becomes worse as the depth increases. The essence

of this problem exists in the magnitude of backpropagated

errors that will result in gradient vanishing or exploding

phenomenon. We show that a variant of regularizer which

utilizes orthonormality among different filter banks can al-

leviate this problem. Moreover, we design a backward er-

ror modulation mechanism based on the quasi-isometry as-

sumption between two consecutive parametric layers. E-

quipped with these two ingredients, we propose several nov-

el optimization solutions that can be utilized for training a

specific-structured (repetitively triple modules of Conv-BN-

ReLU) extremely deep convolutional neural network (CNN)

WITHOUT any shortcuts/ identity mappings from scratch.

Experiments show that our proposed solutions can achieve

distinct improvements for a 44-layer and a 110-layer plain

networks on both the CIFAR-10 and ImageNet datasets.

Moreover, we can successfully train plain CNNs to match

the performance of the residual counterparts.

Besides, we propose new principles for designing net-

work structure from the insights evoked by orthonormality.

Combined with residual structure, we achieve comparative

performance on the ImageNet dataset.

1. Introduction

Deep convolutional neural networks have improved per-

formance across a wider variety of computer vision tasks,

especially for image classification [17, 34, 39, 31, 45], ob-

ject detection [42, 26, 33] and segmentation [20, 5, 25].

Much of this improvement should give the credit to grad-

ually deeper network architectures. In just four years, the

layer number of networks escalates from several to hun-

dreds, which learns more abstract and expressive represen-

tations from large amount of data, e.g. [27]. Simply s-

tacking more layers onto current architectures is not a rea-

sonable solution, which incurs vanishing/exploding gradi-

ents [4, 9]. To handle the relatively shallower networks,

a variety of initialization and normalization methodologies

are proposed [9, 30, 12, 37, 15, 22, 13, 1], while deep resid-

ual learning [11] is utilized to deal with extremely deep

ones.

Though other works, e.g. [36, 35], have also announced

that they can train an extremely deep network with im-

proved performance, deep residual network [11] is still the

best and most practical solution for dealing with the degra-

dation of training accuracy as depth increases. However, it

is substantial that residual networks are exponential ensem-

bles of relatively shallow ones (usually only 10-34 layers

deep), as an interpretation by Veit et al. [41], it avoids the

vanishing/exploding gradient problem instead of resolving

it directly. Intrinsically, the performance gain of networks

is determined by its multiplicity, not the depth. So how to

train an ultra-deep network is still an open research question

with which few works concern. Most researches still focus

on designing more complicated structures based on residual

block and its variants [18, 43]. Anyway, dose there exist

an applicable methodology that can be used for training a

genuinely deep network?

In this paper, we try to find a direct feasible solution

to answer above question. We think batch normalization

(BN) [13] is necessary to ensure the propagation stabili-

ty in the forward pass in ultra-deep networks and the key

of learning availability exists in the backward pass which

propagates errors with a top-down way. We constrain the

network’s structure to repetitive modules consisted by Con-

volution, BN and ReLU [23] layers (Fig. 1) and analyze

the Jacobian of the output with respect to the input between

consecutive modules. We show that BN cannot guarantee

the magnitude of errors to be stable in the backward pass

and this amplification/attenuation effect to signal will ac-

cumulate layer-wisely which results in gradients explod-
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Figure 1. Diagram of the plain CNN network architecture (left)

and repetitive triple-layer module (right) in this paper. Green box

is for input data, Red color ones denotes parametric layers (convo-

lutional or fully connected), yellow represents batch normalization

layers and blue means activation layers. Actually, this structure is

similar with the plain CNN designed by He et al. [11].

ing/vanishing. From the view of norm-preserving, we find

that keeping the orthonormality between filter banks with-

in a layer during learning process is a sufficient and nec-

essary condition to ensure the stability of backward errors.

While this condition cannot be satisfied in nonlinear net-

works equipped with BN, this orthonormal constrain can

mitigate backward signal’s attenuation and we prove it by

experiments. An orthonormal regularizer is introduced to

replace traditional weight decay regularization [8]. Exper-

iments show that there is 3% ∼ 4% gains for a 44-layer

network on CIFAR-10.

However, as depth increases, e.g. deeper than 100 lay-

ers, the non-orthogonal impact induced by BN, ReLU and

gradients updating accumulates, which breaks the dynamic

isometry [30] and makes learning unavailable. To neutral-

ize this impact, we design a modulation mechanism based

on the quasi-isometry assumption between two consecutive

parametric layers. We show the quasi-isometry property

with both mathematical analysis and experiments. With the

modulation, a global scale factor can be applied on the mag-

nitude of errors a little unscrupulously during the backward

pass in a layer-wise fashion. Combined with orthonormali-

ty, experiments show that a plain CNN shown in Fig. 1 can

be trained relatively well and match the performance of its

residual counterpart.

The contributions of this paper are summarized as fol-

lows. 1) We demonstrate the necessity of applying BN and

explain the potential reason which results in degradation

problem in optimizing deep CNNs; 2) A concise method-

ology equipped with orthonormality and modulation is pro-

posed to provide more insights to understand learning dy-

namics of CNNs; 3) Experiments and analysis exhibit inter-

esting phenomenons and promising research directions.

2. Related Work

Initialization in Neural Networks. As depth increas-

es, Gaussian initialization cannot suffice to train a network

from scratch [34]. The two most prevalent works are pro-

posed by Glorot & Bengio [9] and He et al. [12] respective-

ly. The core idea of their works is to keep the unit variance

of each layer’s output. Sussillo & Abbott [37] propose a

novel random walk initialization and mainly focus on ad-

justing the so-called scalar factor g to make the ratio of

input/output error to be constant around 1. Krähenbühl et

al. [15] introduce data-dependent initialization to ensure all

layers training at an equal rate.

Orthogonality is also in consideration. Saxe et al. [29,

30] analyse the dynamics of learning in linear deep neural

networks. They find that the convergence rate of random

orthogonal initialization of weights is equivalent to unsu-

pervised pre-training, which are both superior to random

Gaussian initialization. LSUV initialization method [22] is

proposed which not only takes advantage of orthonormal-

ity but also makes use of the unit-variance of each layer’s

output.

In our opinion, a well-behaved initialization is not e-

nough to resist the variation as learning progresses, which

is to say, to have a good initial condition (e.g. isometry)

cannot ensure the preferred condition to keep unchanged all

the time, especially in extremely deep networks. This argu-

ment forms the basic idea that motivates us to explore the

solutions for genuinely deep networks.

Signal Propagation Normalization. Normalization is

a common and ubiquitous technique in machine learning

community. The whitening and decorrelation of input da-

ta brings benefits to both deep learning and other machine

learning algorithms, which helps speeding up the training

process [19]. Batch normalization [13] generalize this idea

to ensure each layer’s output to be identical distributions

which reduce the internal covariate shift. Weight normal-

ization [28] is inspired by BN by decoupling the norm of the

weight vector from its direction while introducing indepen-

dencies between the examples in a minibatch. To overcome

the disadvantage of BN that dependent on minibatch size,

layer normalization [2] is proposed to solve the normaliza-

tion problem for recurrent neural networks. But this method

cannot be applied to CNN, as the assumption violates the

statistics of the hidden layers. For more applicable in CN-

N, Arpit et al. introduce normalization propagation [1] to

reduce the internal covariate shift for convolutional layers

and even rectified linear units. The idea of normalization

each layers’ activations is promising, but a little idealistic

in practice. Since the incoherence prior of weight matrix is

actually not true in the initialization phase and even worsen

in iterations, the normalized magnitude of each layer’s acti-

vations cannot be guaranteed in an extremely deep network.

In our implementation, it even cannot prevent the exploding
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activations’ magnitude just after initialization.

Signal Modulation. Few work is done in this field ex-

plicitly, but implicitly integrated the idea of modulation. In

a broad sense, modulation can be viewed as a persistent pro-

cess of the combination of normalization and other method-

ology to keep the magnitude of a variety of signals steady

at learning. With this understanding, we can summarize al-

l the methods above with a unified framework, e.g. batch

normalization [13] for activation modulation, weight nor-

malization [28] for parameter modulation, etc.

3. Methodology

3.1. Why is BN a requisite?

Since the complexity dynamics of learning in nonlinear

neural networks [30], even a proven mathematical theory

cannot guarantee that a variety of signals keeping isomet-

rical at the same time in practice applications. Depth itself

results in the “butterfly effect” with exponential diffusion

while nonlinear gives rise to indefiniteness and randomness.

Recently proposed methods [1, 37, 15] which utilize isom-

etry fail to keep the steady propagation of signals in over-

100-layer networks. These methods try to stabilize the mag-

nitude of signals from one direction (forward/backward) as

a substituted way to control the signals in both direction-

s. However, since the complexity variations of signals, it is

impossible to have conditions held on both ways with just

one modulation method.

An alternative option is to simplify this problem to con-

strain the magnitude of signals in either direction, which we

can pay the whole attention to another direction1. Batch

normalization is an existed solution that satisfies our re-

quirement. It does normalization in the forward pass to re-

duce internal covariate shift with a layer-wise way2, which,

in our opinion, make us to focus all the analyses on the op-

posite direction.

From [13], during the backpropagation of the gradient of

loss ℓ through BN, we can formulate errors between adja-

cent layers as follow:

∂ ℓ

∂ xi

=
1

√

σ2
B + ǫ

(δi − µδ −
x̂i

m

m
∑

j=1

δj x̂j) (1)

where xi is ith sample in a mini-batch (we omit activation

index for simplicity), so ∂ ℓ
∂ xi

denotes output error. δi =
∂ ℓ
∂ yi

·γ where ∂ ℓ
∂ yi

is the input error and γ is scale parameter

1For a specified weight that connected ith neuron in lth layer and

kth neuron in (l + 1)th layer, w
(l)
ij , its gradient can be computed as

∇ w
(l)
ij = a

(l)
i × δ

(l+1)
j . If the two variables are independent from each

other, then the magnitude of gradient can be directly related with just one

factor (activation/error).
2Methods modulate signals without a layer-wise manner, e.g. [1], will

accumulate the indefiniteness with a superlinear way and finally the prop-

agated signals will be out of control.

of BN. µδ = 1
m

∑m
i=1 δi is mean of scaled input errors,

where m denotes mini-batch’s size. x̂i = xi−µB√
σ2
B
+ǫ

is the

corresponding normalized activation.

Equation 1 represents a kind of “pseudo-normalization”

transformation for error signals δi compared with its for-

ward operation. If the mean of distribution of input error δi
is zero and symmetric, we can infer that the mean of distri-

bution of output error is approximately zero. It centralizes

the errors and the last term x̂i

m

∑m
j=1 δj x̂j will bias the dis-

tribution but these biases may be cancelled out from each

other owing to the normalized coefficient x̂i which is nor-

mal distribution. Besides, errors are normalized with a mis-

matched variance. This type of transformation will change

error signal’s original distribution with a layer-wise way s-

ince the second order moment of each layer’s output errors

loses its isometry progressively. However, this phenomenon

can be ignored when we only consider a pair of consecutive

layers. In a sense, we can think the backward propagat-

ed errors are also normalized as well as its forward pass,

which is why we apply “Conv-BN-ReLU” triple instead of

“Conv-ReLU-BN”3.

The biased distribution effect will accumulated as depth

increases and distort input signals’ original distribution,

which is one of several reasons that make training extreme

deep neural network difficult. In next section we try to solve

the problem to some extent.

3.2. Orthonormality

Norm-preserving resides in the core idea of this sec-

tion. A vector x ∈ ℜdx is mapped by a linear transfor-

mation W ∈ ℜdx× dy to another vector y ∈ ℜdy , say,

y = WT x. If ‖y‖ = ‖x‖, then we call this transforma-

tion norm-preserving. Obviously, orthonormality, not the

normalization proposed by [1] alone, is both sufficient and

necessary for holding this equation, since

‖y‖ =
√

yT y =
√

xT WWT x =
√

xT x = ‖x‖ iff. WWT = I

(2)

Given the precondition that signals in forward pass are

definitely normalized, here we can analyse the magnitude

variation of errors only in backward pass. To keep the

gradient with respect to the input of previous layer norm-

preserving, it is straightforward to conclude that we would

better maintain orthonormality among columns4 of a weight

matrix in a specific layer during learning process rather

than at initialization according to Eq. 2, which equivalently

makes the Jacobian to be ideally dynamical isometry [30].

Obviously in CNN this property cannot be ensured because

3Another reason is that placing ReLU after BN guarantees approxi-

mately 50% activations to be nonzero, while the ratio may be unstable if

putting it after convolution operation.
4Beware of the direction, which results in the exchange of notations in

equation 2. So the rows and columns of the matrix are also exchanged.
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of 1) the gradient update which makes the correlation a-

mong different columns of weights stronger as learning pro-

ceeding; 2) nonlinear operations, such as BN and ReLU,

which destroy the orthonormality. However, we think it is

reasonable to force the learned parameters to be conformed

with the orthogonal group as possible, which can alleviate

vanishing/exploding phenomenon of the magnitude of er-

rors and the signal distortion after accumulated nonlinear

transformation. The rationality of these statements and hy-

potheses has been proved by experiments.

To adapt the orthonormality for convolutional opera-

tions, we generalize the orthogonal expression with a di-

rect modification. Let W̃l ∈ ℜW× H× C× M denote a set

of convolution kernels in lth layer, where W , H , C, M

are width, height, input channel number and output chan-

nel number, respectively. We replace original weight decay

regularizer with the orthonormal regularizer:

λ

2

D
∑

i=1

‖WT
l Wl − I‖2F (3)

where λ is the regularization coefficient as weight decay,

D is total number of convolutional layers and/or fully con-

nected layers, I is the identity matrix and Wl ∈ ℜfin× fout

where fin = W × H× C and fout = M . ‖ · ‖F represents

the Frobenius norm. In other words, equation 3 constraints

orthogonality among filters in one layer, which makes the

learned features have minimum correlation with each oth-

er, thus implicitly reduce the redundancy and enhance the

diversity among the filters, especially those from the lower

layers [32].

Besides, orthonormality constraints provide alternative

solution other than L2 regularization to the exploration of

weight space in learning process. It provides more proba-

bilities by limiting set of parameters in an orthogonal space

instead of inside a hypersphere.

3.3. Modulation

The dynamical isometry of signal propagation in neu-

ral networks has been mentioned and underlined several

times [1, 30, 13], and it amounts to maintain the singular

values of Jacobian, say J = ∂y

∂x
, to be around 1. In this

section, we will analyze the variation of singular values of

Jacobian through different types of layers in detail. We omit

the layer index and bias term for simplicity and clarity.

For linear case, we have y = WT x, which shows that

having dynamical isometry is equivalent to keep orthogo-

nality since J = WT and JJT = WT W.

Next let us consider the activations after normalization

transformation, y = BNγ,β(W
T x), which we borrow the

notation from [13]. Given the assumption that input dimen-

sion equals output dimension and both are d-dimension vec-

tors, the Jacobian is

J =











J11 0 · · · 0

0 J22 · · · 0
...

...
. . .

...

0 0 · · · Jdd











md×md

(4)

where each Jkk is a m×m square matrix, that is

Jkk =



















∂y
(k)
1

∂x
(k)
1

∂y
(k)
1

∂x
(k)
2

· · · ∂y
(k)
1

∂x
(k)
m

∂y
(k)
2

∂x
(k)
1

∂y
(k)
2

∂x
(k)
2

· · · ∂y
(k)
2

∂x
(k)
m

...
...

. . .
...

∂y(k)
m

∂x
(k)
1

∂y(k)
m

∂x
(k)
2

· · · ∂y(k)
m

∂x
(k)
m



















(5)

Here
∂y

(k)
i

∂x
(k)
j

denotes partial derivative of output of ith sample

with respect to jth sample in kth component. The Jacobian

of BN has its speciality that its partial derivatives are not

only related with components of activations, but also with

samples in one mini-batch. Because of each component k

of activations is transformed independently by BN, J can be

expressed with a blocked diagonal matrix as Eq. 4. Again

since the independence among activations, we can analyse

just one of d sub-Jacobians, e.g. Jkk.

From equation 1 we can get the entries of Jkk, which is

∂yj

∂xi

= ρ

[

∆(i = j)− 1 + x̂ix̂j

m

]

(6)

where ρ = γ√
σ2
B
+ǫ

and ∆(·) is the indicator operator. Here

we still omit index k since dropping it brings no ambiguity.

Eq. 6 concludes obviously that JJT 6= I. So the or-

thonormality is not held after BN operation. Now the corre-

lation among columns of W is directly impacted by normal-

ized activations, while the corresponding weights determine

these activations in turn, which results in a complicated sit-

uation. Fortunately, we can deduce the preferred equation

according to subadditivity of matrix rank [3], which is

J = PT ρ















1− λ1

m
0 0 · · · 0

0 1− λ2

m
0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















m×m

P (7)

where P is the matrix consists of eigenvectors of J. λ1

and λ2 are two nonzero eigenvalues of U, say Uij = 1 +
x̂ix̂j , i = 1 · · ·m, j = 1 · · ·m.

Eq. 7 shows us that JJT ≈ ρ2I 5. The approximation

comes from first two diagonal entries in Eq. 7 which may

5The Jacobian after ReLU is amount to multiply a scalar with J [1],

which we can merge it into ρ instead.
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be close to zero. We think it is one of reasons that violate

the perfect dynamic isometry and result in the degradation

problem with this kind of non-full rank. Since value of ρ

is determined by γ and σB , it is bounded as long as these

two variables keep stable during the learning process, which

achieves the so-called quasi-isometry [6].

Notice that ρ changes with γ and σB while γ and σB

will change in every iteration. Based on the observation, we

propose the scale factor ρ should be adjusted dynamically

instead of fixing it like [1, 37, 30]. According to [30], when

the nonlinearity is odd, so that the mean activity in each lay-

er is approximately 0, neural population variance, or second

order moment of output errors, can capture these dynamical

properties quantitatively. ReLU nonlinearity is not satisfied

but owing to the pseudo-normalization we can regard the

errors propagated backwardly through BN as having zero

mean, which makes the second order moment statistics rea-

sonable.

4. Implementation Details

We insist to keep the orthonormality throughout the

training process, so we implement this constraint both at

initialization and in regularization. For a convolution pa-

rameter Wl ∈ ℜfin× fout of lth layer, we initialize subset

of W, say fin-dimension vectors, on the first output chan-

nel. Then Gram-Schmidt process is applied to sequentially

generate next orthogonal vectors channel by channel. Math-

ematically, generating n orthogonal vectors in d-dimension

space which satisfies n > d is ill-posed and, hence, impos-

sible. So one solution is to avoid the fan-ins and fan-outs of

kernels violating the principle, say fin ≥ fout, in design-

ing structures of networks; another candidate is group-wise

orthogonalization proposed by us. If fin < fout, we divide

the vectors into fout

fin
+ foutmodfin groups, orthogonaliza-

tion is implemented within each group independently. We

do not encourage the hybrid utilization of L2 regularization

for those parameters of fin < fout and orthonormal regu-

larization for those of fin ≥ fout. Forcing parameters to

retract into inconsistent manifolds may cause convergence

problems. Details can be referred in experiments.

For signal modulation, we compute the second order mo-

ment statistics of output errors between consecutive para-

metric layers (convolutional layer in our case) in each itera-

tion. The scale factor ρ is defined as the square root of ratio

of second order moment of higher layer, say ql+1, to that,

say ql, of lower layer. However, if we modulate all the lay-

ers as long as ql+1 6= ql, then the magnitude of propagated

signal will tend to be identical with the input error signal,

which probably eliminate the variety encoded in the error

signal. So we make a trade-off that the modulation only

happens when the magnitudes of propagated signals of con-

secutive layers mismatch. Experiments show that it is a rel-

atively reasonable and non-extreme modulation mechanism

which has a capability of maintaining magnitude constancy

for error signals.

5. Experiments

First of all, we must demonstrate that the core idea of this

paper is to show that the proposed methods can be used to

train extremely deep and plain CNNs and improve the per-

formance drastically compared against prevalent stochastic

gradient descent (SGD) with L2 regularization rather than

achieving state-of-the-art performance in a certain dataset

by all manner of means. Moreover, we try to show that the

degradation problem of training a plain network reported

in [11, 10, 35] can be partially solved by our methods.

5.1. Datasets and Protocols

Two representative datasets, CIFAR-10 [16] and Ima-

geNet [27], are used in our experiments.

CIFAR-10. CIFAR-10 consists of 60, 000 32 × 32 real

world color images in 10 classes split into 50, 000 train and

10, 000 test images. All present experiments are trained on

the training set and evaluated on the test set. Top-1 accuracy

is evaluated.

ImageNet 2012 classification. For large-scale dataset,

ImageNet 2012 classification dataset is used in our experi-

ments. It consists of 1000 classes and there are 1.28 million

training images and 50k validation images. Both top-1 and

top-5 error rates are evaluated.

Protocol of CIFAR-10. To demonstrate that our pro-

posed method can partially solve the degradation problem

and show that the gap between deeper plain network and

the shallower one can be shrunk or even removed, we aim

to have fair comparison with the plain network in [11]. So

we directly adopt their proposed architectures with minor

modifications for both plain networks and residual network-

s. Specifically, the network inputs are 32× 32 images, with

the per-pixel mean subtracted and standard deviation divid-

ed. The first layer is 3× 3 convolution and then following a

stack of 6n 3×3 convolution layers, in which each convolu-

tion layer is accompanied by a BN layer and a ReLU layer

(Fig. 1). While in the residual case, when size of feature

maps doubles, e.g. 16 to 32, we use 3× 3 projection short-

cuts instead of identity ones. All the hyperparameters such

as weight decay, momentum and learning rate are identical

with [11]. Horizontal flip is the only data augmentation.

Protocol of ImageNet 2012 classification. The archi-

tectures in this protocol are also with a slight variation. De-

tailed architectures can be referred in Table 1. The hyper-

parameters are identical with those of CIFAR-10 protocol.

224×224 crops are randomly sampled on 256×256 images

plus horizontal flip and color augmentation [17]. Mean of

RGB is subtracted then scaling with a factor 0.017 (stan-

dard deviation of RGB). The mini-batch size is 256. Only

the performances on validation set are reported.
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layer name output size 34-layer 101-layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2 x 56 × 56

3 × 3 max pooling, stride 2
[

3 × 3, 64
3 × 3, 64

]

× 3





1 × 1, 64
1 × 1, 64
3 × 3, 256



 × 3

conv3 x 28 × 28

[

3 × 3, 128
3 × 3, 128

]

× 4





1 × 1, 128
1 × 1, 128
3 × 3, 512



 × 4

conv4 x 14 × 14

[

3 × 3, 256
3 × 3, 256

]

× 6





1 × 1, 256
1 × 1, 256
3 × 3, 1024



 × 23

conv5 x 7 × 7

[

3 × 3, 512
3 × 3, 512

]

× 3





1 × 1, 512
1 × 1, 512
3 × 3, 2048



 × 3

7 × 7 3 × 3, 1024
1 × 1 average pool, 1000-d fc, softmax

Table 1. Architectures for ImageNet. Downsampling is performed

by conv3 1, conv4 1, and conv5 1 with a stride of 2.

5.2. Orthonormality Regularization Enhances the
Magnitude of Signals

In this section, we design experiments to show that or-

thonormality can indeed enhance the magnitude of propa-

gated signals in deep plain networks through decorrelating

learned weights among different channels. A 44-layer plain

network and CIFAR-10 dataset is adopted.

First we make statistics of average correlation among d-

ifferent channels over all the layers between two types of

methods, say “msra” [12] initialization plus L2 regulariza-

tion (abbr. as “msra+L2 reg”) and our proposed orthonor-

mal initialization and orthonormality regularization (abbr.

as “ortho init+ortho reg”). Cosine distance Dcos(x, y) is

considered to compute this value:

s̄ =
1

N

D
∑

l=1

fout
∑

i=1

fout
∑

j=i

Dcos(v
(l)
i , v

(l)
j ) (8)

where v
(l)
i ∈ ℜfin denotes ith kernel of Wl in lth layer and

N is total computation count. From Fig. 2 we can see the

variation of correlation among weights with iterations. Un-

der the constraints of orthonormality, correlation of learned

weights are forced into a consistent and relatively lower lev-

el (about 6 × 10−3). On the contrary, “msra+L2 reg” can-

not prevent from increasing correlation among weights as

learning progresses. Finally, the correlation of “msra+L2
reg” is about 2.5 times higher than that of “ortho init+ortho

reg”, which demonstrates the effectiveness of orthonormal-

ity constraints.

Next we make statistics of variation of second order mo-

ments of back-propagated errors. Since the empirical risk

will convergence as learning progresses, which results in s-

maller magnitude of loss value hence unscaled magnitude

of error signals, we actually plot the ratio of second order

moment of output error signals (input errors of first convo-

lution layer) to that of input error signals (input errors of last
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Figure 2. The variation of correlation among weight vectors in 44-

layer plain network. The meaning of blue and green line can be

refereed to the legend. One may be aware of at very first phase

the correlation of blue line is lower than green one because of we

allow negative correlations and “msra+L2 reg” method generates

negative ones at first few iterations.
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Figure 3. Variation of second order moments ratios of back-

propagated errors in 44-layer plain network. Sample interval is

50 iterations for clearness. Orthonormality regularization can ef-

fectively alleviate the vanishing trend of magnitude of signals.

Top: the plot over all iterations. Bottom: enlarged plot from 5th

iteration to 32000th iteration (before learning rate is divided by

10).

convolution layer). Fig. 3 tells us that in first training phase

(when learning rate is relatively large) the evolution of sig-

nal propagation is more insensitive than the in second and

third training phases (when learning rate is small) because

of mismatched order of magnitudes between learning rate

and decay coefficient of regularizer (0.1 to 0.0001). How-
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ever, it shows the advantage of orthonormal regularization

against L2 regularization no matter in which phase, espe-

cially in later phases. The magnitude of propagated signals

is enhanced one order of magnitude by orthonormality. It is

important to note that we omit the ratios of first five itera-

tions in Fig. 3 since the disproportional order of magnitude.

An interesting phenomenon is that all the magnitude of error

signals is vanishing, e.g. ratio is less than 1, except for the

initialization phase, in which the signals are amplified. We

think randomness plays the key role for this phenomenon

and it also provides evidence that makes us introduce or-

thonormality beyond initialization in optimizing extremely

deep networks.

5.3. The Rationality of Modulation

In this section, we present our findings in training deep

plain networks and aim to demonstrate modulation is a

promising mechanism to train genuinely deep networks.

We find that a 44-layer network can be trained well just

with orthonormality but a 110-layer one incurs seriously di-

vergence, which states the accumulation effect mentioned in

Sec. 3.1 by evidence. The proposed modulation is applied

to train the 110-layer network and achieves distinct perfor-

mance improvement against other one-order methods (see

Table 2). The training methodology is a little tricky that we

first apply with both orthonormality and modulation at the

first n iterations, then the signals are regulated only through

orthonormality until it converges. Keeping the magnitude

of error signals to be isometric can easily be done by our

modulation, but it is observed that this strategy undermines

propagation of signals (81.6% vs. 73.5% on CIFAR-10). So

when and how to modulation is an interesting and key re-

search topic to totally solve the degradation problem.

In this paper the value of n is somewhat heuristic, which

is derived from our observation to the evolution of ratios

of second-order moment of output errors of each layer to

the second-order moment of input errors at each iteration

of training a 44-layer network. Fig. 4 reveals that it proba-

bly exists a potential evolution pattern in training deep net-

works. Actually we just shrink the degradation gap instead

of eliminating it in training genuinely deep networks and

one of our future work will focus on the methodology of

modulation.

5.4. Results of Plain and Residual Network Archi­
tecture

To prove our proposed method has advantage against

other methods integrated with the idea of adaptivity in train-

ing extremely deep plain networks, we compare it with six

prevalent one-order methods in this section. We do not com-

pare with second-order methods in consideration of imple-

mentation and memory practicality. Table 2 shows the per-
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Figure 4. Evolution of backward signal propagation of a 44-layer

plain network. X axis denotes layer index and Y axis denotes ratio

of second-order moment of current layer to highest layer. We only

present 200th, 2000th, 20000th and 30000th iteration, respective-

ly. About after 2000 to 3000 iterations, the ratio trend to converge

to a certain of stable evolution pattern shown in the 20000th and

30000th iterations.

formances6. We can see that most methods cannot handle

relatively shallow networks well other than SGD and ours

and all the methods except for ours cannot even converge

in the deeper version. As pointed by [38], most one-order

methods can only be a very effective method for optimiz-

ing certain types of deep learning architectures. So next

we will focus on making comparison against more gener-

al SGD method. We also do not compare our method with

other modulation methods, e.g. [1], because of they will fail

convergence at the very first few iteration in such deep ar-

chitecture

Then we compare the performance with different reg-

ularizer in identical network architecture (ortho vs. L2 of

a plain network), and further compare the performance of

plain networks with residual networks have similar archi-

tectures (plain network with orthonormality vs. residual net-

work with L2). Results are shown in Fig. 5. We can con-

clude that our proposed method has distinct advantage in

optimizing plain networks and the orthonormality indeed

can enhance magnitude of signal which alleviates gradient

vanishing in training process.

To emphasize that orthonormality can be general to

prevalent network architectures and large-scale datasets, we

extend the experiments on ImageNet dataset. From Fig. 5 it

shows the decreasing performance boost in ResNet-34 and

almost comparative performance in ResNet-110. Compared

with architectures on CIFAR-10, they have more channels,

e.g. 64 vs. 2048, which introduces more redundancies a-

6We should mention that since the particularity of AdaDelta, which is

less dependent on the learning rate, for more reasonable comparison, we

ignore this hyper-parameter.
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Figure 5. Miscellaneous performance comparisons about plain and residual networks on CIFAR-10 and ImageNet. Left: Performance

comparisons of 44-layer plain network on CIFAR-10. One can see orthonormality boosts plain network to match the performance of

residual architecture. Middle: Performance comparisons of 110-layer ResNet on CIFAR-10. Orthonormality helps convergence thus

achieve higher performance. Right: Performance comparisons of 34-layer ResNet and 101-layer ResNet with different regularization on

ImageNet.

Method
Top-1 Accuracy (%)

44-layer 110-layer 44-layer*

Nesterov[24] 85.0 10.18 61.9

AdaGrad[7] 77.86 30.3 36.1

AdaDelta[44] 70.56 66.48 52.6

Adam[14] 39.85 10.0 N/A

RmsProp[40] 10.0 10.0 N/A

SGD 84.14 11.83 65.2

Ours 88.42 81.6 70.0

Table 2. Performance comparison on CIFAR-10 and ImageNet of

different optimization methods. Plain 44-layer and 110-layer net-

works are trained with these methods. All the common hyper-

parameters are identical and specific ones are default (except for

AdaDelta). L2 regularizer is applied for all the methods except for

ours. N/A demonstrates the corresponding method cannot conver-

gence at all and “*” means the methods are tested on ImageNet.

Figure 6. Weights visualization of first convolution layer in 34-

layer residual network on ImageNet. Left: converged weights by

L2 regularization. Right: converged weights by orthonormality.

mong intra-layer’s filter banks. Fig. 6 can be used to explain

above results, so it probably be difficult for orthonormality

to explore in parameter space with so many redundancies.

The right sub-figure in Fig. 6 shows more noise-like feature

maps than the left one, which inspires us to design thinner

architectures in the future work.

6. Discussion and Conclusion

Recently we find that [21] has proposed similar ideas.

They unify three types of kernel normalization methods in-

to a geometric framework called kernel submanifolds, in

which sphere, oblique and compact Stiefel manifolds (or-

thonormal kernels) are considered. The differences exist-

s in three aspects: 1) The intrinsic explanations about the

performance improvement is different, of which they main-

ly focus on regularization of models with data augmentation

and learning of models endowed with geometric invariants;

2) The orthogonalization is different, of which they orthog-

onalize convolutional kernels within a channel while we do

this among channel; 3) As the second statement tells, we

believe that their proposed method still cannot handle the

extremely deep plain networks. Besides, all the details and

key steps to implement their methods are ambiguous that

prevents from understanding and verifying it further.

Intrinsically, one can regard our proposed modulation as

assigning each parametric layer an individual and adaptive

learning rate. This kind of modulation can be more practi-

cal than local methods, e.g. second-order methods, while be

more flexible than global ones, e.g. SGD. Besides, if we can

approach some strategies to compensate the evanescent or-

thonomality as learning progresses, we believe that training

a genuinely deep network will be available.

We propose a simple and direct method to train extreme-

ly deep plain networks with orthonormality and modulation.

Furthermore, orthonormality reveals its generalization ca-

pability which can be applied in residual networks. Great

performance boost is observed in experiments. However,

the degradation problem is still not totally solved, which

may be on condition understanding more comprehensively

about the insights of signal modulation, reparametrization

and novel constraints, etc. We hope our work will encour-

age more attentions on this problem.
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