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Abstract

This paper presents the first snapshot hyperspectral light

field imager in practice. Specifically, we design a novel hy-

brid camera system to obtain two complementary measure-

ments that sample the angular and spectral dimensions re-

spectively. To recover the full 5D hyperspectral light field

from severely undersampled measurements, we then pro-

pose an efficient computational reconstruction algorithm

by exploiting the large correlations across the angular and

spectral dimensions through self-learned dictionaries. Sim-

ulation on an elaborate hyperspectral light field dataset val-

idates the effectiveness of the proposed approach. Hard-

ware experimental results demonstrate that, for the first

time to our knowledge, a 5D hyperspectral light field con-

taining 9 × 9 angular views and 27 spectral bands can be

acquired in a single shot.

1. Introduction

Computational imaging has seen a tremendous progress

in the past decades, owing to the rapid advancement of op-

tical instruments and the explosive growth of computing

power. The ultimate goal of computational imaging is to

simultaneously resolve the 7 dimensions of the plenoptic

function, i.e., 3D in space (2D planar + 1D depth), 1D in

time, 1D in spectrum, and 2D in angle [33]. The dimensions

that are beyond traditional digital imaging, i.e., depth, spec-

trum, and angle, have been extensively explored in literature

under the scope of depth/3D imaging, multi/hyper-spectral

imaging, and light field imaging, respectively [4, 34, 8, 12].

Moreover, commercial depth cameras (e.g., Kinect) and

light field cameras (e.g., Lytro) are readily available for

daily use, which provides new opportunities for solving dif-

ficult computer vision tasks and also enables new applica-

tions [11, 22, 17].

The trend of computational imaging is to integrate higher

plenoptic dimensions together, while maintaining the re-

spective resolution as much as possible. Following this

trend, current research frontiers extend to depth from light

field [13, 30], light field super-resolution [31, 35], hyper-

Figure 1. Schematic of snapshot hyperspectral light field imager.

spectral video acquisition [20, 28], hyperspectral 3D imag-

ing [14, 29], and so on. Thanks to the large correlations

across different plenoptic dimensions, it is possible to re-

cover high-dimensional light information from severely un-

dersampled measurements. Still, elaborate hardware sys-

tems and computational reconstruction algorithms are in-

dispensable to guarantee a decent performance.

In this paper, we explore a new direction in computa-

tional imaging, i.e., snapshot hyperspectral light field imag-

ing, which is an essential step towards encompassing all di-

mensions of the plenoptic function. Previously, the acqui-

sition of a hyperspectral light field needs to be conducted

in a scanning manner, either using a spectrometer mounted

on a gantry to scan in the angular and spectral dimensions

sequentially [32], or using a micro-lens-array together with

tunable filters to scan in the spectral dimension alone [16].

However, the above scanning approaches are not applicable

in time-critical scenarios, such as scenes with dynamic ob-

jects or varying illumination. How to acquire a hyperspec-

tral light field without sacrificing the temporal resolution

remains a key challenge.

To this end, we design a novel hybrid camera system as

shown in Figure 1, which consists of an off-the-shelf light

field camera (Lytro) and a coded aperture snapshot spec-

tral imager (CASSI). The two branches are co-located via a

beam splitter and calibrated in spatial, angular, and spectral

dimensions. The incident light from the scene is equally di-

vided by the beam splitter and then captured by Lytro and
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CASSI, respectively. The RGB light field obtained by Lytro

contains angular information of the scene but lacks spectral

resolution, while the compressive measurement obtained by

CASSI encodes hyperspectral information of the scene but

lacks angular resolution. The hybrid imager thus provides

complementary measurements for recovering the 5D hyper-

spectral light field with high angular and spectral resolu-

tions, as illustrated in Figure 1.

Still, recovering the full 5D hyperspectral light field

from such undersampled measurements is a severely under-

determined problem, due to the large dimensionality gap.

The correlations across the angular and spectral dimensions

should be exploited to assist the reconstruction. A key ob-

servation here is that, the 5D hyperspectral light field can

be treated as a concatenation of 4D band-wise light fields,

each of which shares similar structures to one of the blue,

green, and red light fields obtained from Lytro according to

the spectral proximity. Therefore, the RGB light field pro-

vides a strong prior for the band-wise light fields to be re-

covered. Specifically, three over-complete 4D dictionaries

can be learned from the RGB light field to sparsely repre-

sent each band-wise light field. We then propose to formu-

late the hyperspectral light field reconstruction as a sparse-

constraint optimization problem, given the undersampled

measurements and the self-learned dictionaries.

For the evaluation purpose, we prepare a hyperspectral

light field dataset by scanning a set of static scenes using a

spectrometer mounted on a gantry. This dataset is used to

validate the effectiveness of the computational reconstruc-

tion algorithm by simulation, as well as to optimize the pa-

rameters during the reconstruction. We then conduct hard-

ware experiments with the developed hybrid camera system

and the proposed reconstruction algorithm. Both simulation

and hardware experimental results demonstrate that, for the

first time to our knowledge, a 5D hyperspectral light field

with high angular and spectral resolutions can be acquired

in a single shot.

The main contributions of this work can be summarized

into three aspects:

(1) The first hardware system for snapshot hyperspectral

light field acquisition.

(2) An effective computational reconstruction algorithm

for recovering the full 5D hyperspectral light field from

severely undersampled measurements.

(3) An elaborate hyperspectral light field dataset that will

be made publicly available for developing new computa-

tional imaging systems and algorithms.

In addition, it is worth mentioning that the proposed ap-

proach can be naturally extended for 6D hyperspectral light

field video acquisition due to its snapshot property. In this

sense, the proposed approach proceeds a large step towards

the ultimate goal of resolving the 7D plenoptic function si-

multaneously.

2. Related work

Light field imaging. Light field imaging technology is

getting mature in the sense that commercial cameras using a

micro-lens-array (e.g., Lytro and Raytrix) are readily avail-

able for consumer and laboratory use. Generally, these cam-

eras output RGB light fields of the scene at a reduced spatial

resolution of the detector in exchange of the angular resolu-

tion. Alternatively, the compressive light field photography

[21] does not sacrifice the spatial resolution, but requires

an over-complete 4D dictionary learned from an external

light field database to assist the computational reconstruc-

tion. Our proposed system uses Lytro to directly capture an

RGB light field, from which three over-complete 4D dic-

tionaries are learned to exploit the correlations across the

angular and spectral dimensions. These self-learned dictio-

naries ensure high sparsity when they are used to represent

the band-wise light fields to be recovered.

Snapshot hyperspectral imaging. Various snapshot

hyperspectral imaging prototypes have been developed re-

cently, among which CASSI [2, 25] and its variants [18, 19]

demonstrate impressive performance and attract increasing

attention. By employing a coded aperture and a disperser

to optically encode the 3D spectral information onto a 2D

detector, CASSI recovers a full hyperspectral image rely-

ing on the compressive sensing theory and computational

reconstruction, which supports video recording of dynamic

scenes [26]. To boost the reconstruction fidelity of CASSI

while maintaining its snapshot advantage, the dual-camera

design of CASSI has been proposed [27, 28], where mea-

surements from CASSI and a co-located grayscale camera

are jointly used for the hyperspectral reconstruction. In-

spired by that, our proposed system integrates Lytro with

CASSI to acquire a hyperspectral light field without sacri-

ficing the temporal resolution.

Hybrid imaging. Hybrid camera systems have been em-

ployed to break the capability limitation of individual cam-

eras in many occasions. For example, a high-speed, low-

resolution camera and a low-speed, high-resolution cam-

era can be combined for high-speed, high-resolution imag-

ing [3]; a low-resolution hyperspectral imager and a high-

resolution RGB camera can be used together for high-

resolution hyperspectral imaging [20]; and a low-resolution

light field camera can be combined with a high-resolution

RGB camera for high-resolution light field imaging [6]. Our

proposed system inherits the idea of hybrid imaging for hy-

perspectral light field acquisition, which combines the an-

gular and spectral dimensions for the first time.

3. System principles

Figure 2 illustrates the data flow in the proposed system.

After the beam splitter, the Lytro branch captures an RGB

light field that contains angular information of the scene
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Figure 2. Data flow in the proposed system. The Lytro branch captures an RGB light field containing angular information while the CASSI

branch captures a compressive measurement encoding hyperspectral information. The RGB light field is used to learn three over-complete

4D dictionaries, on which the band-wise light fields to be recovered can be sparsely represented. The underlying 5D hyperspectral light

field is reconstructed through computational reconstruction relying on the undersampled measurements and the self-learned dictionaries.

relying on a built-in micro-lens-array, while the CASSI

branch captures a compressive measurement that encodes

hyperspectral information of the scene using a coded aper-

ture and a dispersive prism. The Lytro branch lacks spec-

tral resolution while the CASSI branch lacks angular reso-

lution. Considering the large correlations across the angu-

lar and spectral dimensions, it is possible to recover the full

5D hyperspectral light field by jointly using measurements

from these two branches. Note that the two branches should

be calibrated in spatial, angular, and spectral dimensions.

Specifically, the f-numbers of the main objective lenses in

Lytro and CASSI should be matched so they collect light

within the same angular range. Also, optical filters with the

same passband should be used in the two branches so they

collect light within the same spectral range.

Denote f(x, y, u, v, λ) the discrete 5D hyperspectral

light field to be recovered, where 1 ≤ x ≤ W and 1 ≤
y ≤ H index the spatial coordinates, 1 ≤ u, v ≤ S in-

dex the angular coordinates (here we assume a square light

field, which is usually the case in practice), and 1 ≤ λ ≤ Ω
indexes the spectral coordinate. The output from Lytro, i.e.,

the RGB light field, can be written as

gl(x, y, u, v, k) = 0.5
Ω
∑

λ=1

ωk(λ)f(x, y, u, v, λ) (1)

where k = 1, 2, 3 corresponds to blue, green, and red chan-

nels respectively, and ωk(λ) denotes the spectral response

of the Lytro detector corresponding to each channel. This

equation can be rewritten in a linear matrix form as

Gl
u,v = ΦlFu,v (2)

where Gl
u,v and Fu,v are the vectorized representations of

gl and f at angular coordinates (u, v), i.e., view-wise RGB

and hyperspectral images, and Φl is the angular-invariant

observation matrix of Lytro which is determined by ωk(λ).

On the other hand, the compressive measurement from
CASSI can be written as

g
c(x, y) = 0.5

Ω∑

λ=1

S∑

u,v=1

ω(λ)T (x, y−ψ(λ))f(x, y−ψ(λ), u, v, λ)

(3)

where ω(λ) denotes the spectral response of the CASSI de-

tector, T (x, y) the transmission function of the coded aper-

ture, and ψ(λ) the wavelength-dependent dispersion func-

tion of the prism. (Please refer to [26] for a detailed for-

mulation of the CASSI measurement.) Similar to the Lytro

branch, the output from CASSI can be rewritten as

Gc = ΦcF (4)

where Gc is the vectorized representation of gc, F =
{Fu,v}

S
u,v=1 can be regarded as the concatenation of the

view-wise hyperspectral images, and Φc is the observa-

tion matrix of CASSI which is jointly determined by ω(λ),
T (x, y), and ψ(λ).

By combining Eq. 2 and Eq. 4, the hybrid camera system

model can then be expressed as
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(5)

A more simplified expression will be

G = ΦF (6)

where G comprises measurements from both two branches

and Φ is a sparse matrix representing the overall system for-

ward operation.
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4. Computational reconstruction

Due to the large dimensionality gap, recovering the full

5D hyperspectral light field F from its undersampled mea-

surementsG is a severely underdetermined problem and has

rarely been investigated before. To tackle this problem, we

exploit the large correlations across the angular and spec-

tral dimensions of the 5D signal through the sparsity prior.

Specifically, the 5D hyperspectral light field can be regarded

as a concatenation of 4D band-wise light fields. If we treat

the RGB light field from Lytro as three separate light fields,

then each 4D band-wise light field shares similar structures

to one of them according to the spectral proximity. For

example, a band-wise light field falling in the green spec-

trum is observed to have similar structures to the green light

field. Therefore, the RGB light field can be used to learn

three over-complete 4D dictionaries to sparsely represent

each 4D band-wise light field.

To learn the three over-complete dictionaries, we ran-

domly sample a number of 4D patches sized m = w × h×
s × s from the blue, green, and red light fields, separately.

The corresponding dictionary Dk ∈ R
m×n(k = 1, 2, 3) is

then derived by KSVD [1], where n (n > m) is the number

of atoms (i.e., vectorized 4D patches) remaining in the dic-

tionary. These self-learned dictionaries ensure high sparsity

when they are used to represent the band-wise light fields

to be recovered. Once the dictionaries are ready, the 5D

hyperspectral light field can be sparsely represented as

F = [F1, F2, . . . , FΩ]
T = [D1, D2, D3]◦[α1, α2, . . . , αΩ]

T

(7)
where Fλ(1 ≤ λ ≤ Ω) denotes a band-wise light field,
αλ(1 ≤ λ ≤ Ω) denotes the sparse coefficient vector that
represents Fλ on Dk, and the operation ◦ is defined as

F = [D1(α1, . . . , αi), D2(αi+1, . . . , αj), D3(αj+1, . . . , αΩ)]
T

(8)

where 1 ≤ i < j ≤ Ω specify which dictionary should be

used for each band-wise light field and are determined by

the spectral response of the Lytro detector. A more simpli-

fied expression will be

F = D ◦ α (9)

where D is composed of {Dk}
3

k=1
and α is the concatena-

tion of {αλ}
Ω

λ=1
.

According to the compressive sensing theory [7, 9], F

can be recovered by solving the following optimization

problem instead

α̂ = argmin
α

||G− ΦD ◦ α||22 + τ ||α||0 (10)

where τ is a regularization parameter. This optimization

problem can be efficiently solved by employing the orthog-

onal matching pursuit algorithm [24].

Figure 3. (a) The platform for preparing the hyperspectral light

field dataset. (b)-(d) three static scenes for generating the dataset:

Toys, Boards, and Fruits.

Figure 4. Spectral sensitivity curves of the Lytro (left) and CASSI

(right) detectors used in our hardware system.

5. Simulation

5.1. Dataset

Since the hyperspectral light field data is rarely available

in public, we prepare a hyperspectral light field dataset our-

selves for the evaluation purpose. The dataset is obtained

by scanning three static scenes using a spectrometer (Senop

Rikola) mounted on a gantry. The platform used to collect

the data is shown in Figure 3(a). The spectrometer uses

a liquid crystal tunable filter and captures a narrow-band

spectral image with up to 1nm bandwidth in a single shot.

The gantry supports 2D translation of the spectrometer with

0.01mm precision on each direction. The three scenes, as

shown in Figure 3(b)-(d), are placed at a distance of around

1m to the platform and contain a variety of materials with

diverse geometry and reflectance characteristics. The raw

data for each scene contains 9 × 9 angular views and 25

spectral bands (ranging from 450nm to 690nm in 10nm in-

crements) at a spatial resolution of 512 × 512. In total, we

capture 2025 images for each scene when the spectrometer

is placed at different locations (the distance between two

neighboring views is 10mm). Note a one-time calibration

is needed in advance to address the extrinsic and intrinsic
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camera parameters for rectifying the captured images.

5.2. Algorithm evaluation

The spectral sensitivity curves of the Lytro and CASSI

detectors used in our hardware system are shown in Figure

4, which are discretized to generate the required spectral re-

sponse functions for simulation. In addition, for the CASSI

branch, the transmission function of the coded aperture is

generated as a random Bernoulli distribution with p = 0.5,

and the dispersion function of the prism is assumed to be

a linear distribution for simplicity. For the Lytro branch,

we further divide the spectral coordinate into three intervals

as 450-530nm, 540-600nm, and 610-690nm, which corre-

spond to the blue, green, and red channels and specify the

dictionary that should be used for recovering a certain band-

wise light field (i.e., determining i and j in Eq. 8).

For simulation, we test three different angular resolu-

tions of S = 5, 7, 9. The spectral resolution remains as Ω =
25, and the spatial resolution is slightly cropped after recti-

fication. The parameters used in our proposed dictionary-

based reconstruction (DBR) algorithm are selected opti-

mally through a cross-validation process. For dictionary

learning, the 4D patch size is set as m = 6 × 6 × S × S,

and 30000 patches are randomly sampled from each of the

blue, green, and red light fields, respectively. After KSVD,

there are n = 2m atoms remaining in the dictionary. The

maximum iteration number of DBR is set to 80 and τ is

set to 0.004, 0.002, and 0.0005 when S equals to 5,7,

and 9, respectively. For comparison, we also generate the

reconstruction results using the two-step iterative shrink-

age/thresholding (TwIST) algorithm [5] along with the total

variation regularizer.

Quantitative evaluation. Two quantitative image qual-

ity metrics, peak signal-to-noise ratio (PSNR) and spectral

angle mapping (SAM) [15], are adopted to evaluate the re-

construction fidelity. PSNR measures the spatial fidelity of

reconstruction, which is calculated based on each 2D spa-

tial image and then averaged over the spectral and angu-

lar dimensions. SAM measures the spectral fidelity of re-

construction, which is calculated based on each 1D spectral

vector and then averaged over the spatial and angular di-

mensions. The PSNR and SAM results of TwIST and DBR

are reported in Table 1. It can be seen that both TwIST and

DBR decently recover the 5D hyperspectral light field at

different angular resolutions, which demonstrates the fea-

sibility of our proposed hybrid imaging model. Moreover,

DBR outperforms TwIST with an average of 2.45dB gain

in PSNR and 15% decrease in SAM (a smaller SAM indi-

cates a higher fidelity reconstruction), which validates the

effectiveness of the sparse-constraint reconstruction using

the self-learned dictionaries.

Qualitative evaluation. Figure 5 shows one selected

band from the central view of the reconstructed hyperspec-

Table 1. Quantitative evaluation of two reconstruction methods at

different angular resolutions.

Views Scene
PSNR SAM

TwIST DBR TwIST DBR

5× 5

Boards 34.44 37.29 0.097 0.079

Toys 36.43 38.60 0.077 0.065

Fruits 36.35 38.86 0.074 0.065

7× 7

Boards 33.98 36.80 0.098 0.082

Toys 36.18 38.12 0.078 0.066

Fruits 35.97 37.9 0.077 0.067

9× 9

Boards 32.99 36.30 0.108 0.092

Toys 35.71 38.00 0.087 0.074

Fruits 35.72 38.01 0.082 0.072

Average 35.31 37.76 0.086 0.073

tral light field for each scene when S equals to 5. We can see

that, on the one hand, the original image is decently recov-

ered under the hybrid imaging model through either TwIST

or DBR. On the other hand, as can be easily observed from

the zoom-in results, TwIST tends to smear out the object

details due to its local smoothness prior, while DBR better

preserves the object details by further exploiting the corre-

lations across the angular and spectral dimensions through

the self-learned dictionaries.

View-wise and band-wise evaluation. For an inspec-

tion across the angular and spectral dimensions, Figure 6

shows the view-wise and band-wise PSNR results of the

DBR reconstruction of the Boards scene when S equals

to 5. As demonstrated, in terms of the spectral dimen-

sion, the PSNR of each band in a certain view varies along

with wavelength, due to the non-uniform spectral sensitiv-

ity of the detectors. In terms of the angular dimensions,

all views share a similar PSNR distribution, as they are

treated equally in simulation. In practice, due to the vi-

gnetting effect of the micro-lens-array in the light field cam-

era, the central view generally has higher reconstruction fi-

delity than the corner views, as can be seen from the hard-

ware experimental results.

Spectral signature evaluation. For a more comprehen-

sive comparison, Figure 7 shows the recovered spectral sig-

natures at two selected spatial points from the central view

of the Boards scene when S equals to 5. Besides TwIST

and DBR, we also generate the spectral signature through

interpolation from the RGB values [23]. As can be seen,

the interpolation results have a large deviation from the

groundtruth, while the DBR results are the closest to the

groundtruth. Table 2 gives the corresponding root-mean-

square-error (RMSE) of the recovered signatures by differ-

ent methods, which confirms the superiority of DBR.
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Figure 5. Reconstruction results of one selected band from the central view of three scenes (5 × 5 views). From top to bottom: Boards

(620nm), Toys (570nm), and Fruits (520nm). (Please see the electronic version for better visualization.)
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Figure 6. View-wise and band-wise PSNR results of the DBR re-

construction of the Boards scene (5 × 5 views). Horizontal axis

for wavelength and vertical axis for PSNR in each view.

6. Experiments

6.1. Hardware system

Figure 8 demonstrates the prototype system we have de-

veloped for snapshot hyperspectral light field imaging. The

incident light from the scene is equally divided by a beam

splitter and captured by Lytro and CASSI, respectively. The

Lytro branch captures an RGB light field with 9 × 9 views

at a spatial resolution of 380 × 380. The main objective

lens of Lytro has a fixed f-number of f/2 [10]. In the CASSI
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Figure 7. Spectral signatures at two selected spatial points from

the central view of the Boards scene (5× 5 views).

Table 2. RMSE of spectral signatures at two points in Figure 7.

Point DBR TwIST Interpolation

(a) 0.0029 0.0038 0.0106

(b) 0.0031 0.0050 0.0132

branch, an 8mm objective lens is used to project the scene

onto a coded aperture, for which the f-number is also set to

f/2 to match with Lytro. The manufactured coded aperture

is a random binary pattern with 300×300 elements and each

element has a size of 10µm × 10µm. A double Amici prism

vertically disperses the spectrum with the center wavelength

at 550nm. Each element on the coded aperture is mapped to

2×2 pixels on a panchromatic detector (PointGrey FL3-U3-

13Y3M-C) by a relay lens (Edmund 45-762), so the spatial

resolution of the CASSI measurement is 600× 600. An op-

tical filter with a passband from 500nm to 700nm is used in

each branch to restrict the spectrum to the same range.

The calibration of our system contains two steps: cal-
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Figure 8. Prototype of snapshot hyperspectral light field imager.

ibration of CASSI and calibration between Lytro and

CASSI. The CASSI calibration is conducted following the

procedures in the seminal work [26], from which the obser-

vation matrix of CASSI is obtained and the entire spectrum

spanning over the passband of the optical filter is discretized

into 27 bands with different intervals. The calibration be-

tween Lytro and CASSI is conducted using a checkerboard

scene. Owing to the CASSI calibration, we only need to

align the central view of Lytro with the projection of one

wavelength on the CASSI detector, and the alignment with

other wavelengths can then be easily deduced. To this end,

the checkerboard is illuminated by monochromatic light and

captured by Lytro and CASSI simultaneously. Once the op-

tical components in the CASSI branch are fixed, we adjust

the position of Lytro so that the checkerboard occupies an

area with the same resolution both in the central view of

Lytro and on the CASSI detector. Therefore, the 5D hy-

perspectral light field to be recovered has a resolution of

380(W )× 380(H)× 9(S)× 9(S)× 27(Ω).

6.2. Results

To evaluate the performance of our system, we test a

scene of a twisted Rubik’s Cube with distinct colors. The

exposure time is 5ms for Lytro and 60ms for CASSI respec-

tively, under the illumination of a tungsten halogen lamp.

The measurements from Lytro and CASSI are shown in

Figure 9. Note the vignetting effect in the RGB light field

from Lytro, where the central view has higher intensity and

higher signal-to-noise ratio than the corner views. The pa-

rameters used for the DBR reconstruction are the same as in

simulation. The reconstruction results of five selected bands

from the central view are shown in Figure 10(a). It can be

seen that the proposed approach decently recovers the scene

content, although some noise is visible due to the imperfect

measurements and system observation matrices obtained in

practice.

For a quantitative evaluation on the reconstruction fi-

delity, we inspect the spectral signatures at two selected

Figure 9. Measurements of the test scene. Left: RGB light field

from Lytro (containing 9 × 9 angular views). Right: compressive

measurement from CASSI (encoding 27 spectral bands).

spatial points from the central view. The reference sig-

natures are measured by a probe spectrometer (Stellar-Net

BLK-CXR-SR-50 with 1.3nm spectral precision). Figure

11 shows the comparison results with interpolation from

the RGB values [23]. We can see the DBR signatures well

match the reference while the interpolation ones have a

large deviation, which validates the reconstruction fidelity

of the proposed approach. Table 3 gives the RMSE of these

signatures with respect to the reference, which confirms the

superior performance of the proposed approach.

For an inspection across the angular dimensions, Figure

10(b)-(c) show the reconstruction results of two band-wise

light fields (9 out of 81 views are shown due to space limita-

tion). As can be seen, the reconstruction results are also in-

fluenced by the vignetting effect in the Lytro measurement.

Consequently, the corner views have lower reconstruction

fidelity than the central view. (Ideally, the band-wise light

field should have a uniform intensity distribution regardless

of the views as in simulation.) This issue could be alleviated

by advanced vignetting correction.

7. Conclusion and discussion

In this paper, we have presented the first snapshot hyper-

spectral light field imager in practice. Specifically, we de-

signed a novel hybrid camera system to obtain two comple-

mentary measurements that sample the angular and spectral

dimensions respectively. To recover the full 5D hyperspec-

tral light field from severely undersampled measurements,

we then proposed an efficient computational reconstruction

algorithm by exploiting the large correlations across the

spectral and angular dimensions through self-learned dictio-

naries. Extensive simulation on an elaborate hyperspectral

light field dataset and preliminary hardware experimental

results validate the performance of the proposed approach.

Potential applications. Snapshot hyperspectral light

field imaging could unblock a number of applications where

both spectral and angular information are necessary in time-

critical scenarios. For example, both hyperspectral and light

field imaging help computer vision tasks such as classifi-
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Figure 10. Reconstruction results of the test scene. (a) Five selected bands from the central view. (b) Two band-wise light fields with 9 out

of 81 views. The corner views are darker than the central view due to vignetting. (Please see the electronic version for better visualization.)
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Figure 11. Spectral signatures at two selected spatial points from

the central view of the test scene.

cation and recognition, and encompassing higher plenoptic

dimensions in an efficient way will reasonably promote the

overall performance of these tasks, especially when spatial

information alone is not sufficient; from the graphics per-

spective, the capability of capturing a hyperspectral light

field in a single shot will facilitate the rendering of dynamic

scenes in a more realistic way; other occasions such as her-

itage digitalization and scientific observation will also ben-

efit from snapshot hyperspectral light field imaging.

Advanced issues. While the proposed approach for hy-

perspectral light field imaging demonstrates encouraging

results, there is still room for improvement. First, currently

we assume the Lytro camera directly outputs view-wise

Table 3. RMSE of spectral signatures at two points in Figure 11.

Point DBR Interpolation

(a) 0.0098 0.0382

(b) 0.0177 0.0383

RGB images, without taking into account the preprocess-

ing steps, such as demosaicing and rectification, which con-

vert the raw measurement into the RGB light field. There-

fore, the observation matrix of Lytro used in this work is

not accurate enough, and can be improved by incorporat-

ing the preprocessing steps. Second, due to the extremely

high data dimensionality, the computational reconstruction

suffers from high complexity. Our unoptimized MATLAB

code takes about 16 hours for reconstructing a hyperspectral

light field at a resolution of 380×380×9×9×27 on a main-

stream CPU including dictionary learning. Parallelized al-

gorithms are needed to accelerate the reconstruction. Last

but not least, the proposed approach has the potential for 6D

hyperspectral light field video acquisition due to its snap-

shot property, which is regarded as our future work.
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