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Abstract

Image matting is a fundamental computer vision prob-

lem and has many applications. Previous algorithms have

poor performance when an image has similar foreground

and background colors or complicated textures. The main

reasons are prior methods 1) only use low-level features and

2) lack high-level context. In this paper, we propose a novel

deep learning based algorithm that can tackle both these

problems. Our deep model has two parts. The first part is a

deep convolutional encoder-decoder network that takes an

image and the corresponding trimap as inputs and predict

the alpha matte of the image. The second part is a small

convolutional network that refines the alpha matte predic-

tions of the first network to have more accurate alpha values

and sharper edges. In addition, we also create a large-scale

image matting dataset including 49300 training images and

1000 testing images. We evaluate our algorithm on the im-

age matting benchmark, our testing set, and a wide variety

of real images. Experimental results clearly demonstrate

the superiority of our algorithm over previous methods.

1. Introduction

Matting, the problem of accurate foreground estimation

in images and videos, has significant practical importance.

It is a key technology in image editing and film production

and effective natural image matting methods can greatly im-

prove current professional workflows. It necessitates meth-

ods that handle real world images in unconstrained scenes.

Unfortunately, current matting approaches do not gen-

eralize well to typical everyday scenes. This is partially

due to the difficulty of the problem: as formulated the mat-

ting problem is underconstrained with 7 unknown values

per pixel but only 3 known values:

Ii = αiFi + (1− αi)Bi αi ∈ [0, 1]. (1)

where the RGB color at pixel i, Ii, is known and the fore-

ground color Fi, background color Bi and matte estimation

αi are unknown. However, current approaches are further

limited in their approach.

The first limitation is due to current methods being de-

signed to solve the matting equation (Eq. 1). This equa-

tion formulates the matting problem as a linear combina-

tion of two colors, and consequently most current algo-

rithms approach this largely as a color problem. The stan-

dard approaches include sampling foreground and back-

ground colors [3, 9], propagating the alpha values accord-

ing to the matting equation [14, 31, 22], or a hybrid of the

two [32, 13, 28, 16]. Such approaches rely largely on color

as the distinguishing feature (often along with the spatial

position of the pixels), making them incredibly sensitive to

situations where the foreground and background color dis-

tributions overlap, which unfortunately for these methods is

the common case for natural images, often leading to low-

frequency “smearing” or high-frequency “chunky” artifacts

depending on the method (see Fig 1 top row). Even the re-

cently proposed deep learning methods are highly reliant on

color-dependent propagation methods [8, 29].

A second limitation is due to the focus on a very small

dataset. Generating ground truth for matting is very diffi-

cult, and the alphamatting.com dataset [25] made a signifi-

cant contribution to matting research by providing ground-

truth data. Unfortunately, it contains only 27 training im-

ages and 8 test images, most of which are objects in front

of an image on a monitor. Due to its size and constraints

of the dataset (e.g. indoor lab scenes, indoor lighting, no

humans or animals), it is by its nature biased, and methods

are incentivized to fit to this data for publication purposes.

As is the case with all datasets, especially small ones, at

some point methods will overfit to the dataset and no longer

generalize to real scenes. A recent video matting dataset is

available [10] with 3 training videos and 10 test videos, 5

of which were extracted from green screen footage and the
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Image Trimap Closed-form Ours
Figure 1. The comparison between our method and the Closed-

form matting [22]. The first image is from the Alpha Matting

benchmark and the second image is from our 1000 testing images.

rest using a similar method to [25].

In this work, we present an approach aimed to overcome

these limitations. Our method uses deep learning to di-

rectly compute the alpha matte given an input image and

trimap. Instead of relying primarily on color information,

our network can learn the natural structure that is present

in alpha mattes. For example, hair and fur (which usually

require matting) possess strong structural and textural pat-

terns. Other cases requiring matting (e.g. edges of objects,

regions of optical or motion blur, or semi-transparent re-

gions) almost always have a common structure or alpha pro-

file that can be expected. While low-level features will not

capture this structure, deep networks are ideal for represent-

ing it. Our two-stage network includes an encoder-decoder

stage followed by a small residual network for refinement

and includes a novel composition loss in addition to a loss

on the alpha. We are the first to demonstrate the ability to

learn an alpha matte end-to-end given an image and trimap.

To train a model that will excel in natural images of

unconstrained scenes, we need a much larger dataset than

currently available. Obtaining a ground truth dataset using

the method of [25] would be very costly and cannot handle

scenes with any degree of motion (and consequently cannot

capture humans or animals). Instead, inspired by other syn-

thetic datasets that have proven sufficient to train models for

use in real images (e.g. [4]), we create a large-scale matting

dataset using composition. Images with objects on simple

backgrounds were carefully extracted and were composited

onto new background images to create a dataset with 49300

training images and 1000 test images.

We perform extensive evaluation to prove the effective-

ness on our method. Not only does our method achieve

first place on the alphamatting.com challenge, but we also

greatly outperform prior methods on our synthetic test set.

We show our learned model generalizes to natural images

with a user study comparing many prior methods on 31

natural images featuring humans, animals, and other ob-

jects in varying scenes and under different lighting condi-

tions. This study shows a strong preference for our results,

but also shows that some methods which perform well on

the alphamatting.com dataset actually perform worse com-

pared to other methods when judged by humans, suggesting

that methods are being to overfit on the alphamatting.com

test set. Finally, we also show that we are more robust to

trimap placement than other methods. In fact, we can pro-

duce great results even when there is no known foreground

and/or background in the trimap while most methods cannot

return any result (see Fig 1 bottom row ).

2. Related works

Current matting methods rely primarily on color to de-

termine the alpha matte, along with positional or other low-

level features. They do so through sampling, propagation,

or a combination of the two.

In sampling-based methods [3, 9, 32, 13, 28, 16], the

known foreground and background regions are sampled to

find candidate colors for a given pixel’s foreground and

background, then a metric is used to determine the best fore-

ground/background combination. Different sampling meth-

ods are used, including sampling along the boundary near-

est the given pixel [32], sampling based on ray casting [13],

searching the entire boundary [16], or sampling from color

clusters [28, 12]. The metric to decide among the sampled

candidate nearly always includes a matting equation recon-

struction error, potentially with terms measuring the dis-

tance of samples from the given pixel [32, 16] or the similar-

ity of the foreground and background samples [32, 28], and

formulations include sparse coding [12] and KL-divergence

approaches [19, 18]. Higher-order features like texture [27]

have been used rarely and have limited effectiveness.

In propagation methods, Eq. 1 is reformulated such

that it allows propagation of the alpha values from the

known foreground and background regions into the un-

known region. A popular approach is Closed-form Mat-

ting [22] which is often used as a post-process after sam-

pling [32, 16, 28]. It derives a cost function from local

smoothness assumption on foreground and background col-

ors and finds the globally optimal alpha matte by solving

a sparse linear system of equations. Other propagation

methods include random walks [14], solving Poisson equa-

tions [31], and nonlocal propagation methods [21, 7, 5].

Recently, several deep learning works have been pro-

posed for image matting. However, they do not directly

learn an alpha matte given an image and trimap. Shen et

al. [29] use deep learning for creating a trimap of a person

in a portrait image and use [22] for matting through which

matting errors are backpropagated to the network. Cho et al.

[8] take the matting results of [22] and [5] and normalized

RGB colors as inputs and learn an end-to-end deep network

to predict a new alpha matte. Although both our algorithm

and the two works leverage deep learning, our algorithm is

quite different from theirs. Our algorithm directly learns

the alpha matte given an image and trimap while the other
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Figure 2. Dataset creation. (a) An input image with a simple back-

ground is matted manually. The (b) computed alpha matte and (c)

computed foreground colors are used as ground truth to composite

the object onto (d-f) various background images.

two works rely on existing algorithms to compute the ac-

tual matting, making their methods vulnerable to the same

problems as previous matting methods.

3. New matting dataset

The matting benchmark on alphamatting.com [25] has

been tremendously successful in accelerating the pace of re-

search in matting. However, due to the carefully controlled

setting required to obtain ground truth images, the dataset

consists of only 27 training images and 8 testing images.

Not only is this not enough images to train a neural net-

work, but it is severely limited in its diversity, restricted to

small-scale lab scenes with static objects.

To train our matting network, we create a larger dataset

by compositing objects from real images onto new back-

grounds. We find images on simple or plain backgrounds

(Fig. 2a), including the 27 training images from [25] and

every fifth frame from the videos from [26]. Using Photo-

shop, we carefully manually create an alpha matte (Fig. 2b)

and pure foreground colors (Fig. 2c). Because these objects

have simple backgrounds we can pull accurate mattes for

them. We then treat these as ground truth and for each alpha

matte and foreground image, we randomly sample N back-

ground images in MS COCO [23] and Pascal VOC [11],

and composite the object onto those background images.

We create both a training and a testing dataset in the

above way. Our training dataset has 493 unique fore-

ground objects and 49,300 images (N = 100) while our

testing dataset has 50 unique objects and 1000 images

(N = 20). The trimap for each image is randomly di-

lated from its ground truth alpha matte. In comparison to

previous matting datasets, our new dataset has several ad-

vantages. 1) It has many more unique objects and covers

various matting cases such as hair, fur, semi-transparency,

etc. 2) Many composited images have similar foreground

and background colors and complex background textures,

making our dataset more challenging and practical.

An early concern is whether this process would create a

bias due to the composited nature of the images, such that a

network would learn to key on differences in the foreground

and background lighting, noise levels, etc. However, we

found experimentally that we achieved far superior results

on natural images compared to prior methods (see Sec. 5.3).

4. Our method

We address the image matting problem using deep learn-

ing. Given our new dataset, we train a neural network to

fully utilize the data. The network consists of two stages

(Fig. 3). The first stage is a deep convolutional encoder-

decoder network which takes an image patch and a trimap

as input and is penalized by the alpha prediction loss and

a novel compositional loss. The second stage is a small

fully convolutional network which refines the alpha predic-

tion from the first network with more accurate alpha val-

ues and sharper edges. We will describe our algorithm with

more details in the following sections.

4.1. Matting encoderdecoder stage

The first stage of our network is a deep encoder-decoder

network (see Fig. 3), which has achieved successes in many

other computer vision tasks such as image segmentation [2],

boundary prediction [33] and hole filling [24].

Network structure: The input to the network is an im-

age patch and the corresponding trimap which are concate-

nated along the channel dimension, resulting in a 4-channel

input. The whole network consists of an encoder network

and a decoder network. The input to the encoder network is

transformed into downsampled feature maps by subsequent

convolutional layers and max pooling layers. The decoder

network in turn uses subsequent unpooling layers which re-

verse the max pooling operation and convolutional layers

to upsample the feature maps and have the desired output,

the alpha matte in our case. Specifically, our encoder net-

work has 14 convolutional layers and 5 max-pooling layers.

For the decoder network, we use a smaller structure than

the encoder network to reduce the number of parameters

and speed up the training process. Specifically, our decoder

network has 6 convolutional layers, 5 unpooling layers fol-

lowed by a final alpha prediction layer.

Losses: Our network leverages two losses. The first loss

is called the alpha-prediction loss, which is the absolute

difference between the ground truth alpha values and the

predicted alpha values at each pixel. However, due to the

non-differentiable property of absolute values, we use the

following loss function to approximate it.

Li
α =

√

(αi
p − αi

g)
2 + ǫ2, αi

p, α
i
g ∈ [0, 1]. (2)

where αi
p is the output of the prediction layer at pixel i
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Figure 3. Our network consists of two stages, an encoder-decoder stage (Sec. 4.1) and a refinement stage (Sec. 4.2)

thresholded between 0 and 1. αi
g is the ground truth alpha

value at pixel i. ǫ is a small value which is equal to 10−6 in

our experiments. The derivative
∂Li

α

∂αi
p

is straightforward.

∂Li
α

∂αi
p

=
αi
p − αi

g
√

(αi
p − αi

g)
2 + ǫ2

. (3)

The second loss is called the compositional loss, which is

the absolute difference between the ground truth RGB col-

ors and the predicted RGB colors composited by the ground

truth foreground, the ground truth background and the pre-

dicted alpha mattes. Similarly, we approximate it by using

the following loss function.

Li
c =

√

(cip − cig)
2 + ǫ2. (4)

where c denotes the RGB channel, p denotes the image

composited by the predicted alpha, and g denotes the image

composited by the ground truth alphas. The compositional

loss constrains the network to follow the compositional op-

eration, leading to more accurate alpha predictions.

The overall loss is the weighted summation of the two in-

dividual losses, i.e., Loverall = wl ·Lα+(1−wl)·Lc, where

wl is set to 0.5 in our experiment. In addition, since only the

alpha values inside the unknown regions of trimaps need to

be inferred, we therefore set additional weights on the two

types of losses according to the pixel locations, which can

help our network pay more attention on the important areas.

Specifically, wi = 1 if pixel i is inside the unknown region

of the trimap while wi = 0 otherwise.

Implementation: Although our training dataset has

49,300 images, there are only 493 unique objects. To avoid

overfitting as well as to leverage the training data more ef-

fectively, we use several training strategies. First, we ran-

domly crop 320×320 (image, trimap) pairs centered on

pixels in the unknown regions. This increases our sam-

pling space. Second, we also crop training pairs with dif-

ferent sizes (e.g. 480×480, 640×640) and resize them to

320×320. This makes our method more robust to scales

and helps the network better learn context and semantics.

Third, flipping is performed randomly on each training pair.

Fourth, the trimaps are randomly dilated from their ground

truth alpha mattes, helping our model to be more robust to

the trimap placement. Finally, the training inputs are recre-

ated randomly after each training epoch.

The encoder portion of the network is initialized with the

first 14 convolutional layers of VGG-16 [30] (the 14th layer

is the fully connected layer “fc6” which can be transformed

to a convolutional layer). Since the network has 4-channel

input, we initialize the one extra channel of the first-layer

convolutional filters with zeros. All the decoder parameters

are initialized with Xavier random variables.

When testing, the image and corresponding trimap are

concatenated as the input. A forward pass of the network

is performed to output the alpha matte prediction. When a

GPU memory is insufficient for large images, CPU testing

can be performed.

4.2. Matting refinement stage

Although the alpha predictions from the first part of our

network are already much better than existing matting al-

gorithms, because of the encoder-decoder structure, the re-

sults are sometimes overly smooth. Therefore, we extend

our network to further refine the results from the first part.

This extended network usually predicts more accurate alpha

mattes and sharper edges.

Network structure: The input to the second stage of

our network is the concatenation of an image patch and its

alpha prediction from the first stage (scaled between 0 and

255), resulting in a 4-channel input. The output is the cor-

responding ground truth alpha matte. The network is a fully

convolutional network which includes 4 convolutional lay-

ers. Each of the first 3 convolutional layers is followed by a

non-linear “ReLU” layer. There are no downsampling lay-

ers since we want to keep very subtle structures missed in

the first stage. In addition, we use a “skip-model” structure
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(a) (b) (c)
Figure 4. The effect of our matting refinement network. (a) The in-

put images. (b) The results of our matting encoder-decoder stage.

(c) The results of our matting refinement stage.

where the 4-th channel of the input data is first scaled be-

tween 0 and 1 and then is added to the output of the network.

The detailed configuration is shown in Fig. 3.

The effect of our refinement stage is illustrated in Fig. 4.

Note that it does not make large-scale changes to the alpha

matte, but rather just refines and sharpens the alpha values.

Implementation: During training, we first update the

encoder-decoder part without the refinement part. After the

encoder-decoder part is converged, we fix its parameters

and then update the refinement part. Only the alpha pre-

diction loss (Eqn. 2) is used due to its simple structure. We

also use all the training strategies of the 1st stage except

the 4th one. After the refinement part is also converged, fi-

nally we fine-tune the the whole network together. We use

Adam [20] to update both parts. A small learning rate 10−5

is set constantly during the training process.

During testing, given an image and a trimap, our algo-

rithm first uses the matting encoder-decoder stage to get an

initial alpha matte prediction. Then the image and the alpha

prediction are concatenated as the input to the refinement

stage to produce the final alpha matte prediction.

5. Experimental results

In this section we evaluate our method on 3 datasets. 1)

We evaluate on the alphamatting.com dataset [25], which

is the existing benchmark for image matting methods. It

includes 8 testing images, each has 3 different trimaps,

namely, “small”, “large” and “user”. 2) Due to the limited

size and range of objects in the alphamatting.com dataset,

we propose the Composition-1k test set. Our composition-

based dataset includes 1000 images and 50 unique fore-

grounds. This dataset has a wider range of object types

and background scenes. 3) To measure our performance on

natural images, we also collect a third dataset including 31

natural images. The natural images cover a wide range of

common matting foregrounds such as person, animals, etc.

Table 1. The quantitative results on the Composition-1k testing

dataset. The variants of our approaches are emphasized in italic.

The best results are emphasized in bold.
Methods SAD MSE Gradient Connectivity

Shared Matting [13] 128.9 0.091 126.5 135.3

Learning Based Matting [34] 113.9 0.048 91.6 122.2

Comprehensive Sampling [28] 143.8 0.071 102.2 142.7

Global Matting [16] 133.6 0.068 97.6 133.3

Closed-Form Matting [22] 168.1 0.091 126.9 167.9

KNN Matting [5] 175.4 0.103 124.1 176.4

DCNN Matting [8] 161.4 0.087 115.1 161.9

Encoder-Decoder network

(single alpha prediction loss)
59.6 0.019 40.5 59.3

Encoder-Decoder network 54.6 0.017 36.7 55.3

Encoder-Decoder network

+ Guided filter[17]
52.2 0.016 30.0 52.6

Encoder-Decoder network

+ Refinement network
50.4 0.014 31.0 50.8

5.1. The alphamatting.com dataset

Our approach achieves the top results compared to all the

other methods on the alphamatting.com benchmark. Specif-

ically, our method ranks the 1st place in terms of the SAD

metric. Our method also has the smallest SAD errors for

5 images with all the 3 trimaps (Fig. 5). In addition, our

method ranks the 2nd place in terms of both the MSE and

Gradient metrics. Overall, our method is one of the best

performers on this dataset.

A key reason for our success is our network’s ability to

learn structure and semantics, which is important for the

accurate estimation of alpha matte when the background

scene is complex or the background and foreground col-

ors are similar. For example, in Fig 6 the “Troll” example

has very similar colors of the hair and the bridge while the

“Doll” example has strong textured background. The best

results of previous methods (from column 3 to column 6) all

have very obvious mistakes in those hard regions. In con-

trast, our method directly learns object structure and image

context. As a result, our method not only avoids the sim-

ilar mistakes made by previous methods but also predicts

more details. It is worth noting that although DCNN mat-

ting [8] is also a deep-learning based method, it learns the

non-linear combination of previous matting methods within

small local patches. Therefore the method cannot really un-

derstand semantics and thus has the same limitations as pre-

vious non-deep-learning-based methods.

5.2. The Composition1k testing dataset

We further evaluate 7 top performing prior methods and

each component of our approach on the Composition-1k

testing dataset. For all prior methods, the authors’ provided

codes are used. The different variants of our approach in-

clude: the matting encoder-decoder network 1) with only

the alpha prediction loss, 2) with both the alpha predic-

tion loss and the compositional loss, the matting encoder-
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Figure 5. SAD results on the alphamatting.com dataset. The top 5 methods are shown. Our method is emphasized by a red rectangle.

Troll Ours LocalSampling [6] TSPS-RV [1] CSC [12] DCNN [8]

Doll Ours DCNN [8] LNSP [7] KL-Divergence[19] Iterative [15]
Figure 6. The alpha matte predictions of the test images “Troll” with trimap “user” and “Doll” with trimap “small”. The first column shows

the test images. For each test image, the 1st ranked result to the 5th ranked result under the SAD metric are displayed from column two to

column six in decreasing orders. In both examples, our method achieves the best results.

Figure 7. The SAD error at different levels of trimap dilation.

decoder network 3) post-processed by the Guided filter [17]

and 4) post-processed by the matting refinement network.

The quantitative results under the SAD, MSE, Gradient

and Connectivity errors proposed by [25] are displayed in

Table 1. Clearly all variants of our approach have much bet-

ter results than the other methods. The main reason is still

the capability of our deep model understanding the com-

plex context of images while the other methods cannot. By

comparing the variants of our approach, we can also vali-

date the effectiveness of each component of our approach:

1) the compositional loss helps our model learn the com-

positional operation, and thus leads to better results, 2) the

results of our matting encoder-decoder network can be im-

proved by combining with previous edge-preserving filters

(e.g. Guided filter [17]) as well as our matting refinement

network. But the latter one has more obvious improvement

both visually and quantitatively since it is directly trained

with the outputs of our encoder-decoder network.

We test the sensitivity of our method to trimap placement

in Fig. 7. We evaluate over a subset of our dataset that in-

cludes one randomly-chosen image for each unique object

for a total of 50 images. To form the trimap, we dilate the

ground truth alpha for each image by d pixels for increas-

ing values of d. The SAD errors at a particular parameter

d are averaged over all images. The results of all the meth-

ods at parameters d ∈ [1, 4, 7, 10, 13, 16, 19] are shown in

Fig. 7. Clearly our method has a low and stable error rate

with the increasing values of d whiles the error rate of the

other approaches increases rapidly. Our good performance

derives from both our training strategies as well as a good

understanding of image context.

Some visual examples are shown in Fig. 8 to demonstrate

the good performance of our approach on different matting

cases such as hair, holes and semi-transparency. Moreover,

our approach can also handle objects with no pure fore-

ground pixels, as shown in the last example in Fig. 8. Since

previous sampling-based and propagation-based methods

must leverage known foreground and background pixels,

they cannot handle this case, while our approach can learn

the appearance of fine details directly from data.

5.3. The real image dataset

Matting methods should generalize well to real-world

images. To validate the performance of our approach and
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Image Trimap Shared [13] Learning [34] Comprehensive[28] Global [16]

Closed-form [22] KNN [5] DCNN [8] Ours-raw Ours-refined GT

Image Trimap Shared [13] Learning [34] Comprehensive[28] Global [16]

Closed-form [22] KNN [5] DCNN [8] Ours-raw Ours-refined GT

Image Trimap Shared [13] Learning [34] Comprehensive[28] Global [16]

Closed-form [22] KNN [5] DCNN [8] Ours-raw Ours-refined GT

Image Trimap Shared [13] Learning [34] Comprehensive[28] Global [16]

Closed-form [22] KNN [5] DCNN [8] Ours-raw Ours-refined GT
Figure 8. The visual comparison results on the Composition-1k testing dataset. “Ours-raw’ denotes the results of our matting encoder-

decoder stage while “Ours-refined” denotes the results of our matting refinement stage.

other methods on real images, we conduct a user study on

the real image dataset. These images consist of images

pulled from the internet as well as images provided by the

ICCV 2013 tutorial on image matting.

Because our subjects may not be acquainted with alpha

mattes, we instead evaluate the results of compositions. For

each method, the computed alpha matte is used to blend the

test image onto a black background and onto a white back-

ground. For the user test, we present the image and the two

composition results of two randomly selected approaches to

2976



Image Trimap Shared [13] Learning [34] Comprehensive[28]

Global [16] Closed-form [22] KNN [5] DCNN [8] Ours-refined

Image Trimap Shared [13] Learning [34] Comprehensive[28]

Global [16] Closed-form [22] KNN [5] DCNN [8] Ours-refined
Figure 9. Example results from our real image dataset.

Table 2. The user study on the real image dataset. The preferred

method in each pairwise comparison is emphasized in bold.
Methods [13] [34] [28] [16] [22] [5] [8] Ours

Shared [13] - 60.0 78.5 79.6 69.7 40.6 57.8 83.7

Learning [34] 40.0 - 60.2 54.6 53.4 27.3 35.1 83.6

Comprehensive [28] 21.5 39.8 - 25.8 43.3 20.4 29.2 78.8

Global [16] 20.4 45.4 74.2 - 53.3 30.0 42.0 84.2

Closed-Form [22] 30.3 46.6 56.7 46.7 - 25.0 38.1 80.4

KNN [5] 59.4 72.7 79.6 70.0 75.0 - 73.3 97.0

DCNN [8] 42.2 64.9 70.8 58.0 61.9 26.7 - 83.7

Ours 16.3 16.4 21.2 15.8 19.6 3.0 16.3 -

an user and ask which results are more accurate and realis-

tic especially in the regions of fine details (e.g. hair, edges

of object, and semi-transparent areas). To avoid evaluation

bias, we conduct the user study on the Amazon Mechanical

Turk. As a result, there are total 392 users participating the

user study and each method pair on one image is evaluated

by 5 to 6 unique users.

The pairwise comparison results are displayed in Tbl. 2,

where each column presents the preference of one approach

over the other methods. For example, users preferred our

result 83.7% of the time over [13]. Notably almost 4 out

of 5 users prefer our method over the prior methods, which

well demonstrates that our method indeed produces better

visual results. See Fig. 9 for some visual results.

It is also worth noting that the ranking of other meth-

ods differs in this test compared to the other two experi-

ments. For example, Closed-Form Matting [22] is the low-

est ranked method on alphamatting.com of the methods we

compare here, yet to users it is preferable to all other meth-

ods except our own and [28]. On the other hand, while

DCNN [8] is the prior state-of-the-art method on alphamat-

ting.com, is only preferred over two methods on the real

images. It is unclear whether this is due to methods overfit-

ting the alphamatting.com dataset or whether the standard

error metrics fail to accurately measure human perceptual

judgment of alpha matting results.

6. Conclusion

In order to generalize to natural images, matting algo-

rithms must move beyond using color as a primary cue

and leverage more structural and semantic features. In this

work, we show that a neural network is capable of captur-

ing such high-order features and applying them to compute

improved matting results. Our experiments show that our

method does not only outperform prior methods on the stan-

dard dataset, but that it generalizes to real images signifi-

cantly better as well.
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