This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Few-Shot Object Recognition from Machine-Labeled Web Images

Zhongwen Xu*

Linchao Zhu*

Yi Yang

CALI, University of Technology Sydney

{zhongwen.s.xu, zhulinchao7,

Abstract

With the tremendous advances made by Convolutional
Neural Networks (ConvNets) on object recognition, we can
now easily obtain adequately reliable machine-labeled an-
notations easily from predictions by off-the-shelf ConvNets.
In this work, we present an “abstraction memory” based
framework for few-shot learning, building upon machine-
labeled image annotations. Our method takes large-scale
machine-annotated dataset (e.g., Openlmages) as an exter-
nal memory bank. In the external memory bank, the in-
formation is stored in the memory slots in the form of key-
value, in which image feature is regarded as the key and the
label embedding serves as the value. When queried by the
few-shot examples, our model selects visually similar data
from the external memory bank and writes the useful in-
formation obtained from related external data into another
memory bank, i.e. abstraction memory. Long Short-Term
Memory (LSTM) controllers and attention mechanisms are
utilized to guarantee the data written to the abstraction
memory correlates with the query example. The abstraction
memory concentrates information from the external mem-
ory bank to make the few-shot recognition effective. In
the experiments, we first confirm that our model can learn
to conduct few-shot object recognition on clean human-
labeled data from the ImageNet dataset. Then, we demon-
strate that with our model, machine-labeled image annota-
tions are very effective and abundant resources for perform-
ing object recognition on novel categories. Experimental
results show that our proposed model with machine-labeled
annotations achieves great results, with only a 1% differ-
ence in accuracy between the machine-labeled annotations
and the human-labeled annotations.

1. Introduction

Innovations in the architecture of Convolutional Neu-
ral Networks (ConvNets) [21, 30, 27, 12] have resulted
in tremendous improvements in image classification in the
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Figure 1. Given a large vocabulary of labels and their correspond-
ing images, we conduct few-shot learning on a novel category
which is not in the vocabulary and only has a handful of positive
examples. The image examples in the vocabulary are stored in the
external memory of our model, and the image example from the
novel category queries the external memory. Our model returns
helpful information according to visual similarity and LSTM con-
trollers. The retrieved information, i.e., visual features and their
corresponding labels, are combined to classify this query image
example.

past few years. With the increase in the capacity of neu-
ral networks, the demand for more labeled data in richer
categories is rising. However, it is impractical and very ex-
pensive to manually label a dataset 10 times larger than Im-
ageNet. This prompts us to design a new paradigm that
can utilize the machine-labeled image annotations to enable
rapid learning from novel object categories. Figure 1 illus-
trates the proposed task. Our major question in this work is
as follows: Can we use machine-labeled web image anno-
tations to rapidly conduct object recognition for novel cate-
gories with only a handful of examples?

We propose a new memory component in neural net-
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works, namely abstraction memory, to concentrate infor-
mation from the external memory bank, e.g., large-scale
object recognition datasets like ImageNet [7] and Open-
Images [19], based on few-shot image queries. Previous
methods which attempt to learn from different categories
or datasets usually use a larger dataset for pre-training and
then conduct fine-tuning on a relatively small dataset. The
information of the large datasets is encoded in the learn-
able weights of the neural networks. In contrast to pre-
vious works, our model utilizes a content-based address-
ing mechanism with a Long Short-Term Memory (LSTM)
controller to automatically decide where to read from and
where to write into the memory. The neural network ap-
plies a soft attention mechanism [3] to the query image to
find the appropriate information to read from the external
memory and write into another memory. The abstraction
memory records helpful information for the specific few-
shot object recognition, so that the classification network
can utilize readouts from the abstraction memory to recog-
nize the objects from novel categories.

Previous methods only discover the relationship of the
word embeddings [16, 23] between the category labels,
whereas we fully utilize the visual similarity between the
examples of few-shot categories and the external mem-
ory bank to make the proposed framework more robust
to noisy labels. If the external memory data is incon-
sistent with its label, this sample will be rejected during
the visual matching process. This property makes the use
of a large-scale machine annotated dataset, e.g., Openlm-
ages [19] feasible. The machine-labeled annotations for
images could be predicted by off-the-shelf ConvNet mod-
els (e.g., ResNets [12]), but although these annotations are
reasonably good, they are not perfect. In this scenario,
the external dataset can also consist of images obtained by
querying keywords in search engines (e.g., Google Images),
and images crawled from social image sharing sites (e.g.,
Flickr). In the experiment section, we show that the results
of our proposed method using machine-annotated data dif-
fer from human-labeled data by a minor gap =~ 1%.

When novel categories arrive, the network accesses and
queries the external memory, retrieves the related infor-
mation, and writes into abstraction memory. We orga-
nize the memory in the data structure key:value, which
was first proposed in Key-Value Memory Networks (KV-
MemNNs) [24]. We note that we have the implementa-
tion of our model, including LSTM controllers, abstrac-
tion memory, and reading mechanisms, differs significantly
from KV-MemNNs. Moreover, KV-MemNNs were de-
veloped in natural language understanding area, and their
memory access is limited to the most recent few sentences.
We extend the key-value storage concept into computer vi-
sion applications by novel modifications to enable scalabil-
ity. We formulate the image embedding as the key and

the word embedding of the annotated label as the value.
The additional memory for abstraction extracts information
from the external memory and learns task-specific repre-
sentation for the few-shot learning while maintaining effi-
ciency.

Our contributions are as follows.

1. We propose a novel task for learning few-shot ob-
ject recognition on machine-labeled image annota-
tions. We demonstrate that with sufficiently reliable
machine-labeled annotations, it is possible to achieve
excellent performance with a only a minor deviation
in accuracy (about 1%) compared to learning from
human-labeled annotations;

2. We propose the incorporation of a novel memory com-
ponent, namely abstraction memory, into the Memory
Networks [36] structure. The abstraction memory al-
leviates the time-consuming content-based addressing
of the external memory, enabling the model to be scal-
able and efficient;

3. We utilize both visual embeddings and label embed-
dings in a form of key-value to make the system ro-
bust to imperfect labeling. This enables the model to
learn from the machine-labeled web images to obtain
rich signals for visual representation, which is very
suitable for real-world vision application. We conduct
few-shot learning of unseen visual categories, making
rapid and accurate predictions without extensive itera-
tions of positive examples.

We demonstrate the advantages of our method over state-
of-the-art models such as Matching Networks [33], KV-
MemNNs [24], Exemplar-SVMs [22], and Nearest Neigh-
bors [5] on few-shot object recognition tasks.

2. Related Work

Learning Visual Features from the Web. Chen et al. [0]
proposed a never ending image learner (NEIL) to extract
common sense relationships and predict instance-level la-
bels on web images. NEIL bootstraps the image classifier
by training from top-ranked images in Google images as
positive samples, and a semi-supervised learning method is
then used to mine object relationships. Divvala et al. [8]
leveraged Google Books to enrich the visual categories into
very broad ranges, including actions, interactions, and at-
tributes. These works focus on mining relationships be-
tween objects and intra-class; however, these approaches
are prone to error, since classification mistakes will accu-
mulate along the iteration procedure due to the bootstrap-
ping nature. Joulin ef al. [15] argued that ConvNets can
learn from scratch in a weakly-supervised way, by utiliz-
ing 100M Flickr images annotated with noisy captions. Our
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work utilizes established state-of-the-art human-level Con-
vNets to alleviate the error that could come from seed im-
ages. We focus on a different task of rapidly learning few-
shot classification by benefiting from the rich vocabulary of
the web resources.

External Memory in Neural Networks. Neural Tur-
ing Machines (NTMs) [!1] and Memory networks
(MemNNs) [36] are two recently proposed families of
neural networks augmented with external memory struc-
ture. NTMs are fully differentiable attempts of Turing
machine neural network implementation which learn to
read from and write into external memory. NTMs have
demonstrated success on tasks of learning simple algo-
rithms such as copying input strings and reversing input
strings. MemNN was proposed to reason from facts/story
for question answering, building relationships between
“story”, “question” and “answer”. End-to-end Memory
Networks (MemN2N) [28] eliminate the requirements of
strong supervision of MemNNs and train the networks in
an end-to-end fashion. Key-Value Memory Networks (KV-
MemNNs) [24] incorporate structural information in the
form of key-value which delivers more flexible ways to
store knowledge bases or documents. Though yielding
excellent performance on toy question-answering bench-
marks, Memory Networks applications are still limited in
natural language understanding domains. We recognize the
great expressive power of neural networks augmented with
external memory, and build upon these works to learn rapid
visual classification from machine-labeled images.
One-shot Learning. Training neural networks notoriously
requires thousands of examples for each category, which
means that conventional neural models are highly data in-
efficient. Fei-Fei et al. [9] pioneered one-shot learning of
object categories and provided an important insight: tak-
ing advantage of knowledge learned from previous cate-
gories, it is possible to learn about a category from just
one, or a handful of images [9]. Inspired by Bayesian Pro-
gram Learning (BPL) for concept abstraction in Lake et
al. [20] and augmented memory neural structures [ 11, 36],
Memory-Augmented Neural Networks (MANNSs) [26] uti-
lize a meta-learning paradigm to learn the binding of sam-
ples and labels from shuffled training batches. Matching
networks [33] employ metric learning and improve over
MANN s significantly by utilizing the attention kernel and
the set-to-set framework [32].

3. Proposed Approach

3.1. Preliminaries

We briefly introduce some technical preliminaries on
Memory Network variants before discussing our proposed
model.

Memory Networks (MemNNs) [36] are a new family of

learning models which augment neural networks with exter-
nal memory. The major innovation of Memory Networks
is the long-term memory component M, which enables
the neural networks to reason and access the information
from long-term storage. End-to-End Memory Networks
(MemN2N) [28] implement Memory Networks in a con-
tinuous form, so that end-to-end training becomes feasible.
The recently proposed Key-Value Memory Networks (KV-
MemNNs) [24] extend MemNNs [36] and MemN2N [28]
with structural information storage in the memory slots.
Instead of having only single vector representation in the
memory component, as in MemN2N, KV-MemNNs make
use of pairs of vectors in the memory slots, ie., key:
value. The incorporation of the structural storage of the
Key-Value form into the memory slots brings much more
flexibility, which enriches the expressive power of the neu-
ral networks. The Key-Value property makes information
retrieval from the external memory natural.

The Memory Network variants (MemNNs, MemN2N,
and KV-MemNNs) have been proposed for natural lan-
guage understanding, and researchers often only validate
these models on question answering tasks such as bAbI
tasks [35].

3.2. Model Overview

In this work, we propose a novel Memory Networks ar-
chitecture to tackle the few-shot visual object recognition
problem. It retains the key-value structure, but in con-
trast to KV-MemNNs, we utilize Long Short-Term Mem-
ory (LSTM) as a “controller” when accessing and writing
to memory. Moreover, we introduce a novel memory com-
ponent, namely abstraction memory, to enable task-specific
feature learning and obtain scalability. The distinct nature
of our proposed abstraction memory makes the neural net-
work “remember” the ever present external memories, anal-
ogous to the memory cell ¢ in LSTMs but much more ex-
pressive. The incorporation of abstraction memory enables
stochastic external memory training, i.e., we can sample
batches from the a huge external memory pool. In contrast
to our work, existing Memory Networks limit their access
to external memory to a very small number, e.g., MemN2N
limit their access to external memory to the most recent 50
sentences [28].

The overview of our model is shown in Figure 2. The
whole procedure of our proposed model is illustrated as
follows. Note that we re-formulate key: value as (key,
value) in the rest of this work.

g, Mew = EMBED(I, {Zyeb; Lweb}) (1
(Zkeys Zval) = READ(q, Mey), ()
Myps WRITE(Q, (Zkeys Zval), Maps), (3)
(Ukey; Uyva) = READ(q, Mups), 4
U = CLS([Ukey, Uyal)- ®)
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Figure 2. An illustration of our proposed model. Best viewed in color.

We elaborate on each of the operation in the procedure, and
all of the following operations are parameterized by neural
networks:

1. Embed is a transformation from the raw inputs to their
feature representation. We denote the network to ex-
tract image feature as ®;, and the one to extract vec-
tor representation for label as ®y,e. Given an image 1
from a novel category, and a group of web images with
labels, denoted as Zyep and Ly, Where 7 is the image
set and L is the label set, the input image [ is sampled
from unseen categories, and the embedded feature for
the query image is referred to as query q following the
notation in Memory Networks. The web images are
embedded in the external memory M.y, through the
same embedding networks @i, and Piper;

2. READ takes the query q as input and conducts content-
based addressing on the external memory Mgy, to
find related information according to a similarity met-
ric with g. The external memory is also called the sup-
port set in Memory Networks. The output of READ is
a pair of vectors in key-value form, i.e., (Zkey, Zval), a8
shown in Eqn. (2);

3. WRITE takes a query q and key-value pair (Ziey, Zva1)
as inputs to conduct a write operation. The content-
based addressing is based on matching input with
M , and then updating the content of the corre-
sponding abstraction memory slots as in Eqn. (3);

4. READ from abstraction memory (Eqn. (4)) is for the
classification stage. Take the input query g to match

the abstraction memory M ,,s. The obtained pairs of
vectors (i.e., (Ugey, Uya)) are concatenated to be fed
into the classification network;

5. CLS operation takes the readout key-value (Ziey, Zval)
and concatenates them into one vector zgs, =
[Zkey, Zval]. Then z goes through a Fully-Connected
(FC) layer where: FC(z) = w ' +b,anda Softmax
layer.

Section 3.3.4 shows an LSTM variant of the CLS op-
eration.

3.3. Model Components

3.3.1 Long Short-Term Memory

In our model, Long Short-Term Memory (LSTM) [ 14] plays
an important role in the READ, WRITE and CLS proce-
dures and serves as the controller of the memory address-
ing. LSTM is a special form of Recurrent Neural Net-
works (RNNs). LSTM addresses the vanishing gradient
problem [4] of RNNs by introducing an internal memory
cell to encode information from the previous steps. LSTM
has resurged due to the success of sequence to sequence
modeling [29] on machine translation [3], image caption-
ing [34, 17, 37], video classification [38], video caption-
ing [31, 25], etc. Following the notations of Zaremba et
al. [39] and Xu et al. [37] and assuming x; € RP,
Tpigaa : RPT? — R* denotes an affine transformation
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from RP+4 to R*¢, LSTM is implemented as:

it g
I _ o Ty
ol = & Tpyiaaa hy (6)
gt tanh
c=fOc 1+ Og (N
h; = 0 ® tanh(c¢,), 8)

where ., f;, c;, 0, are the input, forget, memory, output
gates respectively, o and tanh are element-wise activation
functions, x; is the input to the LSTM in the ¢-th step and
h; is the hidden state of the LSTM in the ¢-th step.

For simplicity of notation, we denote one computational
step of the LSTM recurrence as a function LSTM, defined
as:

hy = LSTM(x¢, he—1). 9)

3.3.2 Reading from the Memory

In this section, we describe the mechanism for
reading information from the memory. Given
an external memory with buffer size N;, M =

1 1 2 2 N1, Ny
{(mkey’ mval)’ (mkey’ mval)’ e (mkey7 LU )}’ where
each memory slot m’ is encoded as a key-value struc-

; i i : i i
ture, i.e., (M, my,), or equivalently my, : my,.

mj,, € R", mi, € R, where d; is the dimension of the
image embedding (i.e., the key part) in the memory slot,
and do denotes the dimension of the label embedding (i.e.,
the val part) in the memory slot. We use the tuple notation
(m]i(ey, m! ) in the rest. We apply the reading mechanisms
from the set-to-set framework [32] on the memory bank.
For each time step ¢, we have:

g = LSTM(0,q; ) (10)
eir = g/ mi (11)
a;; = Softmax(e;;) (12)
zlﬁey = Zai,tm]i(ey (13)
i
Za =) Giamy (14)
a; = a2 (15)
(mf(ey,mf,al), i = 1,2,..., Ny, are all the memory slots

stored in M. When the query g; comes, it conducts dot
product with all of the key parts of the memory slot m};ey
(Eqn. (11)), to obtain the similarity metric e; ; between
query image g; and the image in the memory slot mf(ey.
The Softmax operation of Eqn. (12) generates an attention
weight a; ; over the whole memory M. Then, Eqn. (13)
and Eqn. (14) utilize the learned attention weight a;; to

read the key part and the value part, i.e., label embed-
ding, from the external memory. The readout operation
blends all of the key/value vectors mj, /m, with the atten-
tion weight a; ; to obtain the readout vectors z{,, and 2},
Lastly, zlﬁey is concatenated with query g, producing g; to
be fed into the next step as the input of LSTM (Eqn. (10)).
The above reading procedure loops over the memory for
T timesteps, obtaining T readout pairs of vectors, i.e.,
{(zl}ew z\}al)’ (zlgew z\%il)? e (zlz;y’ z\z;l)}' The LSTM con-
troller takes no input but computes the recurrent state to
control the reading operation. For more details, please re-
fer to the vector version (the memory slot is in the form
of a vector instead of a key-value) of this reading mecha-
nism [32].

After T-step READ operations over memory M (which
could be either My, or M y,s), We can obtain:

zZ= {(zl}ew Z&al)? (zlgeyv z3a1>7 ) (le;w Z\?;l)}‘ (16)

3.3.3 Abstraction Memory

We propose to utilize a novel memory component, namely
abstraction memory, in our implementation of Memory
Networks. The abstraction memory has the following prop-
erties:

1. It learns task-specific representation for the few-shot
object recognition task;

2. It attempts to tackle the problem of efficiency of
content-based addressing over a large external mem-

ory pool.

Abstraction memory is a writable memory bank M,
with buffer size Ns. It satisfies No < Nq, where IV; is the
buffer size of the external memory bank M.y.. We denote
MﬂbS = {(ﬁl’]%eyﬂ ,fh&al)’ (Th]%eyﬂ ,{’heal)V Tt (mlﬁfﬂ m\]/\zif)}’
where 1}, € R%, mai, € R%, d, is the dimension of
the key vector stored in the memory slot, and Jg is the
dimension of the value part stored in the memory slot.
Writing. Unlike the external memory bank, the abstrac-
tion memory bank is “writable”, which means the neural
networks can learn to update the memory slots in the stor-
age by remembering and abstracting what is important for
specific tasks. The memory update is according to an em-
bedding (i.e., through an FC layer) of the readout ( 2iey, Zva1)
from the larger external memory bank M.

Following the writing operation proposed in Neural Tur-
ing Machines (NTMs) [1 1], we conduct the differentiable
WRITE operation on the abstraction memory bank Maps.
The LSTM controller produces erase vectors eyey € R,
eva € R% and add vectors Qiey € R4, ayy € R?%. Note
that each element of the erase vector satisfies 0 < ef;ey <1
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and 0 < €', < 1, which can be implemented by passing
through a Sigmoid function o (z).

For each memory slot m’, the WRITE operation con-
ducts the following updates in the abstraction memory bank

M. For each timestep ¢, we have

Thll(ey — mllcey(l - wi,tekey) + Wit Qkey, (I7)
'rhz/al <~ Th:zal (1 - wi,teval) + Wit Ayal - (18)

The vector wy is used for addressing mechanisms in the
WRITE operation [11]. However, in contrast to NTMs, we
do not utilize location-based addressing but only content-
based addressing over the abstraction memory M,s. The
vector w; can be calculated as in Eqn. (11) and Eqn. (12),

by replacing 1y of My into 77ty of Mgps.

3.3.4 Label Prediction

When it reaches the prediction stage, our model reads
(Ukey, Uval) from the abstraction memory My, as shown
in Eqn. (4). The reading mechanism has been illustrated
in Section 3.3.2. Reading from the memory is a recur-
rent process, with 7' timesteps, and we can fetch read-
outs U = {[/u’lley’ u\llal]’ [’u’l%ew u3a1]7 M) [uz;y’ uvTal]} to ob-
tain enough information for few-shot classification, where
(1], ui,] denotes the concatenation of two vectors into
one. We then run an LSTM on top of the sequence U, ob-
tain the final state output A from the LSTM, and then feed
hr into an FC layer and a Softmax layer to output the
prediction y.

In this way, our model fully utilizes the readout vectors
with both visual information and label embedding informa-
tion to conduct classification. These readout vectors are
from abstraction memory, which learns to adapt in specific
tasks, e.g., few-shot object recognition.

3.4. Training

We apply a standard cross entropy loss between the pre-
diction y and the groundtruth y, where y is the one-hot
representation of the groundtruth label.

All of the operations and components in our model are
fully differentiable, which means we can train our model
with stochastic gradient descent (SGD) in an end-to-end
way.

3.5. Inference

In the inference (testing) stage, we do not make the ex-
ternal memory M.y, available, since the abstraction mem-
ory My has stored all of the required information in the
form of key-value in the memory slots. Thus, on the in-
ference stage, we only run the prediction process (c.f. Sec-
tion 3.3.4) on the fetched vectors from M 5. The predicted
label is obtained by an argmax operation over the softmax
probability output g.

4. Experiments

We evaluate our proposed model using two different ex-
ternal image sources, i.e., ImageNet [7] dataset and Open-
Images [19] dataset. In this section, we describe the specific
model configurations used in the experiments, and show
the results of the few-shot recognition model trained from
clean human-labeled annotations and machine-labeled an-
notations. Our model is implemented using TensorFlow [1].

4.1. Preprocessing

We use features from top convolutional layers as image
embeddings. In all our experiments, we use the last layer
activations before the final classification from the ResNet-
200 [13] model pretrained on ImageNet [7]. This single
model achieved top-5 error of 5.79% on the ILSVRC 2012
validation set. Following standard image preprocessing
practice, images are first resized to 256 on the short side
and the central 224 x 224 subregion is cropped; we thus
obtain an image embedding with the feature dimension of
2,048. We apply the word embedding from the state-of-
the-art language modeling model [16] in our label to word
embedding mapping. We follow the instructions provided
by the authors to extract embeddings for each word in the
vocabulary, and embeddings are averaged if there are multi-
ple words for one category. The embedding length is 1,024,
thus we have the embedding matrix of |V'| by 1,024, where
|[V| is the size of the vocabulary V. The ResNet for visual
feature extraction and the label embedding matrix will not
be updated during training.

4.2. Model Specifications

For all the LSTM models, we use one-layer LSTM with
hidden unit size of 1,024. In particular, we utilize Layer
Normalization [2] for the gates and states in the cell, which
we found was crucial to train our model. Layer Normal-
ization helps to stabilize the learning procedure in RNNs,
without which we could not train the network successfully.
Dropout is used in the input and output of LSTM and we set
the Dropout probability to 0.5. The default model parame-
ters are described as follows. We use N; = 1,000 memory
slots for the external memory bank and Ny = 500 mem-
ory slots for the abstraction memory. Both key and value
vectors stored in the abstraction memory have the dimen-
sionality of 512. The controller iterates 7' = 5 times when
abstracting information from the external memory banks.
We use the default model parameters in all the experiments
unless otherwise stated.

Our model is trained with an ADAM optimizer [!8]
with learning rate of 1 x 10~* and clip the norm of the
global gradients at 10 to avoid the gradient exploding prob-
lem [29]. Weights in the neural network are initialized
with Glorot uniform initialization [10] and weight decay of
1 x 10~% is applied for regularization.
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4.3. Datasets

ImageNet: ImageNet is a widely used image classification
benchmark. There are two sets in the ImageNet dataset.
One part is used in the ILSVRC classification competi-
tions, namely ILSVRC 2012 CLS. This part contains ex-
actly 1,000 classes with about 1,200 images per class, with
well-verified human-labeled annotations. The other set of
ImageNet is the whole set, which consists of about 21,000
categories.

OpenIlmages. The recently released Openlmages
dataset [19] consisting of web images with machine-labeled
annotations. We utilize the validation set with 167,057 im-
ages to conduct our experiment, since both machine-labeled
annotations and human-labeled annotations are provided
only in the validation set. There are 7,844 distinct labels
in Openlmages, whose label vocabulary and diversity is
much richer than the ILSVRC 2012 CLS dataset. Since
this dataset is relatively new, we provide example images
in Figure 3. We can see that the Openlmages dataset has a
wider vocabulary than the ImageNet ILSVRC 2012 dataset,
which is beneficial for generalization to novel categories.

“/m/0f1tz”,“calligraphy”,0.5|| “/m/0dp7g”,“weaving”,0.8
“/m/07s6nbt”,"text", 0.9 “/m/Qjjw" "art",0.8
“/m/07b9p1","plaque”,0.5 “/m/Ocl71”,"loom",0.7

“/m/01sdr”,"color",1.0

“/m/063w2”,"pencil",0.9
“/m/02cqfm","close-up",0.7

Figure 3. Sample images from the Openlmages dataset. Anno-
tations on the images are shown in the bottom. The annotations

¢

listed are “label id”, “label name”, “confidence” tuples.

4.4. Few-shot Learning with Human-labeled
annotations

We first validate our model on the task of few-shot clas-
sification using human-labeled clean data.

For few-shot image classification, the training set has

only a small number of examples, and the basic task can
be denoted as N-way k-shot classification (following the
notation of Matching Networks [33]), in which N class im-
ages need to be classified and each class is provided with k
labeled examples (k is usually less than 10).
Dataset. We now construct our dataset for few-shot learn-
ing. We select 100 classes for learning by randomly choos-
ing 100 categories from the entire 21,000 categories in the
ImageNet dataset, excluding the 1,000 categories in the
ILSVRC 2012 CLS vocabulary. For testing, there are 200
images per category and the training set has k£ examples per
category. We use settings of £ = 1, k = 5, k = 10, i.e,
there are 1 example, 5 examples and 10 examples in the
training set.

| Methods | 1-shot 5-shot 10-shot
k-NN (17) 38.8 57.0 62.9
k-NN (I2) 38.6 56.4 62.1
E-SVM 45.1 62.3 68.0
KV-MemNNs | 43.2 (£0.4) | 66.6 (+0.2) | 72.8 (£0.2)
Ours 45.8 68.0 73.5

Table 1. Comparison between our model and other methods. Re-
sults are reported on our 100-way testing set.

4.4.1 Comparison with other methods

In this experiment, we use image-label pairs from the
ILSVRC 2012 CLS dataset as external memory. We use all
1,000 categories for learning. We conduct experiments on
1-shot, 5-shot, 10-shot tasks and compare our results with
several algorithms. The results are shown in Table 1.

k-NN and Exemplar-SVMs. k-Nearest Neighbors (k-NN)
is a simple but effective classifier when very few training
examples are provided. We utilize ResNet-200 features and
consider two distance metrics, i.e., [; and lo, for pairwise
distance calculation. And we set k¥ = 5. Exemplar-SVMs
(E-SVM) [22] train an SVM for each positive example and
ensemble them to obtain the final score. The method was
widely used in object detection in the pre-ConvNet era. We
use the same ResNet-200 features and set C' = 0.1. The
results show that our method outperforms k-NN for both [y
and [, distance with a large margin and it also outperforms
E-SVMs. Note that on 5-shot and 10-shot tasks, our model
achieves better performance than the E-SVMs with larger
margin. The results show that our model takes advantage of
the large number of image-label pairs in the external mem-
ory by learning relationships between the examples and the
external data.

KV-MemNNs. By utilizing the interpretation of image em-
bedding as key and label embedding as value as in our
model, KV-MemNNs can also be trained to conduct few-
shot learning. However, due to the design of KV-MemNNss,
few-shot prediction has to rely on the external memory,
while the image classification datasets used in our work are
too large to be stored in. This property means that KV-
MemNNs conduct non-deterministic classification predic-
tion, which is not desirable. It is unrealistic to search over
all image-pairs in the external memory during each train-
ing iteration. In the testing, it is also time-consuming to
traverse the whole external memory. As a workaround, we
randomly sample 1,000 pairs from the external memory for
matching during both training and testing. We report the
mean classification results and the standard deviation in 20
runs. The result shows that our abstraction memory extracts
valuable information from the large external memory and is
much more compact than the original memory banks.
Matching Networks. We also compare our method with
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Methods 5-way 1-shot classification

Matching Networks 90.1
Ours 93.9

Table 2. Comparison between our model and Matching Networks
on the 5-way 1-shot task.

the recently proposed Matching Networks [33]. Matching
Networks use two embedding functions that consider set
context. However, as LSTM is used for the embedding,
the size of the support set is limited. In [33], the number
of categories is usually set to 5 for ImageNet experiments
(5-way). For fair comparison, we conduct our experiment
on the 5-way 1-shot task. We randomly choose 5 categories
from the previously used 100-category set. The testing set
has the same number of instances per category. The result
is shown in Table 2, which demonstrates that our method
outperforms the Matching Network. Our model builds an
explicit connection between the few training examples and
the external memory, which benefits greatly from a large
vocabulary.

We visualize the query results between the external
memory and the query in Figure 4.

Query 1 Query 2 Query 3

Return 1 Return 2

0468(1
0.19
0.11
=
RO 6™

Figure 4. We show the query results returns from the external
memory. The scores are the softmax probabilities. Only top-3
results are shown.

4.5. Few-shot Learning with Machine-labeled
Annotations

In this experiment, we replace the external memory
source with the Openlmages dataset. The machine-labeled
images are much easier to obtain but are noisier. We train
our model to learn from such noisy web images.

We construct the external memory using the Openlm-
ages dataset. We use four different settings, which are:
1,000 vocabulary with human-labeled images, 1,000 vo-
cabulary with machine-labeled images, 6,000 vocabulary
with human-labeled images, and 6,000 vocabulary with
machine-labeled images. Note that although the Openlm-
ages dataset is machine-labeled, the validation set in the
original dataset is also validated by human raters. The

Methods [ 1,000 [ 6,000 |

Machine-labeled | 66.6 67.4
Human-labeled 67.7 68.2

Table 3. Results on the Openlmages dataset. The results are re-
ported on the 100-way 5-shot task.

results are shown in Table 3, which demonstrates that
machine-labeled external memory can serve as a good
source for few-shot learning, which is less accurate than
human-labeled external memory by only about 1%

As the vocabulary size grows, we observe that perfor-
mance improves. This shows that given a large vocabulary,
our model is able to reason among the external memory in
a more effective way. Larger vocabulary will be explored in
the future.

4.6. Hyperparamter Study

We conduct the hyperparameter study on the memory
slots numbers, i.e., Ny for the external memory and N for
the abstraction memory. Table 4 shows the comparisons
among different combinations of memory slots in 5-shot
recognition on ImageNet dataset, which demonstrates that
our proposed model is robust to the change of memory slots.

Ni : Na Accuracy (%)
500 : 500 67.6
1000 : 250 67.9
1000 : 500 68.0

1000 : 1000 67.7
2000 : 500 68.1

Table 4. Comparisons among the numbers of memory slots.

5. Conclusion

In this paper, we propose a novel Memory Networks ar-
chitecture specifically tailored to tackle the few-shot learn-
ing problem on object recognition. By incorporating a
novel memory component into the Key-Value Memory Net-
works, we enable rapid learning from seeing only a handful
of positive examples by abstracting and remembering the
presented external memory. We utilize LSTM controllers
for reading and writing operations into the memory. We
demonstrate that our proposed model achieves better per-
formance than other state-of-the-art methods. Furthermore,
we obtain similar performance by utilizing machine-labeled
annotations compared to human-labeled annotations.
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