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Abstract

With the tremendous advances made by Convolutional

Neural Networks (ConvNets) on object recognition, we can

now easily obtain adequately reliable machine-labeled an-

notations easily from predictions by off-the-shelf ConvNets.

In this work, we present an “abstraction memory” based

framework for few-shot learning, building upon machine-

labeled image annotations. Our method takes large-scale

machine-annotated dataset (e.g., OpenImages) as an exter-

nal memory bank. In the external memory bank, the in-

formation is stored in the memory slots in the form of key-

value, in which image feature is regarded as the key and the

label embedding serves as the value. When queried by the

few-shot examples, our model selects visually similar data

from the external memory bank and writes the useful in-

formation obtained from related external data into another

memory bank, i.e. abstraction memory. Long Short-Term

Memory (LSTM) controllers and attention mechanisms are

utilized to guarantee the data written to the abstraction

memory correlates with the query example. The abstraction

memory concentrates information from the external mem-

ory bank to make the few-shot recognition effective. In

the experiments, we first confirm that our model can learn

to conduct few-shot object recognition on clean human-

labeled data from the ImageNet dataset. Then, we demon-

strate that with our model, machine-labeled image annota-

tions are very effective and abundant resources for perform-

ing object recognition on novel categories. Experimental

results show that our proposed model with machine-labeled

annotations achieves great results, with only a 1% differ-

ence in accuracy between the machine-labeled annotations

and the human-labeled annotations.

1. Introduction

Innovations in the architecture of Convolutional Neu-

ral Networks (ConvNets) [21, 30, 27, 12] have resulted

in tremendous improvements in image classification in the

∗Indicates equal contribution.
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Figure 1. Given a large vocabulary of labels and their correspond-

ing images, we conduct few-shot learning on a novel category

which is not in the vocabulary and only has a handful of positive

examples. The image examples in the vocabulary are stored in the

external memory of our model, and the image example from the

novel category queries the external memory. Our model returns

helpful information according to visual similarity and LSTM con-

trollers. The retrieved information, i.e., visual features and their

corresponding labels, are combined to classify this query image

example.

past few years. With the increase in the capacity of neu-

ral networks, the demand for more labeled data in richer

categories is rising. However, it is impractical and very ex-

pensive to manually label a dataset 10 times larger than Im-

ageNet. This prompts us to design a new paradigm that

can utilize the machine-labeled image annotations to enable

rapid learning from novel object categories. Figure 1 illus-

trates the proposed task. Our major question in this work is

as follows: Can we use machine-labeled web image anno-

tations to rapidly conduct object recognition for novel cate-

gories with only a handful of examples?

We propose a new memory component in neural net-
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works, namely abstraction memory, to concentrate infor-

mation from the external memory bank, e.g., large-scale

object recognition datasets like ImageNet [7] and Open-

Images [19], based on few-shot image queries. Previous

methods which attempt to learn from different categories

or datasets usually use a larger dataset for pre-training and

then conduct fine-tuning on a relatively small dataset. The

information of the large datasets is encoded in the learn-

able weights of the neural networks. In contrast to pre-

vious works, our model utilizes a content-based address-

ing mechanism with a Long Short-Term Memory (LSTM)

controller to automatically decide where to read from and

where to write into the memory. The neural network ap-

plies a soft attention mechanism [3] to the query image to

find the appropriate information to read from the external

memory and write into another memory. The abstraction

memory records helpful information for the specific few-

shot object recognition, so that the classification network

can utilize readouts from the abstraction memory to recog-

nize the objects from novel categories.

Previous methods only discover the relationship of the

word embeddings [16, 23] between the category labels,

whereas we fully utilize the visual similarity between the

examples of few-shot categories and the external mem-

ory bank to make the proposed framework more robust

to noisy labels. If the external memory data is incon-

sistent with its label, this sample will be rejected during

the visual matching process. This property makes the use

of a large-scale machine annotated dataset, e.g., OpenIm-

ages [19] feasible. The machine-labeled annotations for

images could be predicted by off-the-shelf ConvNet mod-

els (e.g., ResNets [12]), but although these annotations are

reasonably good, they are not perfect. In this scenario,

the external dataset can also consist of images obtained by

querying keywords in search engines (e.g., Google Images),

and images crawled from social image sharing sites (e.g.,

Flickr). In the experiment section, we show that the results

of our proposed method using machine-annotated data dif-

fer from human-labeled data by a minor gap ≈ 1%.

When novel categories arrive, the network accesses and

queries the external memory, retrieves the related infor-

mation, and writes into abstraction memory. We orga-

nize the memory in the data structure key:value, which

was first proposed in Key-Value Memory Networks (KV-

MemNNs) [24]. We note that we have the implementa-

tion of our model, including LSTM controllers, abstrac-

tion memory, and reading mechanisms, differs significantly

from KV-MemNNs. Moreover, KV-MemNNs were de-

veloped in natural language understanding area, and their

memory access is limited to the most recent few sentences.

We extend the key-value storage concept into computer vi-

sion applications by novel modifications to enable scalabil-

ity. We formulate the image embedding as the key and

the word embedding of the annotated label as the value.

The additional memory for abstraction extracts information

from the external memory and learns task-specific repre-

sentation for the few-shot learning while maintaining effi-

ciency.

Our contributions are as follows.

1. We propose a novel task for learning few-shot ob-

ject recognition on machine-labeled image annota-

tions. We demonstrate that with sufficiently reliable

machine-labeled annotations, it is possible to achieve

excellent performance with a only a minor deviation

in accuracy (about 1%) compared to learning from

human-labeled annotations;

2. We propose the incorporation of a novel memory com-

ponent, namely abstraction memory, into the Memory

Networks [36] structure. The abstraction memory al-

leviates the time-consuming content-based addressing

of the external memory, enabling the model to be scal-

able and efficient;

3. We utilize both visual embeddings and label embed-

dings in a form of key-value to make the system ro-

bust to imperfect labeling. This enables the model to

learn from the machine-labeled web images to obtain

rich signals for visual representation, which is very

suitable for real-world vision application. We conduct

few-shot learning of unseen visual categories, making

rapid and accurate predictions without extensive itera-

tions of positive examples.

We demonstrate the advantages of our method over state-

of-the-art models such as Matching Networks [33], KV-

MemNNs [24], Exemplar-SVMs [22], and Nearest Neigh-

bors [5] on few-shot object recognition tasks.

2. Related Work

Learning Visual Features from the Web. Chen et al. [6]

proposed a never ending image learner (NEIL) to extract

common sense relationships and predict instance-level la-

bels on web images. NEIL bootstraps the image classifier

by training from top-ranked images in Google images as

positive samples, and a semi-supervised learning method is

then used to mine object relationships. Divvala et al. [8]

leveraged Google Books to enrich the visual categories into

very broad ranges, including actions, interactions, and at-

tributes. These works focus on mining relationships be-

tween objects and intra-class; however, these approaches

are prone to error, since classification mistakes will accu-

mulate along the iteration procedure due to the bootstrap-

ping nature. Joulin et al. [15] argued that ConvNets can

learn from scratch in a weakly-supervised way, by utiliz-

ing 100M Flickr images annotated with noisy captions. Our
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work utilizes established state-of-the-art human-level Con-

vNets to alleviate the error that could come from seed im-

ages. We focus on a different task of rapidly learning few-

shot classification by benefiting from the rich vocabulary of

the web resources.

External Memory in Neural Networks. Neural Tur-

ing Machines (NTMs) [11] and Memory networks

(MemNNs) [36] are two recently proposed families of

neural networks augmented with external memory struc-

ture. NTMs are fully differentiable attempts of Turing

machine neural network implementation which learn to

read from and write into external memory. NTMs have

demonstrated success on tasks of learning simple algo-

rithms such as copying input strings and reversing input

strings. MemNN was proposed to reason from facts/story

for question answering, building relationships between

“story”, “question” and “answer”. End-to-end Memory

Networks (MemN2N) [28] eliminate the requirements of

strong supervision of MemNNs and train the networks in

an end-to-end fashion. Key-Value Memory Networks (KV-

MemNNs) [24] incorporate structural information in the

form of key-value which delivers more flexible ways to

store knowledge bases or documents. Though yielding

excellent performance on toy question-answering bench-

marks, Memory Networks applications are still limited in

natural language understanding domains. We recognize the

great expressive power of neural networks augmented with

external memory, and build upon these works to learn rapid

visual classification from machine-labeled images.

One-shot Learning. Training neural networks notoriously

requires thousands of examples for each category, which

means that conventional neural models are highly data in-

efficient. Fei-Fei et al. [9] pioneered one-shot learning of

object categories and provided an important insight: tak-

ing advantage of knowledge learned from previous cate-

gories, it is possible to learn about a category from just

one, or a handful of images [9]. Inspired by Bayesian Pro-

gram Learning (BPL) for concept abstraction in Lake et

al. [20] and augmented memory neural structures [11, 36],

Memory-Augmented Neural Networks (MANNs) [26] uti-

lize a meta-learning paradigm to learn the binding of sam-

ples and labels from shuffled training batches. Matching

networks [33] employ metric learning and improve over

MANNs significantly by utilizing the attention kernel and

the set-to-set framework [32].

3. Proposed Approach

3.1. Preliminaries

We briefly introduce some technical preliminaries on

Memory Network variants before discussing our proposed

model.

Memory Networks (MemNNs) [36] are a new family of

learning models which augment neural networks with exter-

nal memory. The major innovation of Memory Networks

is the long-term memory component M, which enables

the neural networks to reason and access the information

from long-term storage. End-to-End Memory Networks

(MemN2N) [28] implement Memory Networks in a con-

tinuous form, so that end-to-end training becomes feasible.

The recently proposed Key-Value Memory Networks (KV-

MemNNs) [24] extend MemNNs [36] and MemN2N [28]

with structural information storage in the memory slots.

Instead of having only single vector representation in the

memory component, as in MemN2N, KV-MemNNs make

use of pairs of vectors in the memory slots, i.e., key:

value. The incorporation of the structural storage of the

Key-Value form into the memory slots brings much more

flexibility, which enriches the expressive power of the neu-

ral networks. The Key-Value property makes information

retrieval from the external memory natural.

The Memory Network variants (MemNNs, MemN2N,

and KV-MemNNs) have been proposed for natural lan-

guage understanding, and researchers often only validate

these models on question answering tasks such as bAbI

tasks [35].

3.2. Model Overview

In this work, we propose a novel Memory Networks ar-

chitecture to tackle the few-shot visual object recognition

problem. It retains the key-value structure, but in con-

trast to KV-MemNNs, we utilize Long Short-Term Mem-

ory (LSTM) as a “controller” when accessing and writing

to memory. Moreover, we introduce a novel memory com-

ponent, namely abstraction memory, to enable task-specific

feature learning and obtain scalability. The distinct nature

of our proposed abstraction memory makes the neural net-

work “remember” the ever present external memories, anal-

ogous to the memory cell c in LSTMs but much more ex-

pressive. The incorporation of abstraction memory enables

stochastic external memory training, i.e., we can sample

batches from the a huge external memory pool. In contrast

to our work, existing Memory Networks limit their access

to external memory to a very small number, e.g., MemN2N

limit their access to external memory to the most recent 50

sentences [28].

The overview of our model is shown in Figure 2. The

whole procedure of our proposed model is illustrated as

follows. Note that we re-formulate key: value as (key,

value) in the rest of this work.

q,Mext = EMBED(I, {Iweb,Lweb}) (1)

(zkey, zval) = READ(q,Mext), (2)

Mabs ← WRITE(q, (zkey, zval),Mabs), (3)

(ukey,uval) = READ(q,Mabs), (4)

ŷ = CLS([ukey,uval]). (5)
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Figure 2. An illustration of our proposed model. Best viewed in color.

We elaborate on each of the operation in the procedure, and

all of the following operations are parameterized by neural

networks:

1. Embed is a transformation from the raw inputs to their

feature representation. We denote the network to ex-

tract image feature as Φimg and the one to extract vec-

tor representation for label as Φlabel. Given an image I

from a novel category, and a group of web images with

labels, denoted as Iweb and Lweb, where I is the image

set and L is the label set, the input image I is sampled

from unseen categories, and the embedded feature for

the query image is referred to as query q following the

notation in Memory Networks. The web images are

embedded in the external memory Mext through the

same embedding networks Φimg and Φlabel;

2. READ takes the query q as input and conducts content-

based addressing on the external memory Mext, to

find related information according to a similarity met-

ric with q. The external memory is also called the sup-

port set in Memory Networks. The output of READ is

a pair of vectors in key-value form, i.e., (zkey, zval), as

shown in Eqn. (2);

3. WRITE takes a query q and key-value pair (zkey, zval)
as inputs to conduct a write operation. The content-

based addressing is based on matching input with

Mabs , and then updating the content of the corre-

sponding abstraction memory slots as in Eqn. (3);

4. READ from abstraction memory (Eqn. (4)) is for the

classification stage. Take the input query q to match

the abstraction memory Mabs. The obtained pairs of

vectors (i.e., (ukey,uval)) are concatenated to be fed

into the classification network;

5. CLS operation takes the readout key-value (zkey, zval)
and concatenates them into one vector zcls =
[zkey, zval]. Then zcls goes through a Fully-Connected

(FC) layer where: FC(x) = w⊤x+b, and a Softmax

layer.

Section 3.3.4 shows an LSTM variant of the CLS op-

eration.

3.3. Model Components

3.3.1 Long Short-Term Memory

In our model, Long Short-Term Memory (LSTM) [14] plays

an important role in the READ, WRITE and CLS proce-

dures and serves as the controller of the memory address-

ing. LSTM is a special form of Recurrent Neural Net-

works (RNNs). LSTM addresses the vanishing gradient

problem [4] of RNNs by introducing an internal memory

cell to encode information from the previous steps. LSTM

has resurged due to the success of sequence to sequence

modeling [29] on machine translation [3], image caption-

ing [34, 17, 37], video classification [38], video caption-

ing [31, 25], etc. Following the notations of Zaremba et

al. [39] and Xu et al. [37] and assuming xt ∈ R
D,

TD+d,4d : RD+d → R
4d denotes an affine transformation
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from R
D+d to R

4d, LSTM is implemented as:









it
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ot

gt









=









σ

σ

σ

tanh









TD+d,4d

(

xt

ht−1

)

(6)

ct = f ⊙ ct−1 + it ⊙ gt (7)

ht = o⊙ tanh(ct), (8)

where it,ft, ct,ot are the input, forget, memory, output

gates respectively, σ and tanh are element-wise activation

functions, xt is the input to the LSTM in the t-th step and

ht is the hidden state of the LSTM in the t-th step.

For simplicity of notation, we denote one computational

step of the LSTM recurrence as a function LSTM, defined

as:

ht = LSTM(xt,ht−1). (9)

3.3.2 Reading from the Memory

In this section, we describe the mechanism for

reading information from the memory. Given

an external memory with buffer size N1, M =
{(m1

key,m
1
val), (m

2
key,m

2
val), . . . , (m

N1

key,m
N1

val )}, where

each memory slot mi is encoded as a key-value struc-

ture, i.e., (mi
key,m

i
val), or equivalently mi

key : mi
val.

mi
key ∈ R

d1 ,mi
val ∈ R

d2 , where d1 is the dimension of the

image embedding (i.e., the key part) in the memory slot,

and d2 denotes the dimension of the label embedding (i.e.,

the val part) in the memory slot. We use the tuple notation

(mi
key,m

i
val) in the rest. We apply the reading mechanisms

from the set-to-set framework [32] on the memory bank.

For each time step t, we have:

qt = LSTM(0, q∗

t−1) (10)

ei,t = q⊤

t m
i
key (11)

ai,t = Softmax(ei,t) (12)

zt
key =

∑

i

ai,tm
i
key (13)

zt
val =

∑

i

ai,tm
i
val (14)

q∗

t = [qt, z
t
key]. (15)

(mi
key,m

i
val), i = 1, 2, . . . , N1, are all the memory slots

stored in M. When the query qt comes, it conducts dot

product with all of the key parts of the memory slot mi
key

(Eqn. (11)), to obtain the similarity metric ei,t between

query image qt and the image in the memory slot mi
key.

The Softmax operation of Eqn. (12) generates an attention

weight ai,t over the whole memory M. Then, Eqn. (13)

and Eqn. (14) utilize the learned attention weight ai,t to

read the key part and the value part, i.e., label embed-

ding, from the external memory. The readout operation

blends all of the key/value vectors mi
key/mi

val with the atten-

tion weight ai,t to obtain the readout vectors zt
key and zt

val.

Lastly, zt
key is concatenated with query qt, producing q∗

t to

be fed into the next step as the input of LSTM (Eqn. (10)).

The above reading procedure loops over the memory for

T timesteps, obtaining T readout pairs of vectors, i.e.,

{(z1
key, z

1
val), (z

2
key, z

2
val), . . . , (z

T
key, z

T
val)}. The LSTM con-

troller takes no input but computes the recurrent state to

control the reading operation. For more details, please re-

fer to the vector version (the memory slot is in the form

of a vector instead of a key-value) of this reading mecha-

nism [32].

After T -step READ operations over memory M (which

could be either Mext or Mabs), we can obtain:

Z = {(z1
key, z

1
val), (z

2
key, z

2
val), . . . , (z

T
key, z

T
val)}. (16)

3.3.3 Abstraction Memory

We propose to utilize a novel memory component, namely

abstraction memory, in our implementation of Memory

Networks. The abstraction memory has the following prop-

erties:

1. It learns task-specific representation for the few-shot

object recognition task;

2. It attempts to tackle the problem of efficiency of

content-based addressing over a large external mem-

ory pool.

Abstraction memory is a writable memory bank Mabs,

with buffer size N2. It satisfies N2 < N1, where N1 is the

buffer size of the external memory bank Mext. We denote

Mabs = {(m̃1
key, m̃

1
val), (m̃

2
key, m̃

2
val), . . . , (m̃

N2

key, m̃
N2

val )},

where m̃i
key ∈ R

d̃1 , m̃i
val ∈ R

d̃2 , d̃1 is the dimension of

the key vector stored in the memory slot, and d̃2 is the

dimension of the value part stored in the memory slot.

Writing. Unlike the external memory bank, the abstrac-

tion memory bank is “writable”, which means the neural

networks can learn to update the memory slots in the stor-

age by remembering and abstracting what is important for

specific tasks. The memory update is according to an em-

bedding (i.e., through an FC layer) of the readout (zkey, zval)
from the larger external memory bank Mext.

Following the writing operation proposed in Neural Tur-

ing Machines (NTMs) [11], we conduct the differentiable

WRITE operation on the abstraction memory bank Mabs.

The LSTM controller produces erase vectors ekey ∈ R
d̃1 ,

eval ∈ R
d̃2 , and add vectors akey ∈ R

d̃1 , aval ∈ R
d̃2 . Note

that each element of the erase vector satisfies 0 < eikey < 1
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and 0 < eival < 1, which can be implemented by passing

through a Sigmoid function σ(x).
For each memory slot m̃i, the WRITE operation con-

ducts the following updates in the abstraction memory bank

Mabs. For each timestep t, we have

m̃i
key ← m̃i

key(1− wi,tekey) + wi,takey, (17)

m̃i
val ← m̃i

val (1− wi,teval) + wi,taval. (18)

The vector wt is used for addressing mechanisms in the

WRITE operation [11]. However, in contrast to NTMs, we

do not utilize location-based addressing but only content-

based addressing over the abstraction memory Mabs. The

vector wt can be calculated as in Eqn. (11) and Eqn. (12),

by replacing mkey of Mext into m̃key of Mabs.

3.3.4 Label Prediction

When it reaches the prediction stage, our model reads

(ukey,uval) from the abstraction memory Mabs, as shown

in Eqn. (4). The reading mechanism has been illustrated

in Section 3.3.2. Reading from the memory is a recur-

rent process, with T timesteps, and we can fetch read-

outs U = {[u1
key,u

1
val], [u

2
key,u

2
val], . . . , [u

T
key,u

T
val]} to ob-

tain enough information for few-shot classification, where

[ui
key,u

i
val] denotes the concatenation of two vectors into

one. We then run an LSTM on top of the sequence U , ob-

tain the final state output hT from the LSTM, and then feed

hT into an FC layer and a Softmax layer to output the

prediction ŷ.

In this way, our model fully utilizes the readout vectors

with both visual information and label embedding informa-

tion to conduct classification. These readout vectors are

from abstraction memory, which learns to adapt in specific

tasks, e.g., few-shot object recognition.

3.4. Training

We apply a standard cross entropy loss between the pre-

diction ŷ and the groundtruth y, where y is the one-hot

representation of the groundtruth label.

All of the operations and components in our model are

fully differentiable, which means we can train our model

with stochastic gradient descent (SGD) in an end-to-end

way.

3.5. Inference

In the inference (testing) stage, we do not make the ex-

ternal memory Mext available, since the abstraction mem-

ory Mabs has stored all of the required information in the

form of key-value in the memory slots. Thus, on the in-

ference stage, we only run the prediction process (c.f . Sec-

tion 3.3.4) on the fetched vectors from Mabs. The predicted

label is obtained by an argmax operation over the softmax

probability output ŷ.

4. Experiments

We evaluate our proposed model using two different ex-

ternal image sources, i.e., ImageNet [7] dataset and Open-

Images [19] dataset. In this section, we describe the specific

model configurations used in the experiments, and show

the results of the few-shot recognition model trained from

clean human-labeled annotations and machine-labeled an-

notations. Our model is implemented using TensorFlow [1].

4.1. Preprocessing

We use features from top convolutional layers as image

embeddings. In all our experiments, we use the last layer

activations before the final classification from the ResNet-

200 [13] model pretrained on ImageNet [7]. This single

model achieved top-5 error of 5.79% on the ILSVRC 2012

validation set. Following standard image preprocessing

practice, images are first resized to 256 on the short side

and the central 224 × 224 subregion is cropped; we thus

obtain an image embedding with the feature dimension of

2,048. We apply the word embedding from the state-of-

the-art language modeling model [16] in our label to word

embedding mapping. We follow the instructions provided

by the authors to extract embeddings for each word in the

vocabulary, and embeddings are averaged if there are multi-

ple words for one category. The embedding length is 1,024,

thus we have the embedding matrix of |V | by 1,024, where

|V | is the size of the vocabulary V . The ResNet for visual

feature extraction and the label embedding matrix will not

be updated during training.

4.2. Model Specifications

For all the LSTM models, we use one-layer LSTM with

hidden unit size of 1,024. In particular, we utilize Layer

Normalization [2] for the gates and states in the cell, which

we found was crucial to train our model. Layer Normal-

ization helps to stabilize the learning procedure in RNNs,

without which we could not train the network successfully.

Dropout is used in the input and output of LSTM and we set

the Dropout probability to 0.5. The default model parame-

ters are described as follows. We use N1 = 1, 000 memory

slots for the external memory bank and N2 = 500 mem-

ory slots for the abstraction memory. Both key and value

vectors stored in the abstraction memory have the dimen-

sionality of 512. The controller iterates T = 5 times when

abstracting information from the external memory banks.

We use the default model parameters in all the experiments

unless otherwise stated.

Our model is trained with an ADAM optimizer [18]

with learning rate of 1× 10−4 and clip the norm of the

global gradients at 10 to avoid the gradient exploding prob-

lem [29]. Weights in the neural network are initialized

with Glorot uniform initialization [10] and weight decay of

1× 10−4 is applied for regularization.
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4.3. Datasets

ImageNet: ImageNet is a widely used image classification

benchmark. There are two sets in the ImageNet dataset.

One part is used in the ILSVRC classification competi-

tions, namely ILSVRC 2012 CLS. This part contains ex-

actly 1,000 classes with about 1,200 images per class, with

well-verified human-labeled annotations. The other set of

ImageNet is the whole set, which consists of about 21,000

categories.

OpenImages. The recently released OpenImages

dataset [19] consisting of web images with machine-labeled

annotations. We utilize the validation set with 167,057 im-

ages to conduct our experiment, since both machine-labeled

annotations and human-labeled annotations are provided

only in the validation set. There are 7,844 distinct labels

in OpenImages, whose label vocabulary and diversity is

much richer than the ILSVRC 2012 CLS dataset. Since

this dataset is relatively new, we provide example images

in Figure 3. We can see that the OpenImages dataset has a

wider vocabulary than the ImageNet ILSVRC 2012 dataset,

which is beneficial for generalization to novel categories.

“/m/0dp7g”,“weaving”,0.8“/m/0f1tz”,“calligraphy”,0.5

“/m/07s6nbt”,"text", 0.9

“/m/07b9p1","plaque”,0.5

 “/m/0jjw”,"art",0.8

 “/m/0cl71”,"loom",0.7

“/m/01sdr”,"color",1.0

“/m/063w2”,"pencil",0.9

“/m/02cqfm","close-up",0.7

Figure 3. Sample images from the OpenImages dataset. Anno-

tations on the images are shown in the bottom. The annotations

listed are “label id”, “label name”, “confidence” tuples.

4.4. Few­shot Learning with Human­labeled
annotations

We first validate our model on the task of few-shot clas-

sification using human-labeled clean data.

For few-shot image classification, the training set has

only a small number of examples, and the basic task can

be denoted as N -way k-shot classification (following the

notation of Matching Networks [33]), in which N class im-

ages need to be classified and each class is provided with k

labeled examples (k is usually less than 10).

Dataset. We now construct our dataset for few-shot learn-

ing. We select 100 classes for learning by randomly choos-

ing 100 categories from the entire 21,000 categories in the

ImageNet dataset, excluding the 1,000 categories in the

ILSVRC 2012 CLS vocabulary. For testing, there are 200

images per category and the training set has k examples per

category. We use settings of k = 1, k = 5, k = 10, i.e.,

there are 1 example, 5 examples and 10 examples in the

training set.

Methods 1-shot 5-shot 10-shot

k-NN (l1) 38.8 57.0 62.9

k-NN (l2) 38.6 56.4 62.1

E-SVM 45.1 62.3 68.0

KV-MemNNs 43.2 (±0.4) 66.6 (±0.2) 72.8 (±0.2)

Ours 45.8 68.0 73.5

Table 1. Comparison between our model and other methods. Re-

sults are reported on our 100-way testing set.

4.4.1 Comparison with other methods

In this experiment, we use image-label pairs from the

ILSVRC 2012 CLS dataset as external memory. We use all

1,000 categories for learning. We conduct experiments on

1-shot, 5-shot, 10-shot tasks and compare our results with

several algorithms. The results are shown in Table 1.

k-NN and Exemplar-SVMs. k-Nearest Neighbors (k-NN)

is a simple but effective classifier when very few training

examples are provided. We utilize ResNet-200 features and

consider two distance metrics, i.e., l1 and l2, for pairwise

distance calculation. And we set k = 5. Exemplar-SVMs

(E-SVM) [22] train an SVM for each positive example and

ensemble them to obtain the final score. The method was

widely used in object detection in the pre-ConvNet era. We

use the same ResNet-200 features and set C = 0.1. The

results show that our method outperforms k-NN for both l1
and l2 distance with a large margin and it also outperforms

E-SVMs. Note that on 5-shot and 10-shot tasks, our model

achieves better performance than the E-SVMs with larger

margin. The results show that our model takes advantage of

the large number of image-label pairs in the external mem-

ory by learning relationships between the examples and the

external data.

KV-MemNNs. By utilizing the interpretation of image em-

bedding as key and label embedding as value as in our

model, KV-MemNNs can also be trained to conduct few-

shot learning. However, due to the design of KV-MemNNs,

few-shot prediction has to rely on the external memory,

while the image classification datasets used in our work are

too large to be stored in. This property means that KV-

MemNNs conduct non-deterministic classification predic-

tion, which is not desirable. It is unrealistic to search over

all image-pairs in the external memory during each train-

ing iteration. In the testing, it is also time-consuming to

traverse the whole external memory. As a workaround, we

randomly sample 1,000 pairs from the external memory for

matching during both training and testing. We report the

mean classification results and the standard deviation in 20

runs. The result shows that our abstraction memory extracts

valuable information from the large external memory and is

much more compact than the original memory banks.

Matching Networks. We also compare our method with
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Methods 5-way 1-shot classification

Matching Networks 90.1

Ours 93.9

Table 2. Comparison between our model and Matching Networks

on the 5-way 1-shot task.

the recently proposed Matching Networks [33]. Matching

Networks use two embedding functions that consider set

context. However, as LSTM is used for the embedding,

the size of the support set is limited. In [33], the number

of categories is usually set to 5 for ImageNet experiments

(5-way). For fair comparison, we conduct our experiment

on the 5-way 1-shot task. We randomly choose 5 categories

from the previously used 100-category set. The testing set

has the same number of instances per category. The result

is shown in Table 2, which demonstrates that our method

outperforms the Matching Network. Our model builds an

explicit connection between the few training examples and

the external memory, which benefits greatly from a large

vocabulary.

We visualize the query results between the external

memory and the query in Figure 4.

0.82

0.075
0.045

0.98

0.1
0.05

0.68

0.19

0.11

Query 1

Return 1 Return 2

Query 2 Query 3

Return 3

Figure 4. We show the query results returns from the external

memory. The scores are the softmax probabilities. Only top-3

results are shown.

4.5. Few­shot Learning with Machine­labeled
Annotations

In this experiment, we replace the external memory

source with the OpenImages dataset. The machine-labeled

images are much easier to obtain but are noisier. We train

our model to learn from such noisy web images.

We construct the external memory using the OpenIm-

ages dataset. We use four different settings, which are:

1,000 vocabulary with human-labeled images, 1,000 vo-

cabulary with machine-labeled images, 6,000 vocabulary

with human-labeled images, and 6,000 vocabulary with

machine-labeled images. Note that although the OpenIm-

ages dataset is machine-labeled, the validation set in the

original dataset is also validated by human raters. The

Methods 1,000 6,000

Machine-labeled 66.6 67.4

Human-labeled 67.7 68.2

Table 3. Results on the OpenImages dataset. The results are re-

ported on the 100-way 5-shot task.

results are shown in Table 3, which demonstrates that

machine-labeled external memory can serve as a good

source for few-shot learning, which is less accurate than

human-labeled external memory by only about 1%

As the vocabulary size grows, we observe that perfor-

mance improves. This shows that given a large vocabulary,

our model is able to reason among the external memory in

a more effective way. Larger vocabulary will be explored in

the future.

4.6. Hyperparamter Study

We conduct the hyperparameter study on the memory

slots numbers, i.e., N1 for the external memory and N2 for

the abstraction memory. Table 4 shows the comparisons

among different combinations of memory slots in 5-shot

recognition on ImageNet dataset, which demonstrates that

our proposed model is robust to the change of memory slots.

N1 : N2 Accuracy (%)

500 : 500 67.6

1000 : 250 67.9

1000 : 500 68.0

1000 : 1000 67.7

2000 : 500 68.1

Table 4. Comparisons among the numbers of memory slots.

5. Conclusion

In this paper, we propose a novel Memory Networks ar-

chitecture specifically tailored to tackle the few-shot learn-

ing problem on object recognition. By incorporating a

novel memory component into the Key-Value Memory Net-

works, we enable rapid learning from seeing only a handful

of positive examples by abstracting and remembering the

presented external memory. We utilize LSTM controllers

for reading and writing operations into the memory. We

demonstrate that our proposed model achieves better per-

formance than other state-of-the-art methods. Furthermore,

we obtain similar performance by utilizing machine-labeled

annotations compared to human-labeled annotations.
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