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Abstract

This paper presents a novel method for detecting pedes-

trians under adverse illumination conditions. Our approach

relies on a novel cross-modality learning framework and it

is based on two main phases. First, given a multimodal

dataset, a deep convolutional network is employed to learn

a non-linear mapping, modeling the relations between RGB

and thermal data. Then, the learned feature representations

are transferred to a second deep network, which receives as

input an RGB image and outputs the detection results. In

this way, features which are both discriminative and robust

to bad illumination conditions are learned. Importantly, at

test time, only the second pipeline is considered and no ther-

mal data are required. Our extensive evaluation demon-

strates that the proposed approach outperforms the state-of-

the-art on the challenging KAIST multispectral pedestrian

dataset and it is competitive with previous methods on the

popular Caltech dataset.

1. Introduction

Great strides in pedestrian detection research [3] have

been made for challenging situations, such as cluttered

background, substantial occlusions and tiny target appear-

ance. As for many other computer vision tasks, in the

last few years significant performance gains have been

achieved thanks to approaches based on deep networks

[21, 1, 17, 32]. Additionally, the adoption of novel sen-

sors, e.g. thermal and depth cameras, has provided new op-

portunities, advancing the state-of-the-art on pedestrian de-

tection by tackling problems such as adverse illumination

conditions and occlusions [15, 11, 24]. However, the vast

majority of wide camera networks in surveillance systems

still employ traditional RGB sensors and detecting pedes-

trians in case of illumination variation, shadows, and low

external light is still a challenging open issue.

This paper introduces a novel approach based on Con-

volutional Neural Networks (CNN) to address this prob-

lem. Our method is inspired by recent works demonstrat-
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Figure 1. Overview of our framework. Our approach relies on two

networks. The first network, named Region Reconstruction Net-

work (RRN) is used to learn a non-linear feature mapping between

RGB and thermal image pairs. Then, the learned model is trans-

ferred to a target domain where thermal inputs are no longer avail-

able and a second network, the Multi-Scale Detection Network

(MDN), is used for learning an RGB-based pedestrian detector.

ing that learning deep representations from cross-modal

data is greatly beneficial for detection and recognition tasks

[12, 13]. However, most approaches assume the availability

of large annotated datasets. In the specific case of pedestrian

detection, the community can rely on a great abundance of

visual data gathered with surveillance cameras, cars and

robotic platforms, but there are few labeled multi-modal

datasets. Therefore, motivated by the successes of recent

unsupervised deep learning techniques, we introduce an ap-

proach for learning cross-modal representations for pedes-

trian detection which does not require pedestrian bounding

box annotations. More specifically, we propose leveraging

information from multispectral data and using a deep con-

volutional network to learn a non-linear mapping from RGB

to thermal images without human supervision. This cross-

modal mapping is then exploited by integrating the learned

representations into a second deep architecture, operating

on RGB data and effectively modeling multi-scale informa-

tion. Importantly, at test time, thermal data are not needed

and pedestrian detection is performed only on color images.

Figure 1 depicts an overview of the proposed approach.

Our intuition, illustrated in Fig.2, is that, by exploiting mul-

tispectral data with the proposed method, it is easier to dis-

tinguish hard negative samples in color images (e.g., electric
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Figure 2. Motivation of this work. By exploiting thermal data in

addition to RGB samples, it is easier to discriminate among pedes-

trians and background clutter.

poles or trees with appearance similar to pedestrians), thus

improving the detection accuracy. Experimental results on

publicly available datasets, where several frames are cap-

tured under bad illumination conditions, demonstrate the

advantages of our approach over previous methods. To sum-

marize the main contributions of this work are:

• We introduce a novel approach for learning and trans-

ferring cross-modal feature representations for pedestrian

detection. With the proposed framework, data from the

auxiliary modality (i.e. thermal data) are used as a form

of supervision for learning CNN features from RGB im-

ages. There are two fundamental advantages in our

strategy. First, multispectral data are not employed at

the test phase. This is crucial when deploying robotics

and surveillance systems, as only traditional cameras are

needed, significantly decreasing costs. Second, no pedes-

trian annotations are required in the thermal domain. This

greatly reduces human labeling efforts and permits to ex-

ploit large data collections of RGB-thermal image pairs.

• To our knowledge, this is the first work specifically ad-

dressing the problem of pedestrian detection under ad-

verse illumination conditions with convolutional neural

networks. Previous works mostly adopted hand-crafted

descriptors and integrated the thermal modality by using

additional input features [15, 28]. Our approach is based

on two novel deep network architectures, specifically de-

signed for unsupervised cross-modal feature learning and

for effectively transferring the learned representations.

• Through an extensive experimental evaluation, we

demonstrate that our framework outperforms the state-

of-the-art on the novel KAIST multispectral pedestrian

dataset [15] and it is competitive with previous methods

on the popular Caltech dataset [9].

This paper is organized as follows. Section 2 outlines

related work on pedestrian detection and cross-modal fea-

ture learning. Section 3 describes the proposed framework

for learning features robust to illumination variations in the

context of pedestrian detection. Experimental results to

demonstrate the benefits of our approach are presented in

Section 4. We conclude with key remarks in Section 5.

2. Related Work

Research topics closely related to this work are pedes-

trian detection from surveillance videos and deep learn-

ing approaches operating on multimodal data. Below, we

present a review of the most recent works on these topics.

Pedestrian Detection. Due to its relevance in many

fields, such as robotics and video surveillance, the problem

of pedestrian detection has received considerable interests

in the research community. Over the years, a large variety of

features and algorithms have been proposed for improving

detection systems, both with respect to speed [34, 2, 1, 17]

and accuracy [39, 22, 44, 45, 10, 32].

Recently, notable performance gains have been achieved

with the adoption of powerful deep networks [21, 1], thanks

to their ability to learn discriminative features directly from

raw pixels. In [26], a CNN pre-trained with an unsuper-

vised method based on convolutional sparse coding was

presented. The occlusion problem was addressed in [19],

where a deep belief net was employed to learn the visibility

masks for different body parts. This work was extended in

[20] to model relations among multiple targets. More re-

cently, in [31] DeepParts, a robust framework for handling

severe occlusions, was presented. Differently from previ-

ous deep learning models addressing the occlusion prob-

lem, DeepParts does not rely on a single detector but it is

based on multiple part detectors. Tian et al. [32] learned

discriminative representations for pedestrian detection by

considering semantic attributes of people and scenes. Cai

et al. [4] introduced Complexity-Aware Cascade Training

(CompACT), successfully integrating many heterogeneous

features, both hand crafted and derived from CNNs. Zhang

et al. [43] presented an approach based on the Region Pro-

posal Network (RPN) [25] and boosted forests.

Other works focused on improving the computational

times of CNN-based pedestrian detectors. For instance, An-

gelova et al. [1] proposed the DeepCascade method, i.e. a

cascade of deep neural networks, and demonstrated a con-

siderable gain in terms of detection speed. An in-depth

analysis of different deep networks architectural choices for

pedestrian detection was provided in [14]. To our knowl-

edge, none of these previous works considers multi-modal

data or tackles the problem of pedestrian detection under

adverse illumination conditions.

Previous works have considered transferring information

from other domains for constructing scene-specific pedes-

trian detectors. Wang et al. [35] proposed an unsupervised

approach where target samples are collected by exploiting

contextual cues, such as motions and scene geometry. Then,

a pedestrian detector is built by re-weighting labeled source

samples, i.e. by assigning more importance to samples more

similar to target data. This approach was later extended in

[42] to learn deep feature representations. Similarly, in [5]

a sample selection scheme to reduce the discrepancy be-
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Figure 3. Architecture of the Region Reconstruction Network: a deep convolutional network trained for reconstructing thermal images

from the associated RGB data. Best viewed in color.

tween source and target distributions was presented. Our

approach is substantially different, as we do not restrict our

attention to adapt a generic model to a specific scene and we

tackle the problem of transferring knowledge among differ-

ent modalities.

Learning Cross-modal Deep Representations. In the

last few years deep networks have been successfully ap-

plied to learning feature representations from multi-modal

data [16, 38, 37]. However, the problem of both learning

and transferring cross-modal features has been rarely inves-

tigated. Notable exceptions are the works in [6, 30, 29, 12,

13]. Among these, the most similar to ours are [6, 30, 13].

In [6, 30] the idea of hallucinating data from other modali-

ties was also exploited. However, our CNN-based approach

is substantially different, since the work in [30] considered

Deep Boltzmann Machines, while in [6] the mapping be-

tween different modalities was learned with Gaussian Pro-

cesses. In [13] the problem of object detection from RGB

data was addressed and depth images were used as addi-

tional information available only at training time. Similarly

to [13], our detection network simultaneously use cross-

modal features learned from a source domain and repre-

sentations specific of the target scenario. However, in [13]

labeled data were available in the original domain. Oppo-

sitely, in our framework we learn cross-modal features in an

unsupervised setting, i.e. we do not require any annotation

in the thermal domain. In this way, it is possible to exploit

huge multispectral datasets.

3. Learning and transferring cross-modal deep

representations

In this section we present the proposed framework. We

first provide an overview of our approach and we describe in

details the CNN architectures we design to reconstruct ther-

mal data from RGB input and to transfer the learned cross-

modal representations for the purpose of robust pedestrian

detection.

3.1. Overview

As outlined in Section 1, the proposed framework (Fig.1)

in based on two different convolutional neural networks, as-

sociated to the reconstruction and to the detection tasks,

respectively. The first deep model, i.e. the Region Re-

construction Network (RRN), is a fully convolutional net-

work trained on pedestrian proposals collected from RGB-

thermal image pairs in an unsupervised manner. RRN is

used to learn a non-linear mapping from the RGB chan-

nels to the thermal channel. In the target domain only RGB

data are available and a second deep network, the Multi-

Scale Detection Network (MSDN), embedding the param-

eters transferred from RRN, is used for robust pedestrian

detection. MSDN takes a whole RGB image and a number

of pedestrian proposals as input and outputs the detected

bounding boxes with associated scores. In the test phase,

detection is performed with MSDN and only RGB inputs

are needed. In the following we describe the details of the

proposed deepnet framework.

3.2. Region Reconstruction Network

The aim of RRN is to reconstruct thermal data from the

associated RGB images. The design of the RRN architec-

ture is driven by two main needs. First, in order to avoid

human annotation efforts, thermal information should be

recovered with an unsupervised approach. While our ap-

proach uses the thermal image as deep supervision for the

reconstruction task, it essentially requires only very weak

supervision information (i.e., the pair-wise information).

However, in the RGB-T data collection phase, we easily ob-

tain the pair-wise information. The most expensive part in

terms of human effort is to annotate the pedestrian bound-

ing boxes. The proposed approach does not require these

extra human-annotations. Second, as multispectral data are

expected to be especially useful for hard positive and neg-

ative samples (Fig.2), instead of attempting to reconstruct

the entire thermal images, it is more appropriate to specif-
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Figure 4. Architecture of the Multi-Scale Detection Network. Two sub-networks (Sub-Net A and Sub-Net B) with the same structure

are used in MSDN. The parameters of all the convolutional layers of Sub-Net B (highlighted in yellow) are transferred from the Region

Reconstruction Network.

ically focus on bounding boxes which are likely to contain

pedestrians. Therefore, in this paper we propose to exploit a

pretrained generic pedestrian detector (e.g. ACF [8]) to ex-

tract a set of pedestrian proposals (containing true positives

and false positives) from RGB data and design a deep model

which reconstructs the associated thermal information.

The proposed RRN network is illustrated in Fig.3. The

input of RRN is a three-channel RGB image and a set of

associated pedestrian proposals. RRN consists of a front-

end convolutional subnetwork and a back-end reconstruc-

tion subnetwork. Although in our implementation the front-

end convolutional layers exploit the VGG-13 network struc-

ture [27], RRN alternatively supports other architectures.

After the last convolutional layer of the front-end subnet-

work, an ROI pooling layer [10] is added. For each ROI,

feature maps with size 512 × 7 × 7 are generated. Con-

sidering the small size of the ROI feature maps, in order

to effectively reconstruct the regions of thermal images as-

sociated to pedestrians, we apply a deconvolutional layer to

upsample the ROI feature maps (output size 50×50) and re-

duce the number of output channels to 64 to ensure smooth

convergence during training. Different from many previous

works (e.g. [36]) which simply consider a bilinear upsam-

pling operator, in the deconvolutional layer we learn the up-

sampling kernels (kernel size 4, stride 8 and pad 1). After

the deconvolutional layer, a Rectified Linear Unit (ReLU)

layer is applied. Then, reconstruction maps corresponding

to each proposal are generated using a convolutional layer

(kernel size 3, pad 1). Finally, a square loss is considered to

compute each reconstruction map and the whole network is

optimized with back-propagation.

In the widely used Fast- or Faster-RCNN frameworks,

the groundtruth pedestrian bounding boxes are used to de-

termine the ratio of true positive and false positive sam-

ples, and then construct fixed-size training mini-batches. To

avoid using the carefully annotated groundtruth bounding

boxes, we construct each training mini-batch using pedes-

trian proposals generated by thresholded generic ACF from

one randomly selected training image, since the number of

the proposals corresponding to each training image dynam-

ically changes, our approach thus implements a dynamic

mini-batch size during training.

3.3. Multi­Scale Detection Network

MSDN is specifically designed to perform pedestrian de-

tection from RGB images by exploiting the cross-modal

representations learned with RRN. Inspired by previous

works demonstrating the importance of considering multi-

scale information in pedestrian detection [43], we introduce

a detection network which fuses multiple feature maps de-

rived from ROI pooling layers.

MSDN architecture seamlessly integrates two sub-

networks (Sub-Net A and Sub-Net B), as illustrated in

Fig. 4. Sub-Net A has 13 convolutional layers, organized

in five blocks. As depicted in Fig.4, Cm,n denotes the m-th

block with n convolutional layers with the same size fil-

ters. Max pooling layers are added after the convolutional

layers, and the ReLU non-linearity is applied to the output

of each convolutional layer. An RoI (Region of Interest)

pooling layer [10] is applied to the last two convolutional

blocks to extract feature maps of size 512× 7× 7 for each

pedestrian proposal. We consider these two blocks, as our

experiments show that this strategy represents the optimal

trade-off between computational complexity and accuracy.

Sub-Net B has the same structure of Sub-Net A but, since

its main goal is to transfer cross-modality mid-level rep-

resentations, the parameters of the 13 convolutional layers

(C′

1,2 to C′

5,3) are derived from the associated layers of

RRN. Indeed, the convolutional blocks from RRN produce

a compact feature representation which captures the com-

plex relationship among the RGB and the thermal domain.

Therefore, they are embedded in MSDN, such as to allow

the desired knowledge transfer.

The feature maps derived from the RoI pooling layers of

the two sub-networks are then combined with a concate-

nation layer and a further convolutional layer with 1024
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channels is applied. As the size of the RoI feature maps is

small, we set the kernel size equal to 1 in the convolutional

layer. Then, two fully connected layers of size 4096 follow.

Finally, two sibling layers are used, one that outputs soft-

max probability estimates over pedestrian and background

classes, and another that provides the associated bounding-

box offset values for pedestrian localization.

3.4. Optimization

As discussed above, the proposed cross-modal frame-

work is based on two different deep networks. Therefore,

the training process also involves two main phases.

In the first phase, RRN is trained on multispectral data.

The front-end convolutional layers of RRN are initialized

using the parameters of the 13 convolutional layers of the

VGG-16 model [27] pretrained on ImageNet dataset. The

remaining parameters are randomly initialized. Stochastic

Gradient Descent (SGD) is used to learn the network pa-

rameters. In the second phase, the parameters of MSDN

are optimized using RGB data and pedestrian bounding box

annotations in the target domain. We first train Sub-Net A

by adding the common parts of MSDN (i.e. from the fea-

ture concatenation layer to the two sibling layers). In this

case the size of the feature maps in the concatenation and

in the following convolutional layers is 1024 × 7 × 7 and

512 × 7 × 7, respectively. The pretrained VGG-16 model

is also utilized to initialize Sub-Net A. The convolutional

layers of Sub-Net B are initialized with the corresponding

parameters of RRN. Then, fine-tuning is performed using

the RGB data of the target domain. The whole MSDN opti-

mization is based on back-propogation with SGD.

3.5. Pedestrian detection

In the detection phase, given a test RGB image, we adopt

the standard protocol. First, region proposals are extracted,

similarly to the training phase. Then, the input image and

the proposals are fed into MSDN. The softmax layer out-

puts the class score and the bounding box regressor indi-

cates the estimated image coordinates. To reduce the re-

dundancy of the proposals, non-maximum suppression is

employed based on the prediction score of each proposal,

setting an intersection over union (IoU) threshold δ.

4. Experiments

To evaluate the effectiveness of the proposed frame-

work, we performed experiments on two publicly available

datasets: the recent KAIST multispectral pedestrian dataset

[15] and the popular Caltech pedestrian dataset [9]. In the

following we describe the details of our evaluation.

4.1. Datasets

The KAIST multispectral pedestrian dataset [15] con-

tains images captured under various traffic scenes with dif-

Figure 5. KAIST dataset. Reconstructed regions of thermal im-

ages (50×50 pixels) associated to the top nine detected pedestrian

windows from ACF.

ferent illumination conditions (i.e. data recorded both dur-

ing day and night). The dataset consists of 95,000 aligned

RGB-thermal image pairs, of which 50,200 samples are

used for training and the rest for testing. A total of 103,128

dense annotations corresponding to 1,182 unique pedestri-

ans are available. We follow the protocol outlined in [15] in

our experiments. The performance is evaluated on three dif-

ferent test sets, denoted as Reasonable all, Reasonable day

and Reasonable night. Reasonable indicates that the pedes-

trians are not/partially occluded with more than 55 pixels

height. The day and night sets are obtained from the Rea-

sonable all set according to the capture time.

The Caltech pedestrian dataset [9] consists of about

10 hours of 30Hz video collected from a vehicle driving

through urban traffic. The dataset contains 250,000 frames

with 350,000 bounding boxes manually annotated and as-

sociated to about 2,300 unique pedestrians. Following pre-

vious works [32, 17], we strictly adopt the evaluation pro-

tocol in [9] measuring the log average miss rate over nine

points ranging from 10−2 to 100 False-Positive-Per-Image

(FPPI). Our evaluation is conducted on both Caltech-All

and Caltech-Reasonable settings.

Our approach uses RGB-thermal data for training, but in

the test phase only requires RGB images as input. In all our

experiments the KAIST training dataset is used to learn the

RRN. Then, the performance of MSDN is assessed on the

Caltech test set and on the RGB test frames of KAIST. The

training and testing images of both datasets are resized (800

pixels height) to generate ROI feature maps with higher res-

olution useful for our reconstruction and detection tasks.
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4.2. Experimental setup

Our framework is implemented under Caffe, and our

evaluation is conducted on an Intel(R) Xeon(R) CPU E5-

2630 with a single CPU core (2.40GHz), 64GB RAM and a

NVIDIA Tesla K40 GPU.

We employ ACF [8] to generate pedestrian proposals for

training both the reconstruction and the detection network

with a low detection threshold of -70 as in [17] to obtain

a high recall of pedestrian regions. In the test phase we

also use ACF and consider the test proposals available on-

line1. It is worth nothing that, while we focus on ACF, our

cross-modality learning approach can be used in combina-

tion with an arbitrary proposal method.

For training the reconstruction network, we use the

whole training set of the KAIST dataset. As thermal images

captured from an infrared device have relatively low con-

trast and significant noise, we perform some basic process-

ing, such as adaptive histogram equalization and denoising.

By computing pedestrian proposals applying ACF, we end

up creating a dataset of about 20K frames for training the

region reconstruction network. All the frames are then hor-

izontally flipped for data augmentation. We generate mini-

batch of reconstruction RoIs from randomly chosen two im-

ages, and a fixed learning rate λr = 10−9 is used to guar-

antee smooth convergence. We train the RRN for about 10

epochs.

For training the detection network on the the Caltech

dataset we follow [45] and we construct a training set where

every 3rd frame is used. Instead, for the KAIST dataset we

adopt the standard training protocol and every 20th frame

is considered. For both datasets, we use the same proto-

col for training MSDN. Similarly to RRN training, the data

are flipped horizontally for the purpose of data augmenta-

tion. Each mini-batch consists of 128 pedestrian proposals

randomly chosen from one training image. Positive samples

with a ratio of 25% are taken from the proposals which have

an IoU overlap with the ground truth of more than 0.5, while

negative samples are obtained when the IoU overlap is in

the range of [0, 0.5]. Stochastic gradient descent is used to

optimize MSDN with the momentum and the weight decay

parameters set to 0.9 and 0.0005, respectively. The network

is trained for 8 epochs using an initial learning rate of 0.001

and drop by 10 times at the 5th epoch.

4.3. Results on KAIST multispectral dataset

Analysis of proposed method. The first series of exper-

iments aims to demonstrate the effectiveness of the pro-

posed Cross-Modality Transfer CNN (CMT-CNN) frame-

work. We evaluate the performance of our approach un-

der four different settings: (i) CMT-CNN-SA. We only

1http://www.vision.caltech.edu/Image$_

$Datasets/CaltechPedestrians/

Figure 6. Examples of pedestrian detection results under differ-

ent illumination conditions on the KAIST multispectral pedestrian

dataset: (top) ACF detector, (middle) CMT-CNN-SA, (bottom)

CMT-CNN.

Methods All Day Night

CMT-CNN-SA 54.26% 52.44% 58.97%

CMT-CNN-SA-SB(Random) 56.76% 54.83% 61.24%

CMT-CNN-SA-SB(ImageNet) 52.15% 50.71% 57.65%

CMT-CNN 49.55% 47.30% 54.78%

Table 1. Comparison of different methods on the KAIST multi-

spectral datasets including reasonable all, reasonable day and rea-

sonable night settings.

Methods Miss-Rate

CMT-CNN-SA 13.76%

CMT-CNN-SA-SB(Random) 15.89%

CMT-CNN-SA-SB(ImageNet) 13.01%

CMT-CNN-SA-SB(RGB-KAIST) 12.51%

CMT-CNN 10.69%

Table 2. Comparison of different variants of our method on the

Caltech-Reasonable dataset. Performance are evaluated in terms

of log-average miss-rate.

use Sub-Net A. The two ROI feature maps are concate-

nated and given as input to the convolutional fusion layer.

This layer outputs a feature map with size 512, rather than

1024. Finally, the output is fed to the fully connected layers;

(ii) CMT-CNN-SA-SB (ImageNet). We consider two sub-

networks but initialize the convolutional layers of Sub-Net

B from pretrained VGG16 model on ImageNet; (iii) CMT-

CNN-SA-SB (Random): Same as (ii) but with random ini-

tialization for Sub-Net B; (v) CMT-CNN as described in

Section 3, i.e. initializing the convolutional layers of Sub-

Net B from trained RRN.

Table 1 shows the results of our comparison. Perfor-

mance is evaluated using the log average miss-rate (MR).

From the table it is clear that CMT-CNN significantly out-

performs all its variations on all the three test sets, confirm-
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Figure 7. Quantitative evaluation results (miss rate versus false positive per image) on the KAIST multispectral dataset.

ing the fact that the proposed cross-modality framework im-

proves the detection accuracy. We also observe that CMT-

CNN provides lower MR than CMT-CNN-SA-SB, indicat-

ing that the performance gain of CMT-CNN is not only due

to an increased number of parameters.

Figure 5 depicts some examples of the reconstruction re-

sults obtained with the proposed RRN. For the two given

test frames, the reconstructed thermal regions associated to

the top nine detection windows computed with ACF are

shown. From the figure, it is easy to observe that the pro-

posed network is able to effectively learn a mapping from

RGB data to thermal data. Figure 6 shows some quali-

tative results obtained with MSDN. Comparing the detec-

tion bounding boxes of CMT-CNN-SA with those of CMT-

CNN, we observe that hard negative samples are correctly

classified with our method. For instance, the foliage from

the trees (Fig. 6- first and second columns) is wrongly

detected as pedestrian by CMT-CNN-SA. This confirms

our intuition that leveraging information from multispectral

data with our cross-modal representation transfer approach

permits to improve the detection accuracy.

Comparison with state of the art methods. We also

compare our approach with state of the art methods on

the KAIST multispectral dataset. These methods include:

(i) ACF-RGB [8], i.e. using ACF on RGB data; (ii)

ACF-RGBT [15], i.e. using ACF on RGB-Thermal data;

(iii) ACF-RGBT+TM+TO [15], i.e. using ACF on RGB-

Thermal data with extra gradient magnitude and HOG of

thermal images; (iv) ACF-RGBT+HOG [15], i.e. using

ACF on RGB-Thermal data with HOG features with more

gradient orientations than (iii). Results associated to these

methods have been taken directly from the original paper

[15]. Similarly to baseline approaches, we also use ACF for

generating proposals both at training and at test time.

Observing Fig. 7, it is clear that CMT-CNN is several

points better than ACF-RGBT+HOG, the best baseline on

the KAIST dataset. Importantly, CMT-CNN only uses color

images in the test phase, while ACF-RGBT+HOG exploits

batch size 32 64 128 256

Caltech-All 65.97% 65.68% 65.32% 65.42%

Caltech-Reasonable 13.52% 13.01% 12.51% 12.35%

Table 3. Performance using different batch size in CMT-CNN-SA-

SB (RGB-KAIST) experiments.

Method Hardware Miss-Rate Testing Time (s/f)

InformedHaar [44] CPU 75.85% 1.59

SpatialPooling [22] CPU 74.04% 7.69

LDCF [18] CPU 71.25% 0.60

CCF [40] Titan Z GPU 66.73% 13.0

RPN + BF [43] Tesla K40 GPU 64.66% 0.51

CompACT-Deep [4] Tesla K40 GPU 64.44% 0.50

CMT-CNN Tesla K40 GPU 64.01% 0.59

Table 4. Comparison of different methods (log-average miss-rate

vs detection time). Log-average miss-rate is evaluated on the

Caltech-All. s/f represents seconds per frame.

both RGB and thermal data. We also observe that on the

Reasonable night setting, our approach obtains a more sig-

nificant improvement than in the Reasonable day experi-

ments. This demonstrates that CMT-CNN is especially use-

ful for pedestrian detection under dark illumination condi-

tions, thus confirming our initial intuition.

4.4. Results on Caltech pedestrian dataset

Analysis of CMT-CNN. Similarly to the experiments on

the KAIST dataset, we first analyze the performance of our

approach when different initialization strategies are used for

Sub-Net B. In this case we also consider another baseline

CMT-CNN-SA-SB (RGB-KAIST), i.e. we initialize Sub-

Net B with VGG16 pretrained on ImageNet and further

train it using RGB data of KAIST. The results of the com-

parison are shown in Table 2 and confirm the effective-

ness of our framework. We observe that CMT-CNN-SA-

SB (RGB-KAIST) beats CMT-CNN-SA-SB (ImageNet),

showing that fine tuning CMT-CNN-SB with KAIST RGB

data provides effective representations for improving the

detection performance on Caltech. By using complemen-

tary data from the thermal modality, CMT-CNN further
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Figure 8. Quantitative evaluation results on the Caltech pedestrian dataset: comparison with (a) previous methods using ACF for proposals

(VJ and HOG methods do not use ACF, but are kept as reference points) (b) state of the art methods on Caltech-All (c) state of the art

methods on Caltech-Reasonable.

boosts its accuracy and outperforms CMT-CNN-SA-SB

(RGB-KAIST). We observe that the improvement due to

knowledge transfer on Caltech data is less pronounced than

that obtained on KAIST dataset. We believe that this is

mainly due to the fact that the frames of Caltech generally

exhibit better illumination conditions than those of KAIST,

while thermal information is especially beneficial in case of

bad illumination.

To further demonstrate that the performance gain ob-

tained with the proposed CMT-CNN is not simply due to en-

sembling different models, we consider the baseline CMT-

CNN-SA-SB(RGB-KAIST) and we train Sub-Net B with

KAIST RGB images using four different mini-batch size

ranging from 32 to 256. For each experiment, the training

samples are randomly shuffled. Table 3 shows the results

of the four trials on Caltech-All and Caltech-Reasonable:

using different batch size for Sub-Net B slightly affects the

final performance and the best MR reported in the table is

still worse than those obtained with CMT-CNN. This con-

firms the validity of our cross-modality learning approach.

We also compare the proposed CMT-CNN which uses

ACF to generate region proposals with previous approaches

also based on ACF proposals. Figure 8(a) shows the results

of our comparison: our model outperforms all the baselines.

Moreover, similarly to what we observed for KAIST exper-

iments, CMT-CNN is more accurate than CMT-CNN-SA,

confirming the advantage of our approach.

Comparison with state of the art methods. A compar-

ison with state of the art methods is provided in Fig. 8(b).

We considered Viola-Jones (VJ) [33], Histograms of Ori-

ented Gradients (HOG) [7], DeepCascade+ [1], LDCF [18],

SCF+AlexNet [14], Katamari [3], SpatialPooling+ [23],

SCCPriors [41], TA-CNN [32], CCF and CCF+CF [40],

Checkerboards and Checkerboards+ [45], DeepParts [31],

CompACT-Deep [4] and RPN+BF[43]. Our approach at-

tains a miss-rate of 10.69% on Caltech-Reasonable, which

is very competitive with the state of the art methods, and

a miss-rate of 64.01% on Caltech-All, which establishes a

new state-of-the-art result. Importantly, our approach can

be seen as complementary to most previous works. In fact,

we believe that our unsupervised learning of cross-modal

representations can be also integrated in other CNN archi-

tectures, to improve their robustness in coping with bad il-

lumination conditions.

In Table 4 we report a comparison between our frame-

work and recent pedestrian detection methods in terms

of computational efficiency (times associated to previous

methods are taken from the original papers). At test time,

our network takes only 0.59 seconds to process one image,

which is very competitive with previous methods.

5. Conclusions

We presented a novel approach for robust pedestrian de-

tection under adverse illumination conditions. Inspired by

previous works on multi-scale pedestrian detection [43], a

novel deep model is introduced to learn discriminative fea-

ture representations from raw RGB images. Differently

form previous methods, the proposed architecture integrates

a sub-network, pre-trained on pairs of RGB and thermal im-

ages, such as to learn cross-modal feature representations.

In this way, knowledge transfer from multispectral data is

achieved and accurate detection is possible even in case of

challenging illumination conditions. The effectiveness of

the proposed approach is demonstrated with extensive ex-

periments on publicly available benchmarks: the KAIST

multispectral and the Caltech pedestrian detection datasets.

While this work specifically addresses the problem of

pedestrian detection, the idea behind our cross-modality

learning framework can be useful in other applications (e.g.,

considering depth images for RGBD object/action detection

and recognition). Hence, natural directions for future re-

search include further investigating this possibility.
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