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Abstract

Camera motion introduces motion blur, affecting many
computer vision tasks. Dark Channel Prior (DCP) helps the
blind deblurring on scenes including natural, face, text, and
low-illumination images. However, it has limitations and is
less likely to support the kernel estimation while bright pix-
els dominate the input image. We observe that the bright
pixels in the clear images are not likely to be bright after the
blur process. Based on this observation, we first illustrate
this phenomenon mathematically and define it as the Bright
Channel Prior (BCP). Then, we propose a technique for de-
blurring such images which elevates the performance of ex-
isting motion deblurring algorithms. The proposed method
takes advantage of both Bright and Dark Channel Prior.
This joint prior is named as extreme channels prior and
is crucial for achieving efficient restorations by leveraging
both the bright and dark information. Extensive experimen-
tal results demonstrate that the proposed method is more
robust and performs favorably against the state-of-the-art
image deblurring methods on both synthesized and natural
images.

1. Introduction

Blind image deblurring attracts considerable research at-
tention in computer vision community. With the assumption
that the blur is uniform and spatially invariant, the mathe-
matical formulation of the blurry image can be modeled as,

b=1l®k+n, (D

where b, [, k and n are blurry observation, latent image, blur
kernel and noise, respectively. Also, ® denotes the convo-
lution operator. Blind image deblurring aims to recover the
blur kernel k£ and the corresponding latent image ! from a
blurry input image b, which is a highly ill-posed problem,
because many different pairs [ and k£ can give rise to the

*Corresponding author.

same b. Therefore, additional information or constraints are
required to solve this problem.

In general, most existing methods take advantage of the
prior knowledge of the statistics of natural images. Such as
heavy-tailed gradient distributions [5, [13]], normalized spar-
sity prior [12], LO-regularized gradient [25]], patch recur-
rence prior [15], and a combination of the intensity and gra-
dient prior [16]. Recently, Pan et al. [17] present an valid
blind image deblurring method based on the dark channel
prior [6]. This algorithm enforces the sparsity of the dark
channel of latent images for kernel estimation and gener-
ates better results compared to other approaches. However,
larger degrees of bright pixels or noise can significantly af-
fect the performances of this algorithm since the dark chan-
nel prior do not hold under this circumstances.

In this paper, we propose a blind image deblurring algo-
rithm based on a novel natural image prior named Bright
Channel Prior (BCP). Inspired by the work in [17], we ob-
serve that the bright channel pixels (pixels with the largest
channel value within the local patch) are no longer bright
after the blurring process. We prove this empirical obser-
vation mathematically and exploit this property to recover
the intermediate image for kernel estimation. Therefore, we
propose to maximize the bright channel of the clear image
by exploiting an Ly-regularization term of inverse BCP. Op-
timizing the Lg-regularized term is challenging. In the pro-
posed algorithm, we solve the non-convex LO-minimization
problem by employing the half-quadratic splitting method
[24].

The core contributions are summarized as follows.

e We propose a novel natural image prior named Ex-
treme Channels Prior (ECP) by taking the advantages
of both DCP and BCP.

e We prove that the values of bright channel pixels de-
crease after blurring process and validate our theories
by comparing the intensities of bright channel pixels
of 5,000 natural images and the corresponding blurry
ones.

e We exploit the bright channel prior to help kernel esti-
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(a) Blurry image

(b) Bright channel of (a)

(c) Our result (d) Bright channel of (c)

Figure 1. Our deblurring result of a blurry image. The intensities of bright channel pixels decrease after the blurring process. Maximizing

the bright channel helps image recovering.

mation as an LO-regularization term to change the spar-
sity and develop an efficient optimization scheme.

2. Related Work

In recent years, significant progress has been witnessed
in blind image deblurring. Extensive methods take advan-
tage of sharp edges to estimate blur kernel [10} 21].
Joshi et al. [10] propose to utilize sub-pixel differences pre-
cision to detect edges for kernel estimation. Cho and Lee
[19] present a multi-scale framework using simple image
filters to restore sharp edges from blurry pictures. While
these approaches work well for small blur kernels, they have
difficulty dealing with large scale kernels. In [21]], Sun et
al. derive a novel patch-based strategy to improve Cho’s
method [19] for the same objective. However, this algo-
rithm is computationally expensive and not practical due to
querying a large dataset process.

To estimate blur kernels from blurry images, other exist-
ing approaches utilize statistical priors[4} 20} 14} 12}
or additional information [8}, 3} 9] to solve the ill-posed
problem. Shan et al. [20] adopt a sparse image prior and
introduce a unified probabilistic model to fit the gradient
distribution of natural images. Levin et al. model the
latent images using a hyper-Laplacian prior and derive a
simple approximation method to optimize the maximum a
posterior (MAP) framework. Various natural image priors
are used in deblurring that favor clear images rather than
blurry ones. In , a minimization scheme is proposed by
utilizing L, /Lo regularizer for edge selection. While these
techniques help kernel estimation, they may lose some de-
tails in the early stage during deblurring. Hu et al. [8] use
the light streaks to help low-light images deblurring.

Recently, Ly sparse representation is developed and in-
corporated into regularization in [25]] for deblurring. Pan et
al. [16] promote this approach by applying Lo-regularized
prior on both intensity and gradient for specific text image

deblurring. In [17], a genetic approach is proposed by con-
sidering how dark channel pixels vary during the blur pro-
cess. The dark channel prior was first introduced by He er
al. [6] based on the observation that in most of the natural
scene patches, at least one of the color channels possesses
some pixels with very close to zero intensities. Pan et al.
modify the prior that the dark channel of natural images
is sparse instead of zero and enforce the sparsity for kernel
estimation. While this work have robust performance on
various benchmark datasets, the dark channel prior may not
help intermediate latent image estimation if no dark pixels
exist in the image.

3. Bright Channel Prior

In this section, we first present a novel statistical prior,
i.e., BCP, and then prove this prior mathematically. This
prior is based on the observation that in most of the natural
scene patches, at least one of the color channels possesses
pixels with very large intensity. To formally describe this
observation, we define the bright channel of an image I as

B(I)(z) = max >(ce‘}l"f‘§‘,b>f “(y)), )

where x is the pixel location, /€ is a color channel of I and
Q(x) denotes a local patch centered at . As we can ob-
serve from Eq. (2)), a bright channel is the outcome of two
maximum Operators: MaX.c(r g,») and MaXyq(y)- Note that
if I is a gray-scale image, only the latter operator performs.
By utilizing this concept, we conclude that the intensity of
B(I) should be high and close to one, except for the situ-
ation which lacks the light or the shadow dominates. We
name our observation as BCP.

The high intensities in the bright channel are mainly due
to three factors: 1) light. e.g., sunlight, light from other
existing light sources, and the sky regions in the daytime
which are illuminated by the sun; 2) white or bright objects
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Figure 2. Statistics of the bright and dark channels. (a) Histogram of the intensity of the pixels in all of the 5,000 bright channels. (b)-(c)

Cumulative distribution of bright and dark channels, respectively.

or surfaces. e.g., white walls, floors, etc. 3) bright-colored
objects or surfaces, e.g., objects with high reflectance in
at least one of color channels, such as green leaf, yellow
flower and blue water, will also lead to high intensities in
their bright channel. We further validate our observation
with the statistics of the bright channels by randomly se-
lecting 5000 images from the PASCAL 2012 dataset [1]
without any manually pre-processing. Figure [2(a)] shows
the histogram of the average number of bright channel pix-
els. As can be observed, a large portion of the pixels in the
bright channels possess very large values, which strongly
supports our proposed prior. Figure 2(b)]is the cumulative
distribution of the bright channels and Figure is the
corresponding cumulative distribution of the dark channels.
Note that for the convenience of comparison, we reverse the
horizontal x-axis of Figure We can conclude that our
BCP is comparable to the classical DCP.

To utilize our BCP during deblurring, we analyze how
bright channels vary after the blurring process. Note that
the blur model in Eq. () resembles the convolution process
except for the noise. For comparison, we consider blurring
with the assumption that the noise is small enough to be
neglected. Formally, we have

p
o) = 3 Ua—z+[BDEG) O
where ®(x) denotes the blur patch centered at pixel = with
size p, which is identical to the size of blur kernel k. In ad-
dition, [-] is the rounding process. According to the property
of blurring, we have k(z) > 0 and ¥..¢(,)k(2) = 1. Letp
equal to the patch size of Q(z) in Eq. (Z), we can obtain

ba)=_ 3 U=+ [5Dk()
= zeg(x)ygls?é)l(y)k(z) @)
- yglsgi();)l(y)zeg(w)k(z)
W

Eq. shows that the intensity at pixel x after the blur op-
eration is not more than the maximun intensity of the pixels
in the original image patch centered at x. Particularly, if
is the brightest pixel in its local patch, Eq. (@) is equal to
b(x) < l(x). To further apply this proposition to the defini-
tion of bright channel, it satisfies,

B(b)(z) = max ( max b°
()( ) yEQ(a:)(CE(r,g,b) (y))

= max b
max, (y)
p
= Y Wy—=z+[5)k
Jmax ) (y =z +[5Dk(2)
p
< ¥ max l(y—z+[=])k(z )
S eny R (y [5Dk(2)
< ¥ max I(yHk(z)

2€®@(y)yteQt(z)

l !
e ()

= B(l)().

Let S and Sq: denote the size of the bright channel patch
Q(x) and Q!(x), respectively. Then we can obtain Sq: =
Sq + p. To preserve this property, we adopt large bright
channel patch. Eq. (5) demonstrates that the bright channel
of a blurry image has lower pixels intensities than the cor-
responding one of clear image. Therefore, a property which
is helpful to the kernel estimation is introduced that the blur
process reduces pixels values which are equal to one in the
latent image. Formally, we have

1= B(b)(@)llo = 1 = B{)(z)]lo- (©)

Note that the intensity of the brightest pixels is 1 and the
equality sign can be satisfied if and only if the intensities
of all the pixels in ®(z) are lower than 1 or identical to
each other. In addition, this property holds regardless of the
size of bright channels patch. We also validate this statis-
tics on the PASCAL 2012 dataset. Figure [3| shows that the
bright channels of the latent images possess more values

4005



«10%
.

T T
I cl=an image
[ b'urry image

25

o
T

Average number of bright channel pixels

05

0
o 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1
Intensity

Figure 3. Intensity histograms of bright channels of both clear and
blurred images in 5,000 natural images.

which are close to one than those of corresponding blurry
images. This statistical property gives very strong support
to our analysis above. Motivated by Eq. (6)), in this paper,
we enforce this Ly-norm sparsity as a novel regularization
term for image deblurring.

4. Proposed Algorithm

In this section, we present a blind image deblurring
model and develop an efficient optimization algorithm for
kernel estimation. We formulate the deblurring problem
within the maximum a posteriori (MAP) framework as [25]],

{I,k} = arg Hlliknﬁ(l ®k,b) +vp(k) + Ap(l), (7)

where p(k) and p(l) are the priors of the blur kernel and the
latent image, respectively.

4.1. Proposed ECP

Motivated by our proposed BCP and the corresponding
analysis in Section 3] we present a novel Ly-regularization
of the inverse BCP based image prior as

p(l) = [[1 = B{D)llo- ®)

Then we propose a novel ECP for image deblurring by tak-
ing the advantage of both the proposed BCP and the familiar
DCP.

p() =11 = BD)llo + [DD)]lo- ©

In this prior, we take advantage of both BCP and DCP to
facilitate the image deblurring problem. The effectiveness
of the proposed ECP can be found in Section[5.1]

4.2. Objective Function

We combine the proposed ECP based regularization term
(@) into the recent single image deblurring framework in

[17], then our proposed objective function for image de-
blurring becomes

{i, k} = arg min|li & k — bl|3 + 1|13
Lk (10)
+ullVillo + DM +nl[1 = B{D)llo,

where 7, u, A, 1 are the corresponding weight parameters.
The first term in Eq. (T0) is the data fidelity term to restrict
that the convolution of recovered image [ should be con-
sistent with the blurred image b. The difference between
l ® k and b are usually constrained by using the Lo-norm
[19, 126, 27] or the L;-norm [23,18]. In this work, we use
the Lo-norm for the data fidelity function. The second term
is a constraint which demands the blur kernel & to be sta-
ble. We adopt the L,-norm which can be solved by the Fast
Fourier Transform (FFT) [19, [23]]. The third term tends to
retain the sharp image gradients but to remove tiny ones,
while the fourth regularization term keeps the sparsity of
the dark channels.

4.3. Optimization

Since it is difficult to obtain the solution of Eq. di-
rectly, we instead use an alternating minimization algorithm
based on the half-quadratic splitting algorithm [24].The in-
termediate latent image [ and the blur kernel k are estimated
alternatively by fixing one of them, i.e., the optimization
problem becomes two sub-problems:

I = argmin[|L ® k — blJ3 + 1| Vo
+ MDD lo +nllt = B(1)]lo,

1)

and R
= arg min|[l © k — b3 + (|13 (12)

We further present an efficient optimization algorithm to
solve them accordingly.

4.3.1 Estimating Latent Image

Considering that the L regularization term is computation-
ally intractable, we propose an efficient algorithm to solve
in Eq. (TI) based on the half-quadratic splitting technique
[24]. By introducing new auxiliary variables p, ¢ and g ,
where g = (gn, gv) ", corresponding to D(l), 1 — B(l) and
VI, respectively, we can rewrite the objective function (11J)
as,

{1.9,5,0} = arg min |1 ® k = bl}3 + al| Vi - I
+BID) —pl3 +wll - Bl) —q3 1D
+ ullgllo + Allpllo + nllgllos

where o, A\ and 7 are positive penalty parameters. The
above optimization problem can be solved by alternatively

4006



Algorithm 1 Our Deblurring Algorithm

Input: Blurry image b.
generate the initial kernel k.
for i=1:5 do
I+ bw < 2.
repeat
Solve for ¢ using (20).
B 2\
repeat
Solve for p using (T9).
a4 24.
repeat
Solve for g using (I8).
Solve for [ using (T6).
a < 2a.
until o > aypay.
B+ 20.
until 5 > Bax.
w — 2w.
until w > wpax.
solve blur kernel & using (22))
4= 0.9, A < 09X, 7 < 0.97.
end for
Output: Intermediate latent image [ and blur kernel &.

minimizing [, p, ¢ and g separately while fixing the other
variables. To solve the latent image [, the objective function
becomes,

[ =arg min||l @ k — bl|2 + a| VI — g||?

(14)
+BIDQ) = plls +wl1 = B(1) - ql3-

For the convenience of optimization, we reform our 1— B(l)
into D(1 — 1) for consistency. Note that the operation D (1)
is non-liear, similar to [17], we replace it with an equivalent
linear operator M. The M is fundamentally a mapping ma-
trix, which maps the pixel to its dark channel and is defined
as,

L y=ag min i(y), as)
0, otherwise.

M(Z’,y) =

During the deblurring process, we use the intermediate
latent image for computing M. When the intermediate im-
age approaches the clear image, the computed M becomes
closer to the operation D. Given the intermediate latent im-
age [, we compute two mapping matrices M; and M;_,;
corresponding to D(I) and 1 — B(l). Then, the objective
function becomes,

[ =argmin||l ® k — b||2 + || VI — g|2
! (16)
+ BlIMiL = pl3 + wl[Mr—o(1 = 1) — g3,

Average PSNR
Success percent

25 3 35 4 4.5 5
m3 imd. average. Error ratios

(a) (b)

Figure 4. Quantitative evaluations on the benchmark dataset by
[13]] with and without using DCP or BCP. (a) Comparisons in
terms of PSNR. (b) Comparisons in terms of cumulative error ra-
tio.
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Figure 5. Quantitative evaluations on the benchmark datasets by
[13] and [[1L1]], respectively.

in which [ can be solved efficiently using the FFT,

k)F(b) + aFy+ BF(p) +wF(q)

Fk)F (k) + aF(V)F(V) + B +w

- ). an

where Fy = F (V) F(gn) + F(Vy)F(g); Vi and V,
denote the horizontal and vertical differential operators, re-
spectively; F(-) and F~1(-) denote the FFT and inverse
FFT, respectively; and - is the complex conjugate operator.

Given [, the subproblems with respect to g, p and ¢ can
be solved separately by:

§ = arg minal|VI = gl|3 + lgllo, (18)
p = argmin8| D(1) = pl3 + Alpllo, (19)

and R . )
¢ = argminw[[1 —B(l) —qllz +nllalo-  (20)

Note that Eq. (T8) is a pixel-wise minimization problem,
we obtain the solution of g according to [25]:

1-B(), 1-BD]?> 12,
q:{ 0, 11-BOP=2 o
0, otherwise,

as well as solutions of p and q.
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(a) Input (b) Shan et al. [20]

(c) Cho et al.

(d) Xu et al. [23]

(f) Ground truth

(2) Whyte et al. [22]

(h) Pan et al.

(i) Ours without DCP () Ours

Figure 6. Comparisons of state-of-the-art methods on one challenging image from the dataset [11]]. The deblurred image generated by the
proposed algorithm with the bright channel prior is visually more pleasing.

4.3.2 Estimating Blur Kernel

In this subproblem, we optimize the blur kernel k with the
given [ by employing the fast deblurring method [19]] on the
gradient images and the Lo-norm of data fidelity term as:

k= argmin|[VI© k- Vol +Allk[5,  (22)

which is a least squares minimization problem. Similar to
the existing approaches [19] 23], we compute the solution
by FFT,

F(VO)F(Vb

k= }“%%). (23)

FVO)F(VI) + v

In practice, we adopt a multi-scale blind deconvolution
method for kernel estimation. In addition, we set the nega-
tive elements of k to zero and normalize % in the end. The
main steps of our deblurring method are shown in the Algo-

rithm/[Il

5. Experimental Results

In this section, we analyze how our proposed algorithm
performs on both the synthesized and real images and com-
pare it to the state-of-the-art deblurring methods. In all
experiments, the following fixed parameters are employed:
uw=X=mn=0.004, v = 2and w; = 35, where w; do-
nates the size of extreme channels patch. The Peak-Signal-
to-Noise Ratios (PSNR) and the cumulative error ratio are
used as the performance evaluation standards on kernel es-
timations and deblurred results.

5.1. Effectiveness of ECP

As mentioned in Sections [3] and [} the proposed ECP
regularization term considers more information in real sit-
uations. To demonstrate the effectiveness of the proposed
ECP term, we compare the proposed method with the re-
cent the DCP based image deblurring method [17] in im-
age deblurring. We note that our method can naturally de-
grade to DCP based method without the BCP in Eq.
[] and to only BCP based method without the DCP regu-
larization term. We compare these three (BCP, DCP and
ECP-based) methods on the dataset by [13]], which is gener-
ated from 4 clear images and 8 different blur kernels. Figure
[(a) shows the quantitative evaluation of the proposed ECP
based method against the DCP based method and the
BCP based approach in terms of PSNR. The proposed ECP
based algorithm generates results with higher PSNR values
than other two methods only condisering DCP or BCP.

In addition, we also show the performances of the pro-
posed algorithm against the DCP-based [17] and BCP-
based methods on this benchmark dataset in terms of
the cumulative error ratio. Figure @{b) shows that the pro-
posed ECP-based algorithm performs well on this dataset
against the state-of-the-art DCP-based deblurring methods
[17] in terms of cumulative error ratio, especially when the
value is larger than 2 (which is close to real-world scenar-
ios). Note that the BCP-based method also performs favor-
ably against the state-of-the-art method even without
the DCP regularization, which further demonstrates the ef-
fectiveness of the proposed BCP and ECP-based methods.
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(a) Input (b) Ground truth (c) BC of (b)

(d) DC of (b) (e) BC of our result (f) DC of our result

(g) Intermediate results of [17]

(i) Intermediate results of

(k) Intermediate results of ours

(1) Output of ours

Figure 7. Comparisons with the state-of-the-art methods [16,[17]. (a) and (b) are the blurry input and corresponding ground truth image.
(c) and (d) are the BC and DC of the image in (b). (e) and (f) are the BC and DC of the deblurred result by our method in (1). (g), (i) and (k)
are the intermediate results over iterations (from left to right) by [17], [16] and our method, respectively. (h), (j) and (1) are the deblurred
results by [17]], [16] and our method, respectively. With the BCP and DCP, our method recovers intermediate results containing more sharp
edges for kernel estimation. The dark channels of the intermediate results become darker and the bright channels become brighter, which

favor clear images and facilitate kernel estimation.

N

(c) Pan

(a) Input (b) Xu (d) Ours

Figure 8. Visual comparison of state-of-the-art methods on a real-
wold blurry image.

5.2. Synthetic Datasets

To better verify the effectiveness of our proposed
method, we use the image benchmark datasets for
quantitative evaluations and follow the protocols of (111
for fair comparisons. We evaluate the performance of
the proposed approach against the state-of-the-art methods

[131 2], 5l [12] 16, 23]]. We first test on the dataset by
Levin et al. [13]. Figure[3|a) indicates that our ECP based
algorithm performs well against the state-of-the-art meth-
ods [2, [12] 16 23] on this benchmark dataset [13] in

terms of cumulative error ratio.

In addition, we also test the competing methods [20}
121 on the benchmark dataset by [11]], which
includes 4 images and 12 blur kernels. We adopt the highest
PSNR of those calculated by comparing the deblurred im-
age with 199 ground truth images captured along the camera
motion trajectory. Figure [5[b) contains quantitative evalu-
ations in terms of the highest PSNR. Since the proposed
method consider both BCP and DCP information, the PSNR
values of the restored images by our method are higher than
the state-of-the-art algorithms [20} 23] 12| 7, 22 [17].
We further give a visual comparison in Figure [6, where
the state-of-the-art methods do not generate clear images.
While the method by Pan et al. performs well against
other approaches [20} (19} 23] [12, 22| [T7], the generated im-
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(a) Input

(c) Pan et al. [17]

(d) Ours

Figure 9. Visual comparison of state-of-the-art methods on a real-
wold blurry image.

age still contains significant ringing artifacts in the bottom
of Figure [[(h). It is mainly because the large blur kernel
blends the below dark part with some bright pixels, which
makes DCP less effective. However, our method generates
a clear image with fine textures as shown in Figure []j).
Note that our method can generate visually pleasing image
in Figure [6{i) even only using BCP based approach. The
main reason is that the property of bright channel helps to
remove the ring artifacts if there exist some bright regions
in the input image.

In [[17]], dark channel also helps the blind deblurring on
text images. We further carry out experiments on text im-
ages to demonstrate the effectiveness of the proposed BCP.
Figure [7] visually shows our method performs well on a
challenging blurry image against [17] and the method de-
signed for text images [16]. As shown in Figure [(g), (i)
and (k), utilizing both the BCP and DCP generates clearer
intermediate results. Meanwhile, our deblurred result in
Figure [7(T)] has less ringing artifacts compared to results
generated by other methods [[17, [16]. Note that the bright
channel becomes extremely bright after the deblurring pro-
cess, which demonstrates that our proposed Ly-norm based
on the BCP is helpful for kernel estimation and image de-
blurring. In particular, clear text images contain more bright
pixels, which drives our BCP performing well.

5.3. Real Images

In this section, we test our method on real images against
the recent state-of-the-art blind single image deblurring
methods [25] [17]. We analyze the deblurring results qual-
itatively due to the unknown blur kernels and ground truth
images. Figures [§] and 0] show two challenging real cap-
tured blurry images. The deblurred images generated by
the proposed algorithm are sharper and clearer than others
generated by (25 [17]. As shown in Figure [8] the face of
the woman contains fewer edges or textures, which causes
trouble for deblurring with the methods designed for nat-
ural images. Pan er al. [17] exploits the dark channel and
performs well. However, the deblurred face still remains
visually blurry artifacts. In contrast, by further utilizing our
bright channel, our output becomes clearer in the face ar-
eas. Figure 0] demonstrates the results from an outdoor im-
age. Comparing with other methods, our algorithm tends to
recover sharper and clearer details as shown in Figure [9(d).

6. Conclusion

In this paper, we propose a novel BCP based on the ob-
servation that these bright pixels in the clear images will be-
come less bright after the blurring process. By combining
this prior with DCP, we propose an effective prior, named
ECP, to recover the latent images for kernel estimation. The
proposed method considers both the dark and bright chan-
nels information and does not require any complex process-
ing techniques or edge selection steps. Extensive experi-
mental results on both the synthesized and natural images
demonstrate that the proposed algorithm performs favorably
against the state-of-the-art deblurring methods. In addition,
we believe that our proposed prior can motivate further re-
search and the development of novel applications in a vari-
ety of fields.
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