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Abstract

This paper proposes an algorithm that turns a regular

video capturing urban scenes into a high-quality endless

animation, known as a Cinemagraph. The creation of a

Cinemagraph usually requires a static camera in a care-

fully configured scene. The task becomes challenging for a

regular video with a moving camera and objects. Our ap-

proach first warps an input video into the viewpoint of a

reference camera. Based on the warped video, we propose

effective temporal analysis algorithms to detect regions with

static geometry and dynamic appearance, where geomet-

ric modeling is reliable and visually attractive animations

can be created. Lastly, the algorithm applies a sequence

of video processing techniques to produce a Cinemagraph

movie. We have tested the proposed approach on numer-

ous challenging real scenes. To our knowledge, this work is

the first to automatically generate Cinemagraph animations

from regular movies in the wild.

1. Introduction

Our world is dynamic. Imagine you are standing in the

middle of Times Square surrounded by constant noise, cars

passing by, or flashy billboards showing advertisements at

every second. A fundamental challenge in Computer Vi-

sion is to model and visualize dynamic environments. Cin-

emagraphs, still photographs containing minor and repeated

animations [1], are one of the most successful examples in

capturing such scene dynamics. Their subtle animations are

effective in capturing the “moment” with striking visual ef-

fects.

The generation of high-quality Cinemagraphs have so far

required static cameras with carefully configured scenes [1,

2] or interactive tools [14]. No compelling techniques ex-

ist in the automatic conversion of regular videos into Cin-

emagraphs. Online photo storage services, such as Google

Photos, automatically produce short animations from user

images and movies. However, their animations are either a

simple image slide-show or a trimmed movie segment loop-

ing forward and backward unnaturally.

We seek to make the first step towards automated Cin-

emagraph generation from regular movies with moving

cameras in the wild. The key insight is that even subtle

animations yield striking visual effects, where our approach

is to selectively and precisely segment regions that lead to

high-quality animations. In particular, we focus on urban

environments or night-time settings, where neon-signs, dis-

plays, or flashy billboards decorate a scenery. Such a geom-

etry is static, making the modeling task significantly easier,

while their appearance adds effective dynamics to the scene

visualization.

Formally, this paper turns a regular video capturing ur-

ban scenes into a Cinemagraph-style animation in three

steps. First, we utilize existing 3D reconstruction tech-

niques to warp an input video into the viewpoint of a refer-

ence frame. Second, novel temporal analysis algorithms are

applied to the warped video to identify regions where high-

quality animations can be produced. These regions have

static geometry with varying appearance. Third, we per-

form a sequence of video processing techniques to generate

high-quality animations for the segmented regions, while

fixing the rest of the pixels to the reference frame.

The contributions of this paper are two fold. The tech-

nical contribution lies in the effective temporal analysis of

noisy warped videos to enable the segmentation and classi-

fication of visually interesting regions. The system contri-

bution is the fact that this is the first effective system auto-

matically generating Cinemagraph animations from regular

movies 1.

2. Related work

Dynamic scene reconstruction has been a fundamental

problem for Computer Vision. Significant progress has

been made for lab-environments, where multiple calibrated

and synchronized video cameras are the input. A successful

system has been demonstrated for a human body [26], a hu-

man face [4], or multiple people with interactions [13, 8].

1Project page: http://yanhangpublic.github.io/cinemagraph
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Figure 1: System overview. Given an input video clip (left), the system first warps all frames into the reference view (left

middle) by computing camera poses and the reference depth-map. Regions that are visually attractive are selected, namely

regions with static geometry and dynamic (cyclical or non-cyclical) appearance (right middle). The system then creates a

cinemagraph rendering by only animating those regions while fixing other pixels to the reference frame (right).

Dynamic scene reconstruction from YouTube videos has

been recently proposed [12]. They jointly reconstruct the

static background and dynamic foreground objects. How-

ever, the adopted visual hull reconstruction leaves notice-

able protruding artifacts on their models. Dynamic Fusion

reconstructs non-rigidly deforming objects from an RGBD

stream, but does not focus on dynamic appearances [21].

More macro scale dynamics (e.g., scene changes over

months or years) can be detected by analyzing a set of im-

ages acquired by standard cameras [30], stationary surveil-

lance cameras [23], vehicle-mounted cameras [29], or com-

munity photo sharing websites [20, 18]. In particular, the

time lapse reconstruction [18] has produced impressive spa-

tio temporal 4d models. They are one of the most suc-

cessful examples of varying geometry and appearance over

space and time. However, they require massive amount of

photographs, limiting their applications to a small number

of landmarks in the world. In contrast, we seek to real-

ize Cinemagraph-quality dynamic scene visualization from

a single regular movie.

The Cinemagraph creation has also been studied. Im-

pressive results have been obtained by semi-automatic sys-

tems [14, 2], or with templated input videos [3]. Auto-

matic cinemagraphs systems [28, 32] create the mask for

animated regions by motion analysis. However, these sys-

tems are successful only when the camera does not move

and the scene is mostly static. A data-driven single-image

approach has produced impressive animations [16], but the

dependence on the database currently limits their applica-

tion ranges. A simple yet appealing system [24] has been

proposed to create endless loops by randomly jumping be-

tween similar frames. However, their system requires the

video to be cyclic. In contrast, this paper proposes an auto-

mated approach for regular movies with moving cameras.

3. System overview

This paper proposes a novel system that allows us to

convert standard movies with moving cameras capturing ur-

ban scenes into Cinemagraph animations. Our system con-

sists of three steps: warping, segmentation, and rendering

(See Figure 1). First, we use Structure from Motion (SfM)

and Multi-View Stereo (MVS) algorithms to warp the input

video into the viewpoint of a reference frame via a depth-

map based image morphing. Second, effective temporal

analysis and segmentation algorithms are applied on the

warped video to give regions that lead to good animations.

Finally, we render a high-quality Cinemagraph movie by a

sequence of video processing techniques in each segmented

region to mitigate artifacts from warping, while fixing the

rest of the pixels to the reference frame. The warping step

is an application of standard techniques, while the last two

steps, in particular the segmentation step, exhibit technical

contributions in this paper.

4. Spatial alignment by image warping

The video warping is based on standard 3D reconstruc-

tion techniques with minor modifications for being robust

against scene dynamics. First, we use a SfM software

TheiaSFM [27] to estimate camera poses. Given a reference

frame Ir, we estimate a depth-map based on 100 neighbor-

ing frames (i.e., 50 frames before and after) via a standard

MRF formulation. The range of scene depth at Ir is esti-

mated from visible 3D points provided by SfM, with 1%

nearest and farest points discarded for robustness. The in-

verse depth space is then uniformly discretized into 128 la-

bels.

Following the idea in [15], we compute a matching score

between Ir and each neighboring image, then sum up the

best half of these scores as the overall unary term to com-
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Figure 2: Fourier analysis for cyclic dynamic pixels. Left: Two pixels p1 and p2 are marked for illustration in the reference

frame. Left middle: the intensity patterns of two pixels over time. The intensities are preprocessed to have zero means. Right

middle: the frequency magnitudes of temporal pattern. Since p2 has cyclic dynamic appearance, the peak occurs at a high

frequency, while for p1 the peak occurs at a low frequency. Right: the resulting cyclicity score, encoded in the red color

channel.

pensate for occlusions and scene dynamics. The matching

score is defined as one minus the Normalized Cross Corre-

lation over 5× 5 image patches, truncated at 0.3 for robust-

ness. The pairwise term is a truncated linear function of the

absolute label differences with a truncation at 4. We multi-

ply 0.15 to the pairwise term. Given the estimated depth-

map, we warp all the neighboring frames into the view-

point of Ir via standard backward warping, while taking

into account occlusions via Z-buffering. Occluded pixels

are ignored in the next segmentation process and will be

in-painted in the last rendering process.

5. Dynamic appearance segmentation

Carefully choosing regions to animate is the key to suc-

cessful Cinemagraph creation. Our approach is to conduct

temporal analysis on the spatially aligned warped-video,

while focusing on two types of appearances common in ur-

ban scenes.

5.1. Non­cyclic dynamic appearance

Digital displays or billboards are popular visual attrac-

tions in urban downtowns, night clubs, or store-fronts in

shopping malls. Detection and segmentation of displays

pose challenges to existing techniques as they could show

arbitrary contents. Our system detects these regions by 1)

segmenting the warped video into 2D segments by a novel

feature vector encoding characteristic appearance changes,

and 2) classifying these regions by a random forest trained

from manually annotated video clips.

Warped video segmentation: We perform hierarchi-

cal bottom-up 2D segmentation of a warped video (See

Fig. 4). 2 Our contribution lies in the novel distance met-

2The approach starts from pixels and greedily merges the closest pair if

the distance of their feature vectors is below a threshold. It iterates between

merging and increasing the threshold until everything merges to a single

segment. The original algorithm [10] operates on 3D pixel volumes, while

our system performs 2D segmentation by treating each pixel as a 1D array.

Figure 3: Our temporal binary pattern encodes the tempo-

ral characteristic of a pixel (p) by checking once in every

α frames if there will be significant color change after β
frames. The figure illustrates a case when α = 2 and β = 7.

ric for a pair of spatial regions, defined as DT + 0.1DA.

The metric utilizes the warped video to analyze the differ-

ence of temporal appearance changes DT in addition to the

difference of pixel values DA.

The inspiration of DT comes from local binary pat-

tern [7, 22] for feature matching, which we employ in the

temporal domain. Let Ip(f) be the mean color of a pixel p
(or a region after merging) at frame f in the warped video.

We will drop p from the notation below for simplicity. Our

binary temporal pattern descriptor checks once in every α
frames if there will be significant color change β frames

ahead (See Figure 3). More precisely, the ith bit of the bi-

nary pattern is defined as

∆(i) = ✶(‖I(αi+ β)− I(αi)‖2 > θ). (1)

✶ denotes the indicator function and checks if the color dif-

ference in RGB space is more than θ = 100.

To capture both local and long term appearance changes,

we use two sets of parameters: α1 = 4, β1 = 4 for ∆1(i),
and α2 = 2, β2 = N/2 for ∆2(i), where N is the number

of input frames. The final binary descriptor is the concate-

nation of the two:

T = [∆1(0),∆1(1), . . . ,∆2(0),∆2(1) . . .].

The distance between two binary temporal descriptors DT
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is computed by the Hamming distance of the two binary

vectors normalized by the feature dimension.

DA measures the pixel value difference between two

segments by computing one minus the normalized cross

correlation of two color histograms. The histogram for each

segment is constructed from the LAB values of all pixels in-

side the 2D region from all frames, with 8 bins per channel.

We start the process with the initial merging threshold set

to 0.2 and increase it by a factor of 1.5 every time. We use

segmentation results at three different levels of granularity

to generate (overlapping) image segments for robustness, in

particular, at 60%, 70% and 80% levels [10].

Classification: We build a binary random forest classifier

based on appearance, temporal changes, shape, and posi-

tion features. We have obtained the training data by down-

loading stationary video clips of popular urban scenes from

YouTube. Then, we have manually annotated 2D regions

such as displays and billboards. Please refer to the sup-

plementary material for detailed feature design and train-

ing process. At test time, we pass all segments from three

granularity levels into the classifier and take the union of

all positive segments. We ignore mostly invisible segments,

that is, if more than half the pixels are invisible (i.e., project

outside the view or fail in the Z-buffering test during warp-

ing) in more than half the neighboring frames.

5.2. Cyclic dynamic appearances

Repeated advertisements or flashing neon-signs are also

symbolic structures in many urban scenes, especially at

night time. Due to the fact that these regions are often small

and isolated, standard motion analysis and segmentation al-

gorithms perform poorly. We propose a simple but power-

ful temporal analysis algorithm based on Discrete Fourier

Transform (DFT) to recognize these pixels.

For each pixel of the warped video, we compute the 1D

DFT of its intensities over all frames, then conduct a fre-

quency analysis (See Fig. 2). For ideal cyclic intensity

patterns, we should observe a clean peak among high fre-

quency components, while low magnitudes at low frequen-

cies. To be robust against errors from warping, instead of

computing a single score using all the N input frames, we

look for the optimal interval of at least N/2 frames. More

precisely, we compute the cyclicity score of a pixel from

frame i to j as

ccyc(i, j) =
maxk>τ |Fk|

maxk≤τ |Fk|
.

|Fi| denotes the magnitude of a DFT component. 3 τ is

the boundary between the low and high frequency compo-

nents, which is set to 4 throughout the experiments. The

3We only use the first half of the DFT coefficients as their magnitudes

are symmetric for real-valued arrays. We also discard the direct component

by subtracting the mean intensity before DFT.

final score is the maximum over all the possible frame in-

tervals containing at least N/2 frames:

Ccyc = max
(j−i)≥N/2

ccyc(i, j). (2)

We animate a pixel if 1) its score (2) is greater than 2.5 and

2) its 80th percentile of intensities over all frames is greater

than 127.

6. Cinemagraph rendering

Our system renders Cinemagraph animations in the de-

tected regions using frames from the warped video, while

keeping the remaining pixels fixed to the reference frame.

The cyclic pattern often consists of small segments and

the animation in the optimal interval computed by the for-

mula (2) looks natural without any post-processing.

Non-cyclic appearance segments are more challenging.

We first in-paint visibility holes by Laplacian smoothing

over space and time. Next, we apply geometric stabilization

by homograph warping using static feature points. More

concretely, feature tracks are generated [25, 6] and filtered

by the constraints that 1) the track has to last for at least 10

frames and 2) the standard deviation of the tracked pixel co-

ordinates must be less than 2 pixels in both x and y. Linear

least square are used to compute the homography warping

from each frame to the reference.

As in existing literature [5, 18], we apply intensity reg-

ularization. This is crucial for our warped video, which

suffers from severe rendering artifacts. Standard tech-

niques such as temporal median filtering [5] or global least

squares optimization [18] have produced compelling results

for many of our examples. However, they show two typ-

ical failure modes when a segment exhibits rapid optical

flow motions and/or abrupt temporal changes. First, they

over-regularize high frequency temporal signals. Second,

inconsistencies arise across pixels due to the lack of spatial

regularization.

Our approach is to rearrange pixel values of a segment

throughout the frames as a 2D matrix and obtain a low-

rank approximation. This method achieves moderate tem-

poral and spatial regularization. RPCA [31] is the choice of

our machinery, which has been successfully used for vari-

ous image and video analysis tasks, but not for high-quality

movie rendering to our knowledge.

More concretely, we concatenate pixels of a segment in

a single frame to a row vector, and stack them across the

frames to form a matrix P . We use Accelerated Proximal

Gradient [17] method to minimize the standard RPCA for-

mulation:

‖A‖∗ + λ‖E‖1 subject to A+ E = P. (3)

The minimization of the nuclear norm ‖A‖∗ achieves spa-

tial and temporal regularization. We solve the problem for
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Figure 4: Hierarchical 2D video segmentation. The left shows the reference frame. The right shows the segmentation results

at 0%(lowest), 60%, and 80% hierarchy levels, respectively.

Figure 5: Segmented regions for Cinemagraph animation

by Yeh et al. [32] and our approach. The method by Yeh

et al. assumes a static camera as in any other Cinemagraph

creation methods. It simply identifies a region with large

optical flow motions, and fail to identify effective regions

for Cinemagraph animations.

each channel independently and rearrange A as the output

pixel values. We have found that it is important to adap-

tively tune the scalar weight λ depending on the video con-

tent, which varies significantly across examples. Intuitively,

a rich video content with fast optical flows or temporal

changes should still have large nuclear norm. Therefore, we

set λ to be proportional to the “richness” of the video con-

tent, characterized by ∆1 from Section 5.1. More precisely,

we set λ to be 0.005 + 0.015 γ, where γ is the number of

’1’ in ∆1 divided by its dimension (See Figure 6).

To create endless loops, we render segments with cyclic

appearance over and over again inside the interval found by

the optimization (2). For non-cyclic dynamic segments, we

create loops by playing the video forward and backward.

Each segment is looped independently.

7. Experimental results

We have implemented the proposed system in C++ and

used Intel Core I7 CPU with 32GB RAM and NVIDIA Ti-

tan X GPU (for stereo matching score evaluation). We have

downloaded various footages from YouTube such as walk-

throughs or drive-throughs of urban scenes. We have also

Figure 6: Adaptive appearance regularization. Left: with

λ = 0.02. Notice the occluders inside the red circles. Mid-

dle: output of RPCA with λr = 0.011, which is automat-

ically selected. The occluding artifact is mitigated. Right:

output of RPCA with λr = 0.005. The frames are overly

smoothed.

recorded walk-through videos by ourselves. Most of the

input videos are 10 seconds long (i.e., 300 input frames),

while some last for 2 minutes. Our movie collections span

indoors/outdoors, day/night, and various places such as ur-

ban downtowns, city streets, casinos, shopping malls, or

university buildings. Notice that SfM processes all the input

frames, but our algorithm only needs a reference frame and

100 neighboring frames. The running time of our system

after the SfM step ranges from thirty minutes to an hour,

depending on the frame resolution and the number of dis-

play segments, where the bottleneck lies in stereo compu-

tation and RPCA. Our main technical contribution, namely

the segmentation, finishes in few seconds.

Figure 10 shows four of the input videos, segmenta-

tion results of the two algorithms, and the output Cinema-

graphs. Our system enables automatic high-quality Cin-

emagraph creation from videos with moving cameras in the

wild, where all the existing approaches require a static cam-

era with a clean scene and/or human manual interventions,

to our knowledge. Please refer to the supplementary mate-

rial and the project website for complete experimental re-

sults and movies.

Figure 5 demonstrates that our segmentation process ef-
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Figure 7: We evaluate five different segmentation algorithms on two examples. For each example, the segmentation result is

shown in the first row and the corresponding classification result is shown in the second row. The combination of the temporal

and appearance (temp. + app.) information allows us to effectively segment regions that lead to good animation. Algorithms

of Felzenszwalb et al. [9] (with threshold parameter set to 500) and Grundmann et al. [10] lacks in temporal appearance

information and fail to group pixels in the display in the top example. Only using the temporal information (temporal only)

produces incomplete segments for partially dynamic displays (yellow display on the left of the bottom example). Only using

appearance information (appearance only) fails to capture display segment as in Felzenszwalb et al. and Grundmann et al.

Segmentation result from 80% hierarchy are shown in the right four columns.

Figure 8: Comparison of different intensity regularization algorithms. Left: input frame. Right: rendering using temporal

median filter with radius of 5, global least-square optimization with the smoothing weight 50, and our adaptive RPCA. The

first two algorithms regularize each pixel independently, causing inconsistency across pixels under fast motion. In contrast,

our algorithm jointly regularize all pixels inside a region.

fectively identifies regions that lead to high quality anima-

tions. Since no automated Cinemagraph generation method

exists for a general movie, we have supplied our warped

videos to an existing algorithm assuming a static cam-

era [32] for comparison. However, their algorithm simply

looks at a rectangular regions with large optical flow mo-

tions, and cannot handle severe rendering artifacts or rich

dynamics in our movies.

Figure 7 shows the effectiveness of our new pixel dis-

tance metric for segmenting non-cyclic dynamic regions.
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Figure 9: Failure cases. Left: the appearance inside the red oval is highly distorted in the second example due to geometric

errors from SfM and stereo. Middle: we fail to detect this display, which is mostly static with minimal appearance dynamics.

We need more training data. Right: defects caused by segmentation and large occluders. Although we handle small and fast

occluders by intensity regularization, large and slow occluders still cause visual defects in the final rendering.

The feature vector allows us to extract image segments that

have similar temporal changing patterns. We compare our

algorithm with Felzenszwalb et al. [9] on the reference im-

age and Grundmann et al. [10] on our warped video. Both

methods fail to extract segments that have similar temporal

appearance characteristics.

Figure 6 shows the effectiveness of our adaptive appear-

ance regularization, where we control the low-rank regular-

ization weight depending on the richness of the video con-

tent. Figure 8 shows our rendering results against two stan-

dard intensity regularization techniques: temporal median

filter [5] and global least-squares optimization [18]. These

methods have no spatial regularization (i.e., per-pixel oper-

ation), causing inconsistencies across pixels in the presence

of fast optical flow motions. Our low-rank approximation

technique outperforms in such cases with moderate spatio-

temporal regularization.

Applications: The capability to turn general videos into

Cinemagraph animations opens up potentials for novel ap-

plications. For instance, in the field of scene visualization,

image-based rendering navigation has become the golden

standard (e.g., Google Maps Street View) [11, 19], where a

user looks at a real photograph at one location, and jumps

between locations via transition rendering. However, pho-

tographs are all static without any dynamics in these sys-

tems. While directly serving videos might be a solution

to visualize scene dynamics, they require a lot more data

space/transfer and constraint the navigation strictly on the

video path. Replacing images with Cinemagraphs allows

one to experience scene dynamics at each location as well

as free navigation in a scene. Cinemagraphs animate only

a fraction of an image and requires minimal extra data

space. In particular, we demonstrate this next-generation

Cinemagraph-based rendering navigation, by taking a long

walk-through video, generating Cinemagraph animations at

sub-sampled frames, then form a navigation graph by con-

necting these frames. Furthermore, it is also easy to re-

place animating contents by another media for virtual ad-

vertisement, which might prevail in the near future with the

emerging VR and AR. Please visit the project website for

the demonstration video.

8. Limitations and future work

This paper proposes the first effective system that turns

regular movies with moving cameras into high-quality Cin-

emagraph animations at urban environments. Automatic

Cinemagraph creation from regular video is still a very chal-

lenging problem, and we have observed a few major failure

modes (See Figure 9). First, our system expects that SfM

utilizes a static part of a scene to produce camera poses and

MVS interpolates rough geometry over dynamic regions.

These assumptions might fail at highly dynamic regions,

causing unnatural distortions in the animated contents. The

second failure mode is in the classification. Our training

data come from movie clips by stationary cameras, which

look different from the warped videos. We need more train-

ing data, potentially, annotating the warped videos from our

algorithm for training. The last failure mode is in the ren-

dering. While RPCA is very powerful in suppressing ar-

tifacts, it still fails under the presence of severe occluders,

such as the long appearance of pedestrians in front of a cam-

era. Utilization of semantic segmentation techniques is our

future work to make our system further robust against oc-

cluders.

This paper makes a first important step towards auto-

mated high-quality dynamic scene visualization from reg-

ular movies by mass consumers. We hope that this paper

will fuel a round of new research, tackling more diverse set

of dynamics in our world.
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Figure 10: Each column shows sample input frames (the middle frame as the reference), cyclic dynamic segments, non-cyclic

dynamic segments, and sample output frames. Segmentations for cyclic dynamic pixels and output frames are cropped to the

red and green bounding boxes to better illustrate the details. Please see our supplementary video for the full assessment of

our results and more examples.
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