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Abstract

Fine-grained activity understanding in videos has at-

tracted considerable recent attention with a shift from ac-

tion classification to detailed actor and action understand-

ing that provides compelling results for perceptual needs of

cutting-edge autonomous systems. However, current meth-

ods for detailed understanding of actor and action have sig-

nificant limitations: they require large amounts of finely

labeled data, and they fail to capture any internal rela-

tionship among actors and actions. To address these is-

sues, in this paper, we propose a novel, robust multi-task

ranking model for weakly-supervised actor-action segmen-

tation where only video-level tags are given for training

samples. Our model is able to share useful information

among different actors and actions while learning a ranking

matrix to select representative supervoxels for actors and

actions respectively. Final segmentation results are gen-

erated by a conditional random field that considers vari-

ous ranking scores for video parts. Extensive experimen-

tal results on the Actor-Action Dataset (A2D) demonstrate

that the proposed approach outperforms the state-of-the-art

weakly supervised methods and performs as well as the top-

performing fully supervised method.

1. Introduction

Understanding fine-grained activities in videos is gain-

ing attention in the video analysis community. Over the past

decade, we have witnessed the shift of interest in the num-

ber of activities, e.g. from no more than ten [42, 29] to many

hundreds [24, 5] and thousands [1]; in the scope of activi-

ties, e.g. from single person actions [45] to person-person

interactions [43], person-object interactions [17], and even

animal activities [19, 60]; and moreover, in the approaches

to model activities, e.g. from classification [55, 53, 47] to

localization [66, 49, 38, 46, 21], detection [12, 40, 8, 52]

and segmentation [30, 36, 16]. The fine-grained results have

also demonstrated their utilities in various emerging appli-
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Figure 1. The weakly supervised actor-action semantic semgenta-

tion problem. Our method learns from weak supervision where

only video-level tags for training videos are available, and gener-

ates pixel-level actor-action segmentation for a given testing video.

cations such as robot manipulation [41, 65] and video-and-

language [48, 61].

Among the many fine-grained activities, there is a grow-

ing interest in simultaneously understanding actions and ac-

tors, the agents who perform actions. It opens a new win-

dow to explore inter-agent and intra-agent activities for a

comprehensive understanding. To address this issue, Xu et

al. [60] introduced a new actor-action segmentation chal-

lenge on a difficult actor-action dataset (A2D), where they

focused on spatiotemporal segmentation of seven types of

actors, e.g. human adult, dog and cat, performing eight dif-

ferent actions, e.g. walking, crawling, running. In partic-

ular, the method proposed by Xu and Corso [58] sets the

state of the art in this problem where they combine a la-

beling CRF with a supervoxel hierarchy to consider adap-

tive and long-ranging interactions among various actors per-

forming various actions. Despite the success in pushing

up the numbers in performance, their method together with

many leading methods in activity segmentation [30, 36, 16]

suffer largely from the following two aspects.

First, except Mosabbeb et al. [39], most methods in spa-
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tiotemporal activity segmentation [60, 36, 58, 16, 30] are in

a fully supervised setting where they require dense pixel-

level annotation or bounding box annotation on many train-

ing samples. These assumptions are not realistic when we

deal with real-world videos where available annotations are

at most video-level tags or descriptions and have extreme

diversity in the types of actors performing actions. Even

humans alone can perform many hundreds of actions [6],

not to mention the large variety in actors. Indeed, there

are a few methods working on the problem of action co-

segmentation [57, 16]. However, the ability to use weak

supervision with only video-level tags for spatiotemporal

activity segmentation is yet to be explored.

Second, existing methods in actor-action segmenta-

tion [60, 58] train classifiers independently for actors and

actions, and only model their relationship in the random

fields for segmentation output. Despite the success in con-

sidering different actor-action classification responses from

various video parts, they lack the consideration of the inter-

play of actors and actions in features and classifiers, which

is important as seen from the recent progress in image

segmentation [35, 31]. For example, when separating the

two fine-grained classes dog-running and cat-running, we

should also benefit from extra information from all actions

performed by the two actors.

To overcome the above limitations, we present a new ro-

bust multi-task ranking model that shares useful informa-

tion among different actors and actions while learning a

ranking matrix. The learned ranking matrix can be used

for better potential generations due to this feature sharing.

The regularization terms consist of a trace-norm and a ℓ1,2-

norm, such that the model is able to capture a common set

of features among relevant tasks and identify outlier tasks;

hence, it is robust. We propose an efficient iterative opti-

mization scheme for the problem. With this new learning

model, we devise a pipeline to solve the weakly supervised

actor-action segmentation problem where only video-level

tags are given for the training videos (see Fig. 1). In par-

ticular, we first segment videos into supervoxels and extract

features on supervoxels, then use the proposed robust multi-

task ranking model to select representative supervoxels for

actor and action respectively, and then use a CRF to gener-

ate the final segmentation output.

We conduct extensive experiments on the recently intro-

duced large-scale A2D dataset [60]. In particular, we com-

pare our methods against a set of fully supervised methods

including the top-performing grouping process models [58].

For a comprehensive comparison, we also compare to a re-

cent top-performing weakly supervised semantic segmen-

tation method [54], and three learning methods including

ranking SVM [23], dirty model multi-task learning [22],

and clustered multi-task learning [70]. The experimental

results show that our method outperforms all other weakly

supervised methods and achieves performance as high as

the top-performing fully supervised method.

2. Related Work

We have discussed the relationship of our method to ex-

isting actor-action segmentation methods in the introduc-

tion (Sec. 1). Recently, there are many emerging works on

action detection [12, 40, 8, 52] and localization [66, 38, 49,

46, 21, 4]. We differ from them by considering pixel-level

segmentation accuracy. Indeed, there are a few methods on

spatiotemporal action segmentation [30, 36, 16, 39]. How-

ever, they all assume single type of actor and differ from our

goal of actor-action segmentation.

Our work is also related to the many works in se-

mantic video segmentation. Liu et al. [32] propose an

object-augmented dense CRF in the spatio-temporal do-

main, which captures long-range dependencies between su-

pervoxels and imposes consistency between object and su-

pervoxel labels for multiclass video semantic segmentation.

Kundu et al. [27] extend the fully connected CRF [26] to

work on videos. Ladický et al. [28] build a hierarchical

CRF on multi-scale segmentations that leverages higher-

order potentials in inference. Despite the lack of explicit

consideration of actors and actions, we compare to a repre-

sentative subset of these methods [26, 28] in Sec. 5.

There are many weakly supervised video segmentation

methods [68, 34, 51, 18] and co-segmentation methods [54,

11, 56, 67, 9]. Zhang et al. [68] propose a segmentation-

by-detection framework to segment objects with video-level

tags. Chiu et al. [9] study multi-class video co-segmentation

where the number of object classes and number of instances

at the frame and video level are unknown. Tsai et al. [54]

propose an approach to segment objects and understand the

visual semantics from a collection of videos that link to

each other. However, these co-segmentation approaches

lack any consideration of the internal relationship among

different object categories, which is an important cue in the

weakly-supervised segmentation approaches. In contrast,

our framework is able to share useful information among

different objects leading to better performance than the top-

performing co-segmentation method [54] (see Sec. 5).

Multi-task learning has been effective in many applica-

tions, such as object detection [44] and classification [37,

62, 63, 64]. The idea is to learn models jointly that outper-

forms learning them separately for each task. To capture

the task dependencies, a common approach is to constrain

all the learned models to share a common set of features.

This constraint motivates the introduction of a group spar-

sity term, i.e. the ℓ1/ℓ2-norm regularizer as in [2]. How-

ever, in practice, the ℓ1/ℓ2-norm regularizer may not be ef-

fective since not every task is related to all the others. To

this end, the MTL algorithm based on the dirty model is

proposed in [22] with the goal of identifying irrelevant (out-
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lier) tasks. In some cases, the tasks exhibit a sophisticated

group structure and it is desirable that the models of tasks

in the same group are more similar to each other than to

those from a different group. To model complex task de-

pendencies, several clustered multi-task learning methods

have been introduced [20, 69, 70]. Different from previous

multi-task classification and regression problems, we pro-

pose a robust multi-task ranking model with the ability to

identify outlier tasks. Meanwhile, an efficient solver is de-

vised in this paper.

3. Robust Multi-Task Ranking

Our core technical emphasis builds on the current meth-

ods in learning a preference function for ranking, which

has been widely used across fields [33]. To obtain good

potentials for segmentation and select representative super-

voxels and action tubes for specific categories (details in

Sec. 4), we propose a robust multi-task ranking approach to

share features among different actors and actions. In the rest

of this section, we first give some background about SVM

ranking, and then introduce our robust multi-task ranking.

Denote x ∈ IRd as a d-dimensional feature vector and

w ∈ IRd as the learned weight parameter, the ranking SVM

optimization problem is formulated as follows:

min
w,ε

1

2
‖w‖2 + C

∑

εij

s.t. wTxi ≥ wTxj + 1− εij

εij ≥ 0 (1)

where εij are slack variables measuring the error of distance

of the ranking pairs (xi, xj). ‖·‖ is the ℓ2-norm of a vector.

The notation (·)T indicates the transpose operator. C is the

regularization parameter.

Given a set of related tasks, multi-task learning seeks to

simultaneously learn a set of task-specific classification or

regression models. The intuition behind multi-task learn-

ing is that a joint learning procedure accounting for task

relationships is more efficient than learning each task sepa-

rately. We first extend the ranking SVM to the multiple-task

setting via the following optimization problem:

min
W,γ,ε

1

2
‖W‖2F + C1

∑

i,j∈S

γijk + C2

∑

i,j∈D

εijk + λΦ(W)

s.t.
∣

∣wT
k xik −wT

k xjk

∣

∣ ≤ γijk

wT
k xik −wT

k xjk ≥ 1− εijk

εijk ≥ 0

γijk ≥ 0 (2)

where W ∈ IRd×K is the learned ranking matrix as [wT
1 ,

... , wT
k , ... , wT

K]. wk is the k-th column of W. K
is the number of tasks. C1, C2 and λ are regularization

parameters. εijk and γijk are slack variables in the k-th task

measuring the error of the distance between dissimilar pairs

(i, j) in D satisfying wixi > wjxj and similar pairs (i, j)
in S satisfying wixi ≈ wjxj . Φ(W) is the regularization

term of W.

The regularization term used in most traditional multi-

task learning approaches assumes that all tasks are related

[2] and their dependencies [20, 69, 70] can be modelled by

a set of latent variables. However, in many real world ap-

plications, such as our actor-action semantic segmentation

problem, not all tasks are related. When outlier tasks ex-

ist, enforcing erroneous and non-existent dependencies may

lead to negative knowledge transfer. Take actions as an ex-

ample, action tasks climb, crawl, jump, roll, run, walk may

share useful information among each other, while the action

task eat seems to be an outlier task. Incorporating eat in the

multi-task learning may bring negative knowledge sharing.

In contrast, Chen et al. [7] propose regularization terms

with a trace-norm plus a ℓ1,2-norm that simultaneously cap-

tures a common set of features among relevant tasks and

identifies outlier tasks. They also theoretically proved a

bound to measure how well the regularization terms approx-

imate the underlying true evaluation. Inspired by them, we

decompose our regularization term into two terms. One

term enforces a trace norm on L ∈ IRd×K to encour-

age the desirable low-rank structure in the matrix to cap-

ture the shared features among different actions and ac-

tors. The other term enforces the group Lasso penalties

on E ∈ IRd×K which induces the desirable group-sparse

structure in the matrix to detect the outlier tasks. This for-

mulation is robust to outlier tasks and effectively achieves

joint feature learning based on the assumption that the same

set of essential features are shared across different actions

and actors with the existence of outlier tasks.

We hence propose the following optimization problem:

min
W,γ,ε

1

2
‖W‖2F + C1

∑

i,j∈S

γijk + C2

∑

i,j∈D

εijk

+ λ1 ‖L‖∗ + λ2 ‖E‖1,2
s.t.

∣

∣wT
k xik −wT

k xjk

∣

∣ ≤ γijk

wT
k xik −wT

k xjk ≥ 1− εijk

εijk ≥ 0

γijk ≥ 0

W = L+E (3)

In Eq. 3, the learned weighted matrix W is decomposed

into L + E. The notation ‖L‖
∗

= trace(
√
L∗L) is trace

norm and ‖E‖1,2 =
[

∑K
j=1(

∑d
i=1 |eij |)2

]1/2

is ℓ1,2-norm.

Although we adopt the same regularization term as [7],

our proposed optimization is different in three critical as-

pects: (i) The optimization problem in [7] is a regression
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problem while ours is a ranking optimization problem. This

makes [7] unsuitable to be used in our actor-action video se-

mantic segmentation with weakly supervised setting where

good potentials for segmentation and representative super-

voxels are needed. (ii) The loss function in [7] is a least-

squared loss, which sometimes does not work well for real-

world datasets because the least-squared loss has the ten-

dency to be dominated by outliers. In our actor-action anal-

ysis, outlier tasks exist which further exaggerates this effect;

(iii) The optimization method itself is different between [7]

and our problem, as we explain next.

3.1. Optimization

The proposed optimization problem (Eq. 3) is hard to

solve due to the mixture of different norms and constraints.

To facilitate solving the original problem, we introduce a

slack variable S to solve the optimization problem in an

alternating way. The optimization problem can be decom-

posed into two separate steps by iteratively updating W and

S respectively. With the slack variable, the optimization

problem becomes:

min
W,S,γ,ε

1

2
‖W‖2F + C1

∑

i,j∈S

γijk + C2

∑

i,j∈D

εijk

+ ‖W − S‖2F + λΦ(S)

s.t.
∣

∣wT
k xik −wT

k xjk

∣

∣ ≤ γijk

wT
k xik −wT

k xjk ≥ 1− εijk

εijk ≥ 0

γijk ≥ 0 (4)

The term ‖W − S‖2F in Eq. 4 enforces the solution of S to

be close to W. The term Φ(S) is the regularization on S.

There are two major steps to optimize Eq. 4 as follows:

Step 1: Fix S, optimize W. Eq. 3 becomes,

min
wk,γ,ε

1

2

K
∑

k=1

‖wk‖2 + C1

∑

i,j∈S

γijk + C2

∑

i,j∈D

εijk

+
K
∑

k=1

‖wk − sk‖2

s.t.
∣

∣wT
k xik −wT

k xjk

∣

∣ ≤ γijk

wT
k xik −wT

k xjk ≥ 1− εijk

εijk ≥ 0

γijk ≥ 0 (5)

Eq. 5 can be decomposed into K separate single-task SVM

ranking sub-problems and therefore can be solved via a

standard SVM ranking solver [23].

Step 2: Fix W, optimize S. Eq. 3 becomes,

min
S

‖S−W‖2F + λΦ(S) (6)

Algorithm 1 Solving Eq. 4

INPUT: Dk, Sk, ∀k = 1, . . . ,K, λ1, λ2, C1, C2.

Initialize W0, S0.

LOOP:

1. Fix S, optimize W

for k = 1 to K

Fix sk, optimize Eq. 5 using [23], update wk

end

2. Fix W, optimize S

Optimize Eq. 6 using FISTA [3], update S

Until Convergence

Output: W

The first term in Eq. 6 penalizes the learned slack weight

matrix S to be close to the original matrix W. This problem

becomes a traditional multi-task learning problem and can

be solved via the proximal gradient method FISTA [3]. The

algorithm solving the proposed problem is summarized as

in Algorithm 1.

4. Weakly Supervised Actor-Action Segmenta-

tion

In this section, we describe how we tackle the weakly

supervised actor-action segmentation problem with our ro-

bust multi-task ranking model. The goal is to assign an

actor-action label (e.g. adult-eating and dog-crawling) or

a background label to each pixel in a video. We only have

access to the video-level actor-action tags for the training

videos. This problem is challenging as more than one-third

of videos in A2D have multiple actors performing actions.

4.1. Overview

Figure 2 shows an overview of our framework. We first

segment videos into supervoxels using the graph-based hi-

erarchical supervoxel method (GBH) [14]. Meanwhile, we

generate action tubes as the minimum bounding rectangles

around supervoxels. We extract features at different GBH

hierarchy levels to describe supervoxels and action tubes

(see Sec. 4.2). Three different kinds of potentials (action,

actor, actor-action) are computed via our robust multi-task

ranking model by considering information sharing among

different groups of actors and actions (see Sec. 4.3). Finally,

we devise a CRF model for actor-action segmentation (see

Sec. 4.4).

4.2. Supervoxels and Action Tubes

Supervoxels. Supervoxel segmentation defines a compact

video representation where pixels in space-time with similar

color and motion properties are grouped together. Various

supervoxel methods are evaluated in [59]. Based on their

work, we adopt the GBH supervoxel segmentation and con-
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Figure 2. Overview of our proposed weakly supervised actor-action segmentation framework. (a) Input videos from the A2D dataset. (b)

Supervoxel generation and feature extraction. (c) Action tube generation and feature extraction. (d) Sharing features among different actors

and actions. (e) Semantic label inference for actor-action segmentation. Figure is best viewed in color and under zoom.

sider supervoxels from three different levels in a hierarchy.

The performance of different levels are evaluated in Sec. 5.

We extract CNN features from three time slices of a super-

voxel, i.e. three superpixels, sampled from the beginning,

the middle and the ending of supervoxel. We zero out pix-

els outside the superpixel boundary and use the rectangle

image patch surrounding the superpixel as input to a pre-

trained CNN to get fc vectors, similar to R-CNN [13]. The

final feature vector representing the actor of a superpvoxel

is averaged over the three time-slices as shown in Fig. 2 (b).

Action Tubes. Each supervoxel defines an action tube that

is the sequence of minimum bounding rectangles around the

supervoxel over time. Jain et al. [21] use such action tubes

to localize human actions in videos. Here, we use them as

proposals for general actions, e.g. walking and crawling,

as well as fine-grained actor-actions, e.g. cat-walking, dog-

crawling. We extract CNN features (fc vectors) from three

sampled time slices of an action tube. The final feature vec-

tor representing action or actor-action of the action tube is

a concatenation of the FC vectors as shown in Fig. 2 (c).

4.3. Robust Actor­Action Ranking

It is our assumption that information contained in su-

pervoxel segments in adult-running videos should be cor-

related with supervoxel segments in adult-walking videos

as they share same actor adult. Similarily, the correlation of

action tubes among fine-grained actions in a same general

action, e.g. cat-walking and dog-walking, should be larger

than the correlation among non-relevant action pairs.

In the weakly supervised setting, we only have access to

video-level tags for training videos. To better use this ex-

tremely weak supervision, we propose a robust multi-task

ranking approach as described in Sec. 3 to effectively search

for representative supervoxel segments and action tubes for

each category and meanwhile, consider the sharing of use-

ful information among different actors and actions. Three

different sets of potentials (actor, action, actor-action) are

obtained by sharing common features among tasks via the

multi-task ranking approach by setting each task as action

category (e.g. walking, running and climbing), actor cat-

egory (e.g. adult, cat and bird) and actor-action category

(e.g. adult-walking, bird-climbing and car-rolling).

4.4. Semantic Label Inference

We construct a CRF on the entire video. We denote

S = {s1, s2, . . . , sn} as a video with n supervoxels and de-

fine a set of random variables x = {x1, x2, . . . , xn} on su-

pervoxels, where xi takes a label from the actors. Similarly,

we denote T = {t1, t2, . . . , tm} as a set of m action tubes

and define a set of random variables y = {y1, y2, . . . , yn}
on action tubes, where yi takes a label from the actions. A

graph is constructed with three sets of edges: a set of edges

ES linking neighboring supervoxels, a set of edges ET link-

ing neighboring action tubes, and a set of edges ES→T link-

ing supervoxels and action tubes. Our goal is to minimizes

the following objective function:

(x∗,y∗) = argmin
x,y

∑

(i,j)∈ES

ψ(xi, xj) +
∑

(i,j)∈ET

ψ(yi, yj)

+
∑

i∈S

φ(xi) +
∑

i∈T

ϕ(yi) +
∑

(i,j)∈ES→T

ξ(xi, yj) , (7)

where φ(·), ϕ(·) and ξ(·) are the negative log of the normal-

ized ranking scores for actor, action and actor-action respec-

tively, and ψ(·, ·) takes the form of a contrast-sensitive Potts

model to encourage smoothness. Following [58], we also

use video-level potentials as an additional global labeling

cost. Comparing to the models in [60], our model is more

flexible and allows separate topologies for supervoxels and

action tubes (see Fig. 2 (e)). Finally the segmentation is

generated by mapping action tubes to supervoxels.
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Figure 3. The overall pixel accuracy for different GBH hierarchy

supervoxels. Figure is best viewed in color.

5. Experiments

We perform extensive experiments on the A2D dataset to

evaluate our proposed method for weakly supervised actor-

action segmentation. We first describe our experimental set-

tings, and then present our results.

Dataset. Fine-grained actor-action segmentation is a newly

proposed problem. To the best of our knowledge, there is

only one actor-action video dataset, i.e. A2D [60], in lit-

erature. The A2D dataset contains 3782 videos that are

collected from YouTube. Both the pixel-level labeled ac-

tors and actions are available with the released dataset.

The dataset includes eight different actions, e.g. climbing,

crawling, eating, flying, jumping, rolling, running, walk-

ing, and one additional none action. The none action class

means that the actor is not performing an action or is per-

forming an action that is outside their consideration. Mean-

while, seven actor classes, e.g. adult, baby, ball, bird, car,

cat, dog, are considered in A2D to perform those actions.

Experimental Settings. We use GBH [15] to generate hier-

archical supervoxel segmentations. We evaluate our method

on three GBH hierarchy levels (fine, middle, coarse) where

the number of supervoxels varies from 20-200 in each

video. The action tubes are generated with minimum

bounding rectangles around supervoxels. For supervoxel

and action tube features, we use pretained GoogLeNet [50]

to extract CNN deep features of the average pooling layer

1024-dimensional feature vector. GoogLeNet is a 22-layer

deep network which has achieved good performance in

the context of image classification and object detection.

The regularization parameters λ1, λ2 and C1, C2 are grid-

searched via range [0.01, 0.1, 1, 10, 100] for training our ro-

bust multi-task ranking model. We use multi-label graph

cuts [10] for CRF inference and empirically set the param-

eters by hand. We follow the same setup as [60] for the

training/testing split of the dataset.

Evaluation Metrics. For actor-action segmentation, pixel-

level accuracy is the most commonly used measurement in

literature. We use two metrics in the paper: (i) The Overall

Pixel accuracy measures the proportion of correctly labeled

pixels to all pixels in ground-truth frames. (ii) The Per-

Class accuracy measures the proportion of correctly labeled

pixels for each class and then averages over all classes.

Table 1. Comparison of overall pixel accuracy on the A2D dataset.

Action Actor Actor-Action

AHRF [28] 63.9 64.9 63.0

GPM [58] 82.4 82.2 80.8

FCRF [25] 77.6 77.9 76.2

RSVM [23] 70.1 70.8 68.8

DM-MTL [22] 72.3 72.9 71.4

C-MTL [70] 73.1 73.5 72.7

WSS [54] 71.5 71.9 70.4

Ours 83.8 83.1 81.7

5.1. Comparison to Variations of Our Method

We evaluate our approach with different GBH hierarchy

supervoxels. The overall pixel accuracy of segmentation re-

sults are shown in Fig. 3. We observe that the fine-level

GBH hierarchy achieves considerably better results than

coarser-level GBH hierarchies. This is probably because

fine-level GBH hierarchy has a reasonable number of su-

pervoxels (100-200) for each video, which leads to the best

raw segmentation result among the three. We use fine-level

GBH hierarchy supervoxels in the rest of our experiments.

We also perform experiments to show the impact of dif-

ferent types of potentials used. We achieve 81.7% overall

pixel accuracy when we use both coarse labels (actor and

action) and fine-grained labels (actor-action), and 72.6%

overall pixel accuracy when we use only fine-grained labels.

In the latter case, a simple pairwise CRF is constructed for

action tubes. The results support the explicit consideration

of information sharing among fine-grained actions.

5.2. Comparison to State­of­The­Art Methods

We compare our method to state-of-the-art fully super-

vised segmentation methods, such as Associate Hierarchi-

cal Random Fields (AHRF) [28], Grouping Process Mod-

els (GPM) [58], and Fully-Connected CRF (FCRF) [25].

Since our method is in the weakly supervised setting, we

also compare against a recently published top-performing

method in weakly supervised semantic video segmentation

(WSS) [54]. For a comprehensive understanding, we also

compare our robust multi-task ranking model with other

learning models, including single-task learning and multi-

task learning approaches, such as Ranking SVM (RSVM),

Dirty Model Multi-Task Learning (DM-MTL) [22], and

Clustered Multi-Task Learning (C-MTL) [70]. For fair

comparison, we use author-released code for methods [58,

54]. For Ranking SVM, we use the released implementa-

tion in [23]. For multi-task learning approaches [22, 70],

we use the MALSAR toolbox [71]. We use the same exper-

iment setup as ours for the learning models and weakly su-

pervised method. Notice that the fully supervised methods

have access to pixel-level annotation for the training videos.

Table 1 shows the overall pixel accuracy for all methods.

We observe that our method outperforms all other base-
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Table 2. Comparison of per-class accuracy on the A2D dataset (top-2 scores for each category are highlighted).
baby ball car

method BK climb crawl roll walk none fly jump roll none fly jump roll run none

AHRF [28] 69.2 21.3 5.5 39.8 13.5 0.0 3.2 2.3 13.6 1.5 18.1 68.0 13.6 47.9 12.2

GPM [58] 88.4 65.4 65.0 58.4 61.5 0.0 11.3 28.3 21.1 0.0 41.2 86.3 70.9 65.9 0.0

FCRF [25] 82.2 3.4 23.4 41.0 17.8 0.0 3.7 0.3 1.0 0.0 13.7 78.4 55.4 43.7 1.8

RSVM [23] 72.7 0.1 5.5 67.8 3.8 1.2 4.0 5.7 12.5 1.6 14.8 30.4 37.8 37.7 5.3

DM-MTL [22] 83.0 51.8 50.1 58.3 47.9 0.0 9.4 11.7 16.6 0.0 33.2 64.9 42.3 47.4 0.0

C-MTL [70] 83.0 49.0 61.9 75.4 40.9 28.8 19.5 16.3 33.4 13.2 30.9 36.4 32.5 38.8 7.0

WSS [54] 74.1 16.0 10.9 50.9 21.9 7.9 4.0 5.0 49.2 1.7 17.8 52.4 13.5 35.1 5.2

Ours 82.2 66.2 73.6 78.5 52.5 33.5 19.5 20.1 62.6 13.2 46.2 65.6 42.5 49.4 22.7

adult bird

method climb crawl eat jump roll run walk none climb eat fly jump roll walk none

AHRF [28] 0.0 56.0 6.1 1.1 0.0 0.0 15.3 10.9 14.6 11.4 19.9 5.0 29.6 7.5 0.0

GPM [58] 74.8 81.0 76.4 49.3 52.4 50.4 41.0 0.0 60.6 38.8 66.5 17.5 45.9 47.9 0.0

FCRF [25] 21.6 64.5 46.3 25.3 12.0 50.9 26.9 33.8 25.9 16.1 57.3 17.1 35.0 7.4 0.0

RSVM [23] 2.9 27.9 41.2 1.7 2.9 10.0 7.6 57.2 9.0 1.0 39.8 1.1 43.2 14.9 0.0

DM-MTL [22] 44.5 43.9 67.1 27.7 34.5 35.3 32.7 0.0 47.7 27.4 51.3 13.6 32.1 30.4 0.0

C-MTL [70] 38.5 38.4 69.4 28.8 46.6 27.4 41.0 46.5 26.5 27.7 55.4 45.0 60.2 36.9 6.0

WSS [54] 6.6 23.5 50.8 9.6 10.1 11.1 15.3 29.0 33.6 14.5 30.1 8.2 31.1 21.0 0.0

Ours 44.9 47.8 74.7 33.9 49.2 42.1 46.3 53.1 47.7 27.4 51.3 13.6 32.1 30.4 0.0

dog cat Avg

method crawl eat jump roll run walk none climb eat jump roll run walk none -

AHRF [28] 13.2 16.4 0.0 0.0 0.0 0.0 0.0 18.3 38.8 0.0 8.8 0.0 9.3 0.0 13.9

GPM [58] 44.1 61.5 31.4 62.6 25.7 74.2 0.0 42.8 52.3 33.7 71.7 48.0 19.1 0.0 43.9

FCRF [25] 11.7 35.7 2.2 31.9 25.2 40.2 0.0 25.3 33.6 2.5 33.9 48.9 21.5 0.8 25.4

RSVM [23] 3.7 33.6 5.7 24.2 0.6 9.7 0.0 5.0 38.6 0.2 43.8 0.0 5.6 0.1 16.7

DM-MTL [22] 36.9 65.6 26.9 50.9 22.2 59.8 0.0 16.9 46.5 12.1 66.2 25.6 7.7 0.0 32.8

C-MTL [70] 45.5 80.9 24.6 57.3 37.7 42.8 3.6 23.6 52.1 22.1 68.9 24.2 39.1 23.1 38.9

WSS [54] 16.2 36.3 10.3 24.3 1.0 18.4 1.4 13.6 42.0 8.2 46.3 0.5 15.8 0.3 20.3

Ours 64.5 85.7 50.1 72.3 68.5 61.1 7.6 41.4 72.9 36.6 86.2 36.7 65.1 25.5 41.7

lines. Our approach has 11% higher accuracy than the other

weakly supervised approach (WSS) [54]. Their approach

is unable to share feature similarity among different actions

and actors which is very important in the weakly-supervised

setting. Moreover, our method outperforms other single

task learning (RSVM) and multi-task learning (DM-MTL,

C-MTL) approaches by up to 20%, 9%, 3% respectively,

which shows the robustness of our approach. Table 2 shows

the per-class accuracy for all actor-action pairs on the A2D

dataset. We observe that our approach outperforms all other

baselines in averaged performance except GPM [58]. How-

ever, we note that GPM is a fully supervised approach, i.e. it

needs tedious pixel-level human labelling for training sam-

ples. In addition, our method works well on the actor cate-

gories ‘dog’ and ‘cat’ which shows the ability of our method

to identify outlier tasks to better share features among dif-

ferent tasks.

Figure 4 shows qualitative results of our approach and

other methods. We observe that our approach can generate

better visual qualitative results than other approaches. How-

ever, our method fails in some cases, such as cat-jumping.

This is probably because there are several cats jumping

simutaneously and motion is significant in the video.

6. Conclusion and Future Work

In this paper, we propose a novel weakly supervised

actor-action segmentation method. In particular, a robust

multi-task ranking model is devised to select the most

representative supervoxels and action tubes for actor, action

and actor-action respectively. Features are shared among

different actors and actions via multi-task learning by si-

multaneously detecting outlier tasks. A CRF model is used

for semantic label inference. The extensive experiments on

the large-scale A2D dataset show the effectiveness of our

proposed approach. One drawback of our apporach is that

the ranking weights are learned independent from feature

extraction in our framework. Future work includes explor-

ing the possibility of using CNNs for actor-action analysis,

such as multi-task learning with CNNs or FCN [35] for

actor-action segmentation.
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Figure 4. Qualitative results shown in sampled frames for several video sequences from the A2D dataset. Columns from left to right are

input video, ground-truth, our method, GPM [58], WSS [54], RSVM [23], DM-MTL [22] and AHRF [28] respectively. Our method is able

to generate correct actor-action segmentation expect for cat-jumping and adult-running in these examples.
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