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Abstract

Recent advances in deep learning have shown excit-

ing promise in filling large holes in natural images with

semantically plausible and context aware details, impact-

ing fundamental image manipulation tasks such as object

removal. While these learning-based methods are sig-

nificantly more effective in capturing high-level features

than prior techniques, they can only handle very low-

resolution inputs due to memory limitations and difficulty

in training. Even for slightly larger images, the inpainted

regions would appear blurry and unpleasant boundaries

become visible. We propose a multi-scale neural patch

synthesis approach based on joint optimization of image

content and texture constraints, which not only preserves

contextual structures but also produces high-frequency

details by matching and adapting patches with the most

similar mid-layer feature correlations of a deep classifi-

cation network. We evaluate our method on the ImageNet

and Paris Streetview datasets and achieved state-of-the-

art inpainting accuracy. We show our approach produces

sharper and more coherent results than prior methods,

especially for high-resolution images.

1. Introduction

Before sharing a photo, users may want to make modi-

fications such as erasing distracting scene elements, ad-

justing object positions in an image for better compo-

sition, or recovering the image content in occluded im-

age areas. These, and many other editing operations, re-

quire automated hole-filling (image completion), which
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(a) Input Image (b) Context Encoder

(c) PatchMatch (d) Our Result

Figure 1. Qualitative illustration of the task. Given an image

(512× 512) with a missing hole (256× 256) (a), our algorithm

can synthesize sharper and more coherent hole content (d) com-

paring with Context Encoder [32] (b) and Content-Aware Fill

using PatchMatch [1] (c).

has been an active research topic in the computer vision

and graphics communities for the past few decades. Due

to its inherent ambiguity and the complexity of natural

images, general hole-filling remains challenging.

Existing methods that address the hole-filling prob-

lem fall into two groups. The first group of approaches

relies on texture synthesis techniques, which fills in the

hole by extending textures from surrounding regions [14,

13, 27, 26, 6, 12, 40, 41, 23, 24, 2]. A common idea in

these techniques is to synthesize the content of the hole

region in a coarse to fine manner, using patches of simi-

lar textures. In [12, 41], multiple scales and orientations

are introduced to find better matching patches. Barnes et

al. [2] proposed PatchMatch as a fast approximate nearest
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neighbor patch search algorithm. Although such methods

are good at propagating high-frequency texture details,

they do not capture the semantics or global structure of

the image. The second group of approaches hallucinates

missing image regions in a data-driven fashion, leverag-

ing large external databases. These approaches assume

that regions surrounded by similar context likely possess

similar content [19]. This approach is very effective when

it finds an example image with sufficient visual similar-

ity to the query but could fail when the query image is

not well represented in the database. Additionally, such

methods require access to the external database, which

greatly restricts possible application scenarios.

More recently, deep neural network is introduced for

texture synthesis and image stylization [15, 16, 28, 3, 39,

22]. In particular, Phatak et al. [32] trained an encoder-

decoder CNN (Context Encoder) with combined ℓ2 and

adversarial loss [17] to directly predict missing image re-

gions. This work is able to predict plausible image struc-

tures, and is very fast to evaluate, as the hole region is pre-

dicted in a single forward pass. Although the results are

encouraging, the inpainting results of this method some-

times lack fine texture details, which creates visible arti-

facts around the border of the hole. This method is also

unable to handle high-resolution images due to the diffi-

culty of training regarding adversarial loss when the input

is large.

In a recent work, Li and Wand [28] showed that im-

pressive image stylization results can be achieved by op-

timizing for an image whose neural response at mid-layer

is similar to that of a content image, and whose local re-

sponses at a low convolutional layers resemble local re-

sponses from a style image. Those local responses were

represented by small (typically 3 × 3) neural patches.

This method proves able to transfer high-frequency de-

tails from the style image to the content image, hence

suitable for realistic transfer tasks (e.g., transfer of the

look of faces or cars). Nevertheless, transferring of more

artistic styles are better addressed by using gram matrices

of neural responses [15].

To overcome the limitations of aforementioned meth-

ods, we propose a hybrid optimization approach that

leverages the structured prediction power of encoder-

decoder CNN and the power of neural patches to synthe-

size realistic, high-frequency details. Similar to the style

transfer task, our approach treats the encoder-decoder

prediction as the global content constraint, and the local

neural patch similarity between the hole and the known

region as the texture constraint.

More specifically, the content constraint can be con-

structed by training a global content prediction network

similar to Context Encoder, and the texture constraint

can be modeled with the image content surrounding the

hole, using the patch response of the intermediate lay-

ers using the pre-trained classification network. The two

constraints can be optimized using backpropagation with

limited-memory BFGS. In order to further handle high-

resolution images with large holes, we propose a multi-

scale neural patch synthesis approach. For simplicity of

formulation, we assume the test image is always cropped

to 512×512 with a 256×256 hole in the center. We then

create a three-level pyramid with step-size two, downsiz-

ing the image by half at each level. It renders the lowest

resolution of a 128 × 128 image with a 64 × 64 hole.

We then perform the hole filling task in a coarse-to-fine

manner. Initialized with the output of content prediction

network at the lowest level, at each scale (1) we perform

the joint optimization to update the hole, (2) upsample to

initialize the joint optimization and set content constraint

for the next scale. We then repeat this until the joint opti-

mization is finished at the highest resolution (Sec. 3).

We show experimentally that the proposed multi-scale

neural patch synthesis approach can generate more real-

istic and coherent results preserving both the structure

and texture details. We evaluate the proposed method

quantitatively and qualitatively on two public datasets and

demonstrate its effectiveness over various baselines and

existing techniques as shown in Fig. 1 (Sec. 4).

The main contributions of this paper are summarized

as follows:

• We propose a joint optimization framework that can

hallucinates missing image regions by modeling a

global content constraint and local texture constraint

with convolutional neural networks.

• We further introduce a multi-scale neural patch syn-

thesis algorithm for high-resolution image inpaint-

ing based on the joint optimization framework.

• We show that features extracted from middle lay-

ers of the neural network could be used to synthe-

size realistic image contents and textures, in addition

to previous works that use them to transfer artistic

styles.

2. Related Work

Structure Prediction using Deep Networks Over the

recent years, convolutional neural networks have signif-

icantly advanced the image classification performance, as

presented in [25, 36, 37, 20]. Meanwhile, researchers use

deep neural networks for structure prediction [29, 4, 30, 7,

38, 17, 18, 21, 9, 31], semantic segmentation [29, 4, 30],

and image generation [17, 18, 7, 31]. We are motivated

by the generative power of deep neural network and use

it as the backbone of our hole-filling approach. Unlike

the image generation tasks discussed in [11, 17, 18, 7],

where the input is a random noise vector and the output

is an image, our goal is to predict the content in the hole,

conditioned on the known image regions. Recently, [32]
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Figure 2. Framework Overview. Our method solves for an unknown image x using two loss functions, the holistic content loss (Ec)

and the local texture loss (Et). At the smallest scale, the holistic content loss is conditioned on the output of the pre-trained content

network given the input x0 (f(x0)). The local texture loss is derived by feeding x into a pre-trained network (the texture network) and

comparing the local neural patches between R (the hole) and the boundary.

proposed an encoder-decoder network for image inpaint-

ing, using the combination of the ℓ2 loss and the adversar-

ial loss (Context Encoder). In our work, we adapt Context

Encoder as the global content prediction network and use

the output to initialize our multi-scale neural patch syn-

thesis algorithm at the smallest scale.

Style Transfer In order to create realistic image textures,

our work is motivated by the recent success of neural

style transfer [15, 16, 28, 3, 39, 22]. These approaches

are largely used to generate images combining the “style”

of one image and the “content” of another image. Our

technique is motivated by the astounding performance of

neural style transfer. In particular, we show neural fea-

tures are also extremely powerful to create fine textures

and high-frequency details of natural images.

3. The Approach

3.1. Framework Overview

We seek an inpainted image x̃ that optimizes over the

loss function, which is formulated as a combination of

three terms: the holistic content term, the local texture

term, and the tv-loss term. The content term is a global

structure constraint that captures the semantics and the

global structure of the image, and the texture term mod-

els the local texture statistics of the input image. We first

train the content network and use it to initialize the con-

tent term. The texture term is computed using the VGG-

19 network [35](Figure 2) pre-trained on ImageNet.

To model the content constraint, we first train the

holistic content network f . The input is an image with

the central squared region removed and filled with the

mean color, and the ground truth image xt is the original

content in the center. We trained on two datasets, as dis-

cussed in Section 4. Once the content network is trained,

we can use the output of the network f(x0) as the initial

content constraint for joint optimization.

The goal of the texture term is to ensure that the fine

details in the missing hole are similar to the details out-

side of the hole. We define such similarity with neural

patches, which have been successfully used in the past

to capture image styles. In order to optimize the tex-

ture term, we feed the image x into the pre-trained VGG

network (we refer to this network as local texture net-

work in this paper) and enforce that the response of the

small (typically 3 × 3) neural patches inside the hole re-

gion are similar to neural patches outside the hole at pre-

determined feature layers of the network. In practice we

use the combination of relu3 1 and relu4 1 layers to com-

pute the neural features. We iteratively update x by min-

imizing the joint content and texture loss using limited-

memory BFGS.

The proposed framework naturally applies to the high-

resolution image inpainting problem using multiscale

scheme. Given a high-resolution image with a large hole,

we first downsize the image and obtain a reference con-

tent using the prediction of the content network. Given

the reference content we optimize w.r.t. the content and

texture constraints at the low resolution. The optimization

result is then upsampled and used as the initialization for

joint optimization at the fine scales. In practice, we set

the number of scales to be 3 for images of size 512×512.

We describe the details of the three loss terms in the

following.

3.2. The Joint Loss Function

Given the input image x0 we would like to find the un-

known output image x. We use R to denote a hole region

in x, and Rφ to denote the corresponding region in a fea-

ture map φ(x) of the VGG-19 network. h(·) defines the

operation of extracting a sub-image or sub-feature-map

in a rectangular region, i.e. h(x,R) returns the color con-

tent of x within R, and h(φ(x), Rφ) returns the content

of φ(x) within Rφ, respectively. We denote the content
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Figure 3. The network architecture for structured content prediction. Unlike the ℓ2 loss architecture presented in [32], we replaced all

ReLU/ReLU leaky layers with the ELU layer [5] and adopted fully-connected layers instead of channel-wise fully-connected layers.

The ELU unit makes the regression network training more stable than the ReLU leaky layers as it can handle large negative responses

during the training process.

network as f and the texture network as t.

At each scale i = 1, 2..., N (N is the number of

scales), the optimal reconstruction (hole filling) result x̃

is obtained by solving the following minimization prob-

lem:

x̃i+1 = argmin
x

Ec(h(x,R), h(xi, R))

+αEt(φt(x), R
φ) + βΥ(x) (1)

where h(x1, R) = f(x0), φt(·) represents a feature map

(or a combination of feature maps) at an intermediate

layer in the texture network t, and α is a weight reflecting

the importance between the two terms. Empirically set-

ting α and β to be 5e−6 balances the magnitude of each

loss and gives best results in our experiment.

The first term Ec in Equation 1 which models the

holistic content constraint is defined to penalize the ℓ2
difference between the optimization result and the previ-

ous content prediction (from the content network or the

result of optimization at the coarser scale):

Ec(h(x,R), h(xi, R)) =‖ h(x,R)− h(xi, R) ‖22 (2)

The second term Et in Equation 1 models the local

texture constraint, which penalizes the discrepancy of

the texture appearance inside and outside the hole. We

first choose a certain feature layer (or a combination of

feature layers) in the network t, and extract its feature

map φt. For each local query patch P of size s × s × c

in the hole Rφ, we find its most similar patch outside the

hole, and compute the loss by averaging the distances of

the query patch and its nearest neighbor.

Et(φt(x), R) =

1

|Rφ|

∑

i∈Rφ

‖ h(φt(x), Pi)− h(φt(x), Pnn(i)) ‖
2
2 (3)

where |Rφ| is the number of patches sampled in the region

Rφ, Pi is the local neural patch centered at location i, and

nn(i) is the computed as

nn(i) = argmin
j∈N (i)∧j /∈Rφ

‖ h(φt(x), Pi)− h(φt(x), Pj) ‖
2
2

(4)

where N (i) is the set of neighboring locations of i ex-

cluding the overlap with Rφ. The nearest neighbor can be

fast computed as a convolutional layer, as shown in [28].

We also add the TV loss term to encourage smooth-

ness:

Υ(x) =
∑

i,j

((xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2) (5)

3.3. The Content Network

A straightforward way to learn the initial content pre-

diction network is to train a regression network f to use

the response f(x) of an input image x (with the unknown

region) to approximate the ground truth xg at the re-

gion R. Recent studies have used various loss functions

for image restoration tasks, for instance, ℓ2 loss, SSIM

loss [42, 10, 33], ℓ1 loss [42], perceptual loss [22], and

adversarial loss [32]. We experimented with ℓ2 loss and

adversarial loss. For each training image, the ℓ2 loss is

defined as:

Ll2(x, xg, R) =‖ f(x)− h(xg, R) ‖22 (6)

The adversarial loss is defined as:

Ladv(x, xg, R) = max
D

Ex∈X [log(D(h(xg, R)))

+ log(1−D(f(x)))] (7)

where D is the adversarial discriminator.

We use the joint ℓ2 loss and the adversarial loss the

same way as the Context Encoder [32]:

L = λLl2(x, xg, R) + (1− λ)Ladv(x, xg, R) (8)

where λ is 0.999 in our implementation.
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3.4. The Texture Network

We use the VGG-19[35] network pre-trained for Im-

ageNet classification as the texture network, and use the

relu3 1 layer and the relu4 1 layer to calculate the tex-

ture term. We found using a combination of relu3 1 and

relu4 1 leads to more accurate results than using a single

layer. As an alternative, we tried to use the content net-

work discussed in the previous section as the texture net-

work, but found the results are of lower quality than using

the pre-trained VGG-19. This can be explained by the

fact that the VGG-19 network was trained for semantic

classification, so features of its intermediate layers mani-

fest strong invariance w.r.t. texture distortions. This helps

infer more accurate reconstruction of the hole content.

4. Experiments

This section evaluates our proposed approach visually

and quantitatively. We first introduce the datasets and

then compare our approach with other methods, demon-

strating its effectiveness in high-resolution image inpaint-

ing. At the end of this section we show a real world ap-

plication where we remove distractors from photos.

Datasets We evaluate the proposed approach on two dif-

ferent datasets: Paris StreetView [8] and ImageNet [34].

Labels or other information associated with these images

are not used. The Paris StreetView contains 14,900 train-

ing images and 100 test images. ImageNet has 1,260,000

training images, and 200 test images that are randomly

picked from the validation set. We also picked 20 images

with distractors to test out our algorithm for distractor re-

moval.

Experimental Settings We first compare our method

with several baseline methods in the low-resolution set-

ting (128 × 128). First, we compared with results of

Context Encoder trained with ℓ2 loss. Second, we com-

pare our method with the best results that Context En-

coder have achieved using adversarial loss, which is the

state-of-the-art in the area of image inpainting using deep

learning. Finally, we compare with the results of Content-

Aware Fill using PatchMatch algorithm from Adobe Pho-

toshop. Our comparisons demonstrate the effectiveness

of the proposed joint optimization framework.

While comparisons with baselines show the effective-

ness of the overall joint optimization algorithm and the

role of the texture network in joint optimization, we fur-

ther analyze the separate role of the content network and

the texture network by changing their weights in the joint

optimization.

Finally, we show our results on high-resolution im-

age inpainting and compare with Content-Aware Fill and

Context Encoder (ℓ2 and adversarial loss). Note that for

Context Encoder the high-resolution results are acquired

by directly upsampling from the low-resolution outputs.

Our approach shows significant improvement in terms of

the visual quality.

Quantitative Comparisons We first compare our method

quantitatively with the baseline methods on low-

resolution images (128 × 128) on the Paris StreetView

dataset. Results in Table 1 show that our method achieves

highest numerical performance. We attribute this to the

nature of our method – it can infer the correct structure

of the image where Content-Aware Fill fails, and can also

synthesize better image details comparing with the results

of Context Encoder (Fig. 4). In addition, we argue that the

quantitative evaluation may not be most effective measure

of the inpainting task given that the goal is to generate

realistic-looking content, rather than exact same content

that was in the original image.

Method Mean L1 Loss Mean L2 Loss PSNR

Context Encoder ℓ2 loss 10.47% 2.41% 17.34 dB

Content-Aware Fill 12.59% 3.14% 16.82 dB

Context Encoder (ℓ2 + adversarial loss) 10.33% 2.35% 17.59 dB

Our Method 10.01% 2.21% 18.00 dB

Table 1. Numerical comparison on Paris StreetView dataset.

Higher PSNR value is better. Note % in the Table is to facil-

itate reading.

Figure 4. Comparison with Context Encoder (ℓ2 loss), Context

Encoder (ℓ2 loss + adversarial loss) and Content-Aware Fill. We

can see that our approach fixes the wrong textures generated by

Content-Aware Fill, and is also more clear than the output of

Context Encoder.

The effects of content and texture networks One abla-

tion study we did was to drop the content constraint term

and only use the texture term in the joint optimization. As

shown in Fig. 8, without using the content term to guide

the optimization, the structure of the inpainting results is

completely incorrect. We also adjusted the relative weight

between the content term and the texture term. Our find-

ing is that by using more content constraint, the result is

more consistent with the initial prediction of the content

network but may lack high frequency details. Similarly,

using more texture term gives sharp result but does not

guarantee the overall image structure is correct (Fig. 6).

The effect of the adversarial loss We analyze the ef-

fect of using adversarial loss in training the content net-
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Figure 5. Visual comparisons of ImageNet result. From top to bottom: input image, Content-Aware Fill, Context Encoder (ℓ2 and

adversarial loss), our result. All images are scaled from 512× 512 to fit the page size.

(a) Input image (b) α = 1e− 6 (c) α = 1e− 5 (d) α = 4e− 5
Figure 6. The effect of different texture weight α.

work. One may argue without using the adversarial loss,

the content network is still able to predict the structure

of the image and the joint optimization will calibrate the

textures later. However we found that the quality of the

initialization given by the content network is important

to the final result. When the initial prediction is blurry

(using ℓ2 loss only), the final result becomes more blurry

as well comparing with using the content network trained

with both ℓ2 and adversarial loss (Fig. 7).

High-Resolution image inpainting We demonstrate our

(a) (b) (c) (d)
Figure 7. (a) Output of content network trained with ℓ2 loss (b)

The final result using (a). (c) Output of content network trained

with ℓ2 and adversarial loss. (d) The final result using (c).

result of high-resolution image (512× 512) inpainting in

Fig. 5 and Fig. 10 and compare with Content-Aware Fill

and Context Encoder (ℓ2 + adversarial loss). Since Con-

text Encoder only works with 128x128 images and when

the input is larger, we directly upsample the 128×128 out-

put to 512 × 512 using bilinear interpolation. In most of

the results, our multi-scale, iterative approach combines

the advantage of the other approaches, producing results
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(a) (b) (c)
Figure 8. Evaluation of different components. (a) input image.

(b) result without using content constraint. (c) our result.

with coherent global structure as well as high-frequency

details. As shown in figures, a significant advantage of

our approach over Content-Aware Fill is that we are able

to generate new textures as we do not propagate the exist-

ing patches directly. However, one disadvantage is that

given our current implementation, our algorithm takes

roughly 1 min to fill in a 256 × 256 hole of a 512 × 512
image with a Titan X GPU, which is significantly slower

than Content-Aware Fill.

Figure 9. Failure cases of our method.

Real-World Distractor Removal Scenario Finally, our

algorithm is easily extended to handle arbitrary shape of

holes. We first use a bounding rectangle to cover the ar-

bitrary hole, which is again filled with mean-pixel values.

After proper cropping and padding such that the rectangle

is positioned at the center, the image is given as input to

the content network. In the joint optimization, the con-

tent constraint is initialized with the output of the con-

tent network inside the arbitrary hole. The texture con-

straint is based on the region outside the hole. Fig. 11

shows several examples and its comparison with Content-

Aware Fill algorithm (note that Context Encoder is unable

to handle arbitrary holes explicitly so we do not compare

with it here).

5. Conclusion

We have advanced the state of the art in semantic in-

painting using neural patch synthesis. The insight is that

the texture network is very powerful in generating high-

frequency details while the content network gives strong

prior about the semantics and global structure. This may

be potentially useful to other applications such as denois-

ing, superresolution, retargeting and view/time interpola-

tion. There are cases when our approach introduces dis-

continuity and artifacts (Fig. 9) when the scene is compli-

cated. In addition, the speed remains a bottleneck of our

algorithm. We aim to address these issues in future work.
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