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Abstract

This work aims to build pixel-to-pixel correspondences

between images from the same visual class but with different

geometries and visual similarities. This task is particularly

challenging because (i) their visual content is similar on-

ly on the high-level structure, and (ii) background clutters

keep bringing in noises.

To address these problems, this paper proposes an

object-aware method to estimate per-pixel correspondences

from semantic to low-level by learning a classifier for each

selected discriminative grid cell and guiding the localiza-

tion of every pixel under the semantic constraint. Specif-

ically, an Object-aware Hierarchical Graph (OHG) mod-

el is constructed to regulate matching consistency from one

coarse grid cell containing whole object(s), to fine grid cell-

s covering smaller semantic elements, and finally to every

pixel. A guidance layer is introduced as the semantic con-

straint on local structure matching. In addition, we propose

to learn the important high-level structure for each grid cell

in an “objectness-driven” way as an alternative to hand-

crafted descriptors in defining a better visual similarity.

The proposed method has been extensively evaluated on

various challenging benchmarks and real-world images.

The results show that our method significantly outperforms

the state-of-the-arts in terms of semantic flow accuracy.

1. Introduction

Dense semantic correspondence, which is defined as the

correlation between pixels in one image and those in an-

other semantically similar image, is an important problem

in computer vision. Many research efforts have been de-

voted to building dense semantic correspondences due to

its wide application in semantic segmentation [1], depth

estimation [13], scene parsing [16], co-segmentation [22],

salient object detection [31], pose estimation [7], etc.

Unlike optical-flow methods [4] [5] designed to analyze
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the transformation between images from the same scene

(e.g., adjacent video sequences), semantic flow method-

s aim at establishing per-pixel correspondences between

visually-related images that may have no spatial or temporal

relations. To this end, prior works [18] [12] [26] [14] typi-

cally use descriptor similarity metric (L1 metric) to perfor-

m local detection, and then adopt the computational frame-

work of optical flow to achieve global optimization. These

methods are based on assumptions that (i) semantically con-

sistent pixels (or regions) share a sufficiently similar low-

level structure, and (ii) all pixels (or regions) are equally sig-

nificant in each image. They can mostly produce accurate

results when local handcrafted features (e.g., SIFT descrip-

tors) are reasonably discriminative, and background clutters

bring in only a small amount of noise. But what about the

cases when the exact appearance of semantically consistent

regions is similar only on the high-level structure, or when

the noise from background clutters cannot be filtered out by

the optimizer? For instance, correspondence methods of-

ten need to match images with high intra-class variations

(Fig. 1(a)), changes in viewpoint (Fig. 1(b)) or strong back-

ground clutters (Fig. 1(c)). In these cases, the L1 metric is

inadequate to estimate the likelihood of semantically con-

sistent regions. Moreover, treating all regions equally also

may hurt performance.

In this paper, we propose a novel approach to overcome

these drawbacks. The key idea is to build semantic cor-

respondences based on the learned classifier for each dis-

criminative grid cell (object region) and then refine the flow

fields by matching local structures. By integrating these two

processes into a single model and optimizing it in a coarse-

to-fine manner, we can narrow the “semantic gap” and elim-

inate background clutters. The contributions of this paper

are as follows:

1) Object-aware Hierarchical Graph model. We design

an object-aware hierarchical graph (OHG) model for dense

correspondence with following novelties: (i) a novel algo-

rithm is proposed to construct an object-aware hierarchical

architecture for the input image; (ii) a guidance layer is in-

troduced to drive the matching of local structures; (iii) the
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Figure 1. Dense semantic correspondences between (a) images with high intra-class variations; (b) images with changes in viewpoint; and

(c) images with strong background clutters. We warp each image to its corresponding target using the estimated dense correspondences to

illustrate the result. We also show the results of the most widely used SIFT-Flow (SF) [18] for a comparison.

scale and flip invariant properties are imposed in our model

; and (iv) matching consistency is regulated through hierar-

chical optimization.

2) “Objectness-driven” visual similarity. Unlike previous

methods relying on L1 metric to measure visual similarity,

we propose to train a discriminative classifier for each n-

ode in the upper two layers of our model in an “objectness-

driven” way — using a large set of “background” im-

ages/patches. The learned weight features can capture im-

portant high-level visual structures of the object while safe-

ly ignoring the local dissimilarity.

We evaluate our method on a variety of well-used bench-

marks as well as many real-world images. The results show

that the proposed method can generate much more accurate

dense semantic correspondences than the state-of-the-arts.

The rest of this paper is organized as follows. We first

give a brief overview of related works in Section. 2, and

then describe our method in detail in Section. 3. Section. 4

provides both qualitative and quantitative results on sever-

al public datasets and real-world images. Conclusions are

drawn in Section. 5.

2. Related Work

Building per-pixel correspondence is a fundamental task

in computer vision. Dense correspondence approaches are

originally designed for estimating optical flow fields [4] or

depth [21] between two very similar images. Recently, there

has been a growing interest in designing methods for dense

semantic correspondence estimation. Matching pixels be-

tween different scenes goes beyond the same-scene assump-

tion, which makes it a much more challenging task.

As an important step in estimating dense semantic

correspondence, SIFT-Flow (SF) [18] [17], for the first

time, is proposed to estimate dense correspondences across

scene/object appearances. One typical assumption in SIFT-

Flow is that visually similar pixels should share same

(or sufficiently similar) local structures. Therefore, SIFT-

Flow produces semantically meaningful correspondences

by matching SIFT descriptors instead of matching raw pix-

el intensities with the computational framework of optical

flow. However, the underlying Dense SIFT (DSIFT) is

not robust to geometric variations and background clutters,

largely limiting the applicability of SIFT-Flow.

Over the years, a number of methods with better per-

formance in handling different visual variations have been

proposed. Many of them focus on designing a more pow-

erful dense descriptor, which represents a quite straight-

forward solution. Hassner et al. [12] developed an alter-

native SIFT representation, named Scale-Less SIFT (SLS)

descriptor, for the purpose of scale-invariant dense match-

ing, and achieved impressive results in dense semantic cor-

respondences across scales. However, it is difficult to ap-

ply SLS in practice due to its high computational com-

plexity. Match-aware SIFT [26] was proposed to address

these shortcomings by propagating reliable scales detected

from key-points to every pixel, but it relies heavily on key-

point matching technology which is unreliable for cross-

scene matching. With some modifications to the Scale

Invariant Descriptor (SID), Segmentation-aware SID (S-

SID) [27] exploited “Soft-Segmentation” masks to counter

the background-clutter effect, but it may reduce the dis-

criminative power of original descriptors. Overall, these

approaches focus on designing problem-specific dense de-

scriptors. Despite their great performance in matching sim-

ilar scenes/objects, these methods still suffer many draw-

backs caused by the well-known “semantic gap” [19] be-

tween low-level descriptors and high-level semantics.

On the other hand, more powerful optimizers have been

proposed. Deformable Spatial Pyramid (DSP) [14] was

introduced to perform cross-scene/object matching. This

method regulates matching consistency through a pyramid

graph, where larger spatial nodes mainly handle appearance

variations while smaller ones help to localize matches with

fine detail. DSP uses SIFT descriptors as underlying repre-

sentations, so it also suffers from the “semantic gap”. Be-

sides, it has two major weaknesses in its structure. First,

its regular spatial division of image may create many “bad”

patches, i.e. patches that do not correspond to visual phras-

es. Second, background clutters may drastically reduce

matching accuracy. Taniai et al. [25] proposed to recov-
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er co-segmentation and dense correspondence altogether in

image pair. Ham et al. [11] introduced an efficient method

to estimate pixel-wise correspondences by matching object

proposals. However, the inherent limitation of handcrafted

descriptor still remain unsolved. To solve above drawback-

s, Zhou et al. [35] used cycle-consistency as a supervisory

signal to learn the high-level semantic information for dense

correspondences. Although this method benefits from pow-

erful deep CNNs, it is extremely limited in the application

for requiring massive training sets of different categories.

Bristow et al. [3] recently proposed a closely related

method which learns exemplar LDA classifier with 5 × 5
spatial support for each pixel. Although we share some

similar goals, our work is quite different. First, considering

that many small patches (e.g., patches of skin) are plain and

thus barely distinguishable, we devise a hierarchical strate-

gy based on our OHG model, in which classifiers are only

learned for nodes in upper layers which may correspond to

whole object(s) or smaller semantic parts of object(s), and

matches for these nodes are then used to guide the local-

ization of each pixel. Second, our method focuses more on

object regions so that background clutters can be largely re-

duced.

3. Approach

In this section, we firstly give a detailed description

of the proposed Object-aware Hierarchical Graph (OHG)

model and illustrate why it is superior to previous De-

formable Spatial Pyramid (DSP) model. Then, we show

how to learn the important high-level structure for each n-

ode in the upper two layers by using a large dataset of

“background” images/patches, as a way in defining a more

reliable visual similarity.

3.1. Object-aware Hierarchical Graph Model

Unlike traditional spatial pyramid, our object-aware hier-

archical architecture starts from one discriminative rectan-

gular region (object region), to several smaller object pro-

posals (semantic elements), to the guidance layer, and final-

ly to every pixel (see Fig. 2). This novel four-layer archi-

tecture has two distinct advantages: (i) it largely reduces the

noises caused by background clutters from the optimization

framework; (ii) it makes training a discriminative classifier

for nodes in upper two layers in the graph become possible,

because the negative set can be easily guaranteed and ob-

tained — a large set of pure “background” images/patches.

Our model is based on object proposal algorithms, which

generate a small number of windows (e.g., 1000) likely to

cover all objects in an image. In this paper, our model

adopts the Selective Search (SS) proposals [28], but it is

not limited to any particular type of proposal algorithm.

We firstly use the computed object proposals to localize

one distinctive rectangular region as the coarsest layer. To

… …
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Figure 2. Comparison of graph representations between (a) our

OHG and (b) DSP [14]. The blue circle denotes a graph node,

and the edges link all neighboring nodes. Our object-aware hier-

archical architecture focuses more on object regions while spatial

pyramid treats each region equally.

be more specific, given NP (e.g., NP = 500) proposals

for the novel input, we obtain the objectness map Obj by

accumulating all object proposals Pr:

Obj(p) =

NpX

i=1

Pri(p) (1)

where Pri(p) is the score at position p determined by the

i-th proposal, which takes 1 if the pixel p is covered by this

proposal, and 0 otherwise. The objectness map Obj tells us

how likely each pixel belongs to the object region. There-

fore the pixels with low objectness scores usually belong to

the background. Inspired by some salient object detection

methods [29] [31], we can compute the accumulated ob-

jectness value in four directions on the normalized object-

ness map to exclude those regions. According to the accu-

mulated value, the four sides of the rectangular region can

be easily determined by a pre-defined threshold θ (θ = 0.1).

The integral image [30] computed from objectness map can

be adopted to boost computational efficiency of this step.

We want the second layer to be composed of smaller grid

cells containing semantic elements. To this end, we initially

determine a number of proposals as candidates C by select-

ing those whose size is 0.2 ∼ 0.4 time that of the first layer

and intersect with the first layer that is higher than 0.6. It is

a highly complex task to detect a small set of semantic ele-

ments from C. Inspired by [34], we convert this question of

semantic element detection to a clustering problem. Given

the candidates C, we divide them into clusters and select

only one proposal from each group as the output detection.

In addition, we favor a small set of proposals that have small

overlaps with other selected ones and tend to cover the en-

tire space of the first layer. Hence, we define the following
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objective function:

max
B

{S(B)− α ·O(B) + β · U(B)− γ ·N(B)}

s.t. B ⊆ C
(2)

Here S(·) is the data term that encourages the selection

of proposals that are more likely to belong to one clus-

ter center; O(·) denotes overlap term that penalizes inter-

section between selected windows. U(·) is coverage term

which represents the coverage of the selected windows in

the coarsest layer. N(·) denotes the number term, and it

penalizes the number of selected regions. By maximizing

Eq. 2, we can determine a small subset of proposals so that

these selected ones are very likely to be a cluster center,

have small overlaps with other selected windows, and cover

the entire coarsest grid cell (the first layer).

To be more specific, we use a binary variable zi to in-

dicate the selection of proposal bi from candidates C. If

bi is selected, zi = 1 otherwise 0. So, the data term isP
bi✓C Sizi, where Si is the score reflecting the likelihood

of the proposal bi to be a cluster center. Here we adopt the

measure proposed in [34] to compute Si. For each propos-

al bi, Si =
P

bj2C max (log(sj ·K(bi, bj))− τ, 0), where

sj is the original score of proposal bj ; K(bi, bj) is a func-

tion that measures the overlaps between bi and bj , and here

we use the popular Intersection-over-Union (IoU) score [8];

τ = log ( 1P
n
j=1

si·K(bi,bj)
) is a normalization constant. A-

part from selecting proposals with high possibility of be-

longing to a cluster center, the proposals selected from C

should have small overlaps with other selected ones. The

overlap cost is
P

bi,bj2C;i 6=j K(bi, bj)zizj . Besides, we en-

courage the selected proposal to cover the entire coarsest

grid cell. Therefore, we partition the coarsest grid cell into

small tiles. We introduce a binary variable tm to indicate

whether tile m is covered by the selected proposals. If tile

m is covered by any selected proposal, tm = 1. Otherwise,

tm = 0. Therefore, the coverage term is
P

m2T tm , where

T denotes the set of tiles in the coarsest layer. We tend to s-

elect a small set of proposals, because it is time-consuming

to train classifiers for a large number of regions. There-

fore, we include the number term
P

bi2C zi in our objective

function. Combining all the terms, we get the following

objective function:

max{
X

bi✓C

(Si − γ)zi − α ·
X

bi,bj2C
i 6=j

K(bi, bj)zizj

+ β ·
X

m2T

tm}

s.t. zi, zj = 0 or 1

(3)

Seeking the solution of Eq. 3 is typically a NP-hard prob-

lem. To quickly solve this problem, we adopt the greedy

algorithm described in [34]. It starts from an empty solu-

tion set, and adds proposals to the solution set until no more

proposals can be added to improve the objective function.

Then, it removes proposals from the solution set until no

more proposals can be removed to further improve the ob-

ject function. The interactions described above keep iter-

ating until a local optimal solution is found. Finally, only

a few proposals are selected to form the semantic element

layer of our hierarchical architecture.

The upper two layers of our hierarchical architecture on-

ly focus on the important object regions. We believe that the

matches of these regions provide useful priors that can help

better estimating the correspondences for all pixels. Hence,

we have one additional layer underneath the second layer,

which is referred to as dense guidance layer, to bridge the

gap between region-wise semantic and pixel-wise low-level

correspondences. Based on the matches of nodes in the

upper-two layers, the guidance layer is automatically gen-

erated by using a graphical model which has been used in

colorization [15] and scale estimation [26]. Specifically, we

initialize the translation vector wg(p) = (up, vp) at pixel p

in object regions with its corresponding region-wise trans-

lation vector. Then the known translation vectors wg(p) are

propagated to all unknown pixels by minimizing the follow-

ing objective function, as follows,

J(wg) =
X

p

(wg(p)−
X

p,q2N

wpqw
g(q))2 (4)

where wpq is a weighting function. In contrast to [15]

[26], we define a linear relationship between intensities and

flows, rather than between intensities and colors or scales.

We assume that neighboring pixels with similar intensities

have similar flows (translation vectors). Thus, the weight-

ing function is written as follows,

wpq ∝ 1 +
1

σ2
p

(G(p)− µp)(G(q)− µq) (5)

where G(p) and G(q) denotes the intensities of pixels p and

q respectively. σp and µp are the mean and variance of the

intensities in the neighboring region of pixel p. wpq will be

large if G(p) is similar to G(q) and vice versa. Finally, the

dense guidance layer is automatically generated by solving

Eq. 4 using normalized cuts [23].

The bottom layer in our hierarchical architecture is the

pixel layer. We use a graph to represent the proposed object-

aware hierarchical architecture, where each grid cell is a

node. All neighboring nodes (grid cells with overlaps) and

parent-child nodes are connected by edges (see Fig. 2). In

the bottom layer, each pixel is linked only to its parent node.

3.2. Matching Objective

We design two objective functions for our Object-aware

Hierarchical Graph (OHG) model. For the nodes in the up-
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Figure 3. Comparison of initial features and learned features. In

each case, the learned features boost the gradients belonging to

important parts of a given region while the initial features only

“upweight” the regions with large gradient changes.

per two layers, we impose greater regularization and define

a better visual similarity to improve their robustness to ap-

pearance variations. For the nodes in the pixel-wise layer

(bottom layer), we design a reduced objective function and

simply use a L1 metric for measuring visual similarity, in

order to boost computational efficiency.

First, we introduce the objective function for the upper

layers. Let IS and IT denote the source image and target

image, respectively. In order to make our model robust to

horizontal flipping, a common visual variation in real-world

images, we compute the horizontal flipping translation F
based on the target image IT in advance. We use w

0

i to de-

note the temporary translation of node i, and the final trans-

lation of a node in the upper layer is denoted as wi, where

wi = w
0

i + fi · Fi, and fi = 1 or 0 is the flip variable. Our

matching objective function is given as:

E(w
0

, s, f) =
X

i

Di(w
0

i, si, fi) + λ
X

i,j2N

Vi,j(w
0

i, w
0

j)

+ µ
X

i,j2N

Si,j(si, sj) + ν
X

i,j2N

Fi,j(fi, fj)

(6)

where Di is a data term; Vi,j(w
0

i, w
0

j) = min(||w
0

i −

w
0

j ||1, ε) is a spatial smoothness term. Unlike the origi-

nal DSP objective function, we add a scale smoothness ter-

m Si,j = ||si − sj ||1 and a flip smoothness term Fi,j =
||fi−fj ||1. N denotes pairs of nodes linked by graph edges.

Different from previous works that simply use a L1 met-

ric to evaluate the matching likelihood, our data term is de-

fined as,

Di(w
0

i, si, fi) = φ(WT
i X(i

0

)) (7)

i
0

= si(i+ F · fi + w
0

i) (8)

where Wi is a SVM classifier trained to measure the visual

similarity between node i in the source image IS and patch

i
0

with the state (w
0

i, si, fi) in target image IT . X(i
0

) is the

IŶitial Features

LearŶed Features

Best ŵatchIŶput patch

Figure 4. Comparison of patch matching using initial feature and

learned feature. The learned feature “upweights” the gradients of

important regions, therefore it is much more robust to appearance

variations.

feature vector extracted from patch i
0

in the target image,

and φ(·) maps the detection scores into the range [0, 3].
After our method finishes matching all nodes in the up-

per two layers, we use Eq. 4 to generate the dense guidance

flow wg to drive the matching of each node in pixel-wise

layer. To accelerate the matching process, we neither link

neighboring nodes in pixel-wise layer nor train a classifi-

er for each pixel. We only use the HOG feature [10] for

each pixel p to describe its local structure. Therefore, the

objective function is given as:

E
0

(wf ) =
X

p

D
0

p(w
f
p ) +

X

p,q2NPC

Vp,q(w
f
p , w

g
q ) (9)

where the first term D
0

adopts L1 metric to measure the

HOG distance and the second term ensures that the final

flow vector wf is driven by wg . NPC denotes parent-child

nodes.

3.2.1 Optimization

We initialize the solution by using the optimization frame-

work of DSP [14] for the hierarchical graph built based on

all nodes in the upper two layers. Because our model keeps

only a few nodes (usually less than 10 discriminative patch-

es) in the upper two layers, the node matching here is very

fast. In the pixel-wise layer, each pixel is a node. For better

efficiency, we propose a two-stage optimization strategy. E-

q. 9 has two terms: data term and guidance term. In Stage

1, we consider only the guidance term. Since the guidance

term favors the consistency between final flow and guidance

flow, we directly generate the initial location of each pixel

by using the guidance flow. In Stage 2, we refine the ini-

tial flow within a 10-pixel radius search region by using a

reduced object function of Eq. 9 as E
0

(wf ) =
P

i D
0

p(w
f
p ).

3.3. “Objectness-driven” Visual Similarity

The L1 norm for descriptor distance is adopted by most

previous dense semantic correspondence methods for mea-
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suring visual similarity. However, handcrafted descriptors

tend to capture the minor details rather than important high-

level structure of the given region (see Fig. 3). Therefore,

directly adopting handcrafted descriptors as underlying rep-

resentations and using L1 metric alone for measuring visu-

al similarity usually cause errors in challenging cases, e.g.,

matching across high appearance variations (see Fig. 4).

To overcome this drawback, we train a discriminative

classifier to capture important part of each feature repre-

sentation, and then use the learned detectors to meature the

visual similarity. Specifically, we model the appearance of

each node with a HOG template [10], and employ the linear

Support Vector Machine (SVM) [6] to discover which parts

of the representation are most visually important and which

parts can be safely ignored. The visual similarity, therefore,

can be defined as follows:

S(i, i
0

) = WT
i X(i

0

) (10)

where Wi is the learned weight vector for node i in the

source image IS , and X(i
0

) denotes the feature vector of

its corresponding target i
0

in the another image IT .

Since what we want to capture is the most importan-

t structure of a given patch, we can train an exemplar-

specific classifier for each node in the upper two layers in a

“objectness-driven” way. We hypothesize that the most im-

portant features of an object region are also the features ex-

hibiting high “objectness”, which best discriminate this re-

gion against the “background” samples. Therefore, we train

a SVM classifier with a single positive example and million-

s of “background” images/patches, similar to [20] [24]. To

improve its robustness to small transformations, we expand

the positive set by performing slight transformations (e.g., a

shift of less than 5 pixels in different directions). We denote

the positive set as Po and the negative set as NE , and the

feature vector for each patch as X . The weight vector Wi

for node i is computed as follows:

Ω(Wi) =C1

X

xp2Po

h(WT
i Xp) + C2

X

xn2NE

h(−WT
i Xn)

+ ||WT
i ||2

(11)

where h(x) = max(0, 1 − x) is the hinge loss function.

C1 and C2 are regularization parameters. Since the solution

only depends on a small set of “hard” negative support vec-

tors [10], we use the hard-negative mining approach [20]

to cope with millions of negative windows. As we learn

each classifier independently, a careful calibration phase is

required so that the outputs are comparable. We follow the

calibration process in [2]. Because there are only a few clas-

sifiers in our model, we find that running all classifiers on a

set of 2000 “background” patches achieves good results.

Table 1. Quantitative results on JR dataset. FAcc denotes flow

accuracy rate for an error threshold of 5 pixels. SAcc is segmenta-

tion accuracy by using Intersection-over-Union (IoU) scores. “*”

represents the final version of the proposed method used in this

paper. Our method consistently shows best scores.

Methods(%)
FG3DCar JODS PASCAL

FAcc SAcc FAcc SAcc FAcc SAcc

SF [18] 63.37 75.50 52.22 56.91 45.27 72.72

DSP [14] 48.69 72.69 46.53 61.50 38.22 69.94

DFF [32] 49.46 59.33 30.41 48.31 22.45 53.58

UFL [33] 36.90 65.68 34.71 51.18 23.78 62.21

PF [11] 79.13 75.18 64.40 59.67 48.52 67.25

JR [25] 82.97 73.04 59.48 54.11 48.31 67.68

Ours w/o SVM 69.51 74.76 55.10 57.22 61.62 71.73

Ours⇤ 87.46 85.58 70.78 68.44 72.92 78.21

4. Experiments

Implementation The proposed method is implemented in

MATLAB. We represent each node in the upper two lay-

ers with a rigid HOG template [10], and the HOG features

are computed over an image pyramid. The LIBSVM [6] is

used to train each node’s weight vector W . We create nega-

tive samples by using images from the PASCAL VOC 2007

dataset [8] and filtering out patches containing objects. For

the pixel layer, we use HOG [10] features with 25 × 25 s-

patial support as underlying represents. We set α = 0.5,

β = 0.3 and γ = 0.5 in Eq. 2; We set λ = 0.3, µ = 0.2
and υ = 0.4 in Eq. 6. We use the regularization parameter

C1 = 0.1 and C2 = 0.01 in Eq. 11. The values of these

parameters are fixed in the following experiments. We will

release the code and results online.

Methods of comparison We compare the proposed method

with currently strongest methods including SF [18], D-

SP [14], DFF [32], UFL [33], MATCH [26], PF [11] and

JR [25]. In total, we make comparisons with 7 leading

methods. In all cases, we use the code and recommended

parameter settings published by the authors of each method.

4.1. Results on JR dataset

The JR dataset [25] is designed for evaluating the accu-

racy of dense semantic correspondence. It includes three

subsets with different difficulty levels. FG3DCar is a the

simplest subset. It contains 195 image pairs from the cate-

gory of vehicle. The challenge is to handle appearance vari-

ations. JODS includes 81 image pairs of airplanes, hors-

es, and cars. The images in JODS have large intra-class

variations, as well as changes in scale and viewpoint. PAS-

CAL is the most challenging subset. It contains 124 image

pairs from different object categories (e.g., bicycle, motor-

bike and train). These images contain objects with high

appearance variations, large changes in viewpoint, strong

background clutters, as well as flipping variations.

We evaluate the pixel-wise flow accuracy on JR dataset.

Following the experimental protocol in [25], we compute
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Figure 5. Average flow accuracies with varying thresholds on JR dataset. Our method consistently outperforms the state-of-the-arts.

On the most challenging PASCAL, our method can still perform well, while other methods have been shown to fail.

SFGTInput DSP DFF UFL PF JR Ours

Figure 6. Qualitative results on JR dataset. We show some example results from different subsets of JR Benchmark.

the average flow accuracy with an error threshold of 5 pix-

els on each subset. As shown in Tab. 1, our method re-

ports the highest dense correspondence accuracy on all sub-

sets. Specifically, on FG3DCar and JODS, we achieve an

improvement of 5.41% and 9.91% respectively in terms of

pixel-wise flow accuracy over the currently strongest meth-

ods. On the most challenging PASCAL, we outperform the

best existing methods by 50.29% in term of flow accuracy.

That is because 1) our method is able to handle flip varia-

tions, eliminate background clutters, and 2) the trained fea-

tures are much more robust to appearance variations. Sim-

ilar to [25], we also plot the percentage of correct corre-

spondences using varying thresholds (see Fig. 5).

Additionally, according to the computed flow fields, we

transfer the groundtruth mask of one image to the other in

each pair to measure the IoU score [10] for a more balanced

comparison. The annotation transfer results are also listed

in Tab. 1. Our method also achieves the highest score with

a significant improvement of 13.35% on FG3DCar, 11.28%
on JODS and 8.44% on PASCAL over previously best re-

sults. Some sample results are shown in Fig. 6.

4.2. Results on Caltech-101 dataset

Caltech-101 dataset [9] includes 101 object categories.

In each category, there are more than 50 images containing

object(s) in different locations and scales, and exhibiting

high appearance variations. It also provides ground-truth

pixel labels for the foreground object. Although it has no
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Figure 7. Qualitative results on real-world images. We warp Target to Source using the estimated dense correspondences to illustrate the

result. Good results should be those whose colors and textures keep unchanged, and shapes close to their corresponding contents.

groundtruth flow fields, we can transfer the segmentation

mask to evaluate the performance of dense semantic cor-

respondence method on images with appearance variations

like many previous works did [14] [11] [33].

Following the evaluation methods in many pervious

works [14] [11] [33], we randomly select 15 pairs of im-

ages from each object category and evaluate the annotation

transfer accuracy using three different metrics including La-

bel Transfer Accuracy (LT-ACC), IoU metric and the Lo-

calization Error (LOC-ERR). The results of all methods are

summarized in Tab. 2. Our method also achieves the highest

score.

4.3. Results on real-world images

Fig. 7 offers the image reconstruction results obtained by

warping the target image back to the source image using the

estimated dense correspondences. These real-world image

pairs are only semantically related and extremely challeng-

ing. A good resulting image should have the shapes and

locations of the source image and the colors and textures

of the target image. Recent approaches have been shown

to fail in many challenging real-world image pairs, but our

approach obtains very good qualitative results.

4.4. Run-time

The average running time of each method is tested on

a PC with an i7 2.50 GHz CPU and 8 GB RAM. Our

method is implemented by using MATLAB with unopti-

mized codes. It takes an average of 98.7 seconds for our

method to handle each image pair (400 × 300). It takes

longer than some high efficient methods, e.g., SF [18] and

DSP [14], yet it achieves the best performance. Compared

with some highly robust methods, such as JR [25], our

method is much more efficient. We believe that a paral-

Table 2. Results on the Caltech-101 dataset.
Methods LT-ACC IoU LOC-ERR

SF [18] 0.70 0.46 0.35

DSP [14] 0.75 0.51 0.32

DFF [32] 0.62 0.42 0.40

MATCH [26] 0.73 0.44 0.38

UFL [33] 0.67 0.46 0.43

PF [11] 0.79 0.52 0.26

JR [25] 0.76 0.48 0.33

Ours 0.81 0.55 0.19

lel implementation of our method will greatly improve its

computational efficiency, because training weighted vector

for each node is totally independent.

5. Conclusion

In this paper, we have proposed Object-aware Hierarchi-

cal Graph (OHG) model, a novel framework for semantic

dense correspondence estimation. Different from existing

works, we estimate dense correspondences from semantic

to low-level by training a discriminative classifier for each

node in the upper two layers and guiding the matching of

local structures. A better visual similarity is also defined in

this paper. Our method achieves satisfactory results on two

challenging benchmarks. In the future, we will improve the

accuracy of our dense correspondence estimation by acquir-

ing other invariant properties, e.g., rotation invariant.
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