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Abstract

Semantic sparsity is a common challenge in structured

visual classification problems; when the output space is

complex, the vast majority of the possible predictions are

rarely, if ever, seen in the training set. This paper studies

semantic sparsity in situation recognition, the task of pro-

ducing structured summaries of what is happening in im-

ages, including activities, objects and the roles objects play

within the activity. For this problem, we find empirically

that most substructures required for prediction are rare,

and current state-of-the-art model performance dramati-

cally decreases if even one such rare substructure exists in

the target output.We avoid many such errors by (1) introduc-

ing a novel tensor composition function that learns to share

examples across substructures more effectively and (2) se-

mantically augmenting our training data with automatically

gathered examples of rarely observed outputs using web

data. When integrated within a complete CRF-based struc-

tured prediction model, the tensor-based approach outper-

forms existing state of the art by a relative improvement of

2.11% and 4.40% on top-5 verb and noun-role accuracy, re-

spectively. Adding 5 million images with our semantic aug-

mentation techniques gives further relative improvements of

6.23% and 9.57% on top-5 verb and noun-role accuracy.

1. Introduction

Many visual classification problems, such as image cap-

tioning [29], visual question answering [2], referring ex-

pressions [23], and situation recognition [44] have struc-

tured, semantically interpretable output spaces. In con-

trast to classification tasks such as ImageNet [37], these

problems typically suffer from semantic sparsity; there is

a combinatorial number of possible outputs, no dataset can

cover them all, and performance of existing models de-

grades significantly when evaluated on rare or unseen in-

ROLE VALUE

AGENT MAN

ITEM BABY

AGENTPART CHEST

PLACE OUTSIDE

ROLE VALUE

AGENT WOMAN

ITEM BUCKET

AGENTPART HEAD

PLACE PATH

ROLE VALUE

AGENT MAN

ITEM TABLE

AGENTPART BACK

PLACE STREET

CARRYING

Figure 1: Three situations involving carrying, with seman-

tic roles agent, the carrier, item, the carried, agentpart, the

part of the agent carrying, and place, where the situation is hap-

pening. For carrying, there are many possible carry-able objects

(nouns that can fill the item role), which is an example of se-

mantic sparsity. Such rarely occurring substructures are challeng-

ing and cause significant errors, affecting not only performance on

role-values but also verbs.

puts [3, 46, 9, 44]. In this paper, we consider situation

recognition, a prototypical structured classification problem

with significant semantic sparsity, and develop new mod-

els and semantic data augmentation techniques that signifi-

cantly improve performance by better modeling the under-

lying semantic structure of the task.

Situation recognition [44] is the task of producing struc-

tured summaries of what is happening in images, including

activities, objects and the roles those objects play within the

activity. This problem can be challenging because many

activities, such as carrying, have very open ended se-

mantic roles, such as item, the thing being carried (see

Figure 1); nearly any object can be carried and the training

data will never contain all possibilities. This is a prototyp-

ical instance of semantic sparsity: rare outputs constitute
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Figure 2: The percentage of images in the imSitu development set

as a function of the total number of training examples for the least

frequent role-noun pair in each situation. Uncommon target out-

puts, those observed fewer than 10 times in training (yellow box),

are common, constituting 35% of all required predictions. Such

semantic sparsity is a central challenge for situation recognition.

a large portion of required predictions (35% in the imSitu

dataset [44], see Figure 2), and current state-of-the-art per-

formance for situation recognition drops significantly when

even one participating object has few samples for it’s role

(see Figure 3). We propose to address this challenge in two

ways by (1) building models that more effectively share ex-

amples of objects between different roles and (2) semanti-

cally augmenting our training set to fill in rarely represented

noun-role combinations.

We introduce a new compositional Conditional Random

Field formulation (CRF) to reduce the effects of semantic

sparsity by encouraging sharing between nouns in different

roles. Like previous work [44], we use a deep neural net-

work to directly predict factors in the CRF. In such models,

required factors for the CRF are predicted using a global

image representation through a linear regression unique to

each factor. In contrast, we propose a novel tensor com-

position function that uses low dimensional representations

of nouns and roles, and shares weights across all roles and

nouns to score combinations. Our model is compositional,

independent representations of nouns and roles are com-

bined to predict factors, and allows for a globally shared

representation of nouns across the entire CRF.

This model is trained with a new form of semantic data

augmentation, to provide extra training samples for rarely

observed noun-role combinations. We show that it is possi-

ble to generate short search queries that correspond to par-

tial situations (i.e. “man carrying baby” or “carrying on

back” for the situations in Figure 1) which can be used for

web image retrieval. Such noisy data can then be incor-

porated in pre-training by optimizing marginal likelihood,

effectively performing a soft clustering of values for unla-

beled aspects of situations. This data also supports, as we
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Figure 3: Verb and role-noun prediction accuracy of a baseline

CRF [44] on the imSitu dev set as a function of the frequency of the

least observed role-noun pair in the training set. Solid horizontal

lines represent average performance across the whole imSitu dev

set, irrespective of frequency. As even one target output becomes

uncommon (highlighted in yellow box), accuracy decreases.

will show, self training where model predictions are used to

prune the set of images before training the final predictor.

Experiments on the imSitu dataset [44] demonstrate that

our new compositional CRF and semantic augmentation

techniques reduce the effects of semantic sparsity, with

strong gains for relatively rare configurations. We show

that each contribution helps significantly, and that the com-

bined approach improves performance relative to a strong

CRF baseline by 6.23% and 9.57% on top-5 verb and noun-

role accuracy, respectively. On uncommon predictions, our

methods provide a relative improvement of 8.76% on av-

erage across all measures. Together, these experiments

demonstrate the benefits of effectively targeting semantic

sparsity in structured classification tasks.

2. Background

Situation Recognition Situation recognition has been re-

cently proposed to model events within images [19, 36, 43,

44], in order to answer questions beyond just “What activ-

ity is happening?” such as “Who is doing it?”, “What are

they doing it to?”, “What are they doing it with?”. In gen-

eral, formulations build on semantic role labelling [17], a

problem in natural language processing where verbs are au-

tomatically paired with their arguments in a sentence (for

example, see [8]). Each semantic role corresponds to a

question about an event, (for example, in the first image

of Figure 1, the semantic role agent corresponds to “who

is doing the carrying?” and agentpart corresponds to

“how is the item being carried?”).

We study situation recognition in imSitu [44], a large-

scale dataset of human annotated situations containing over

500 activities, 1,700 roles, 11,000 nouns, 125,000 images.

imSitu images are collected to cover a diverse set of sit-
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uations. For example, as seen in Figure 2, 35% of situ-

ations annotated in the imSitu development set contain at

least one rare role-noun pair. Situation recognition in im-

Situ is a strong test bed for evaluating methods addressing

semantic sparsity: it is large scale, structured, easy to eval-

uate, and has a clearly measurable range of semantic spar-

sity across different verbs and roles. Furthermore, as seen

in Figure 3, semantic sparsity is a significant challenge for

current situation recognition models.

Formal Definition In situation recognition, we assume a

discrete sets of verbs V , nouns N , and frames F . Each

frame f 2 F is paired with a set of semantic roles Ef .

Every element in V is mapped to exactly one f . The verb

set V and frame set F are derived from FrameNet [13], a

lexicon for semantic role labeling, while the noun set N is

drawn from WordNet [34]. Each semantic role e 2 Ef is

paired with a noun value ne 2 N [{∅}, where ∅ indicates

the value is either not known or does not apply. The set of

pairs of semantic roles and their values is called a realized

frame, Rf = {(e, ne) : e 2 Ef}. Realized frames are valid

only if each e 2 Ef is assigned exactly one noun ne.

Given an image, the task is to predict a situation, S =
(v,Rf ), specified by a verb v 2 V and a valid realized

frame Rf , where f refers to a frame mapped by v . For

example, in the first image of Figure 1, the predicted sit-

uations is S = (carrying, {(agent,man), (item,baby),

(agentpart,chest), (place,outside)}).

3. Methods

This section presents our compositional CRFs and se-

mantic data augmentation techniques.

3.1. Compositional Conditional Random Field

Figure 4 shows an overview of our compositional condi-

tional random field model, which is described below.

Conditional Random Field Our CRF for predicting a sit-

uation, S = (v,Rf ), given an image i, decomposes over the

verb v and semantic role-value pairs (e, ne) in the realized

frame Rf = {(e, ne) : e 2 Ef}, similarly to previous work

[44]. The full distribution, with potentials for verbs ψv and

semantic roles ψe takes the form:

p(S|i; θ) / ψv(v, i; θ)
Y

(e,ne)∈Rf

ψe(v, e, ne, i; θ) (1)

The CRF admits efficient inference: we can enumerate all

verb-semantic roles that occur and then sum all possible se-

mantic role values that occurred in a dataset.

Each potential in the CRF is log linear:

ψv(v, i; θ) = eφv(v,i,θ) (2)

ψe(v, e, ne, i; θ) = eφe(v,e,ne,i,θ) (3)

where φe and φv encode scores computed by a neural net-

work. To learn this model, we assume that for an image i

in dataset Q there can, in general, be a set Ai of possible

ground truth situations 1. We optimize the log-likelihood of

observing at least one situation S 2 Ai:

X

i∈Q

log
⇣

1−
Y

S∈Ai

(1− p(S|i; θ))
⌘

(4)

Compositional Tensor Potential In previous work, the

CRF potentials (Equation 2 and 3 ) are computed using a

global image representation, a p-dimensional image vector

gi 2 Rp, derived by the VGG convolutional neural net-

work [40]. Each potential value is computed by a linear

regression with parameters, θ, unique for each possible de-

cision of verb and verb-role-noun (we refer to this as image

regression in Figure 4), for example for the verb-role-noun

potential in Equation 3:

φe(v, e, ne, i, θ) = gTi θv,e,ne
(5)

Such a model does not directly represent the fact that

nouns are reused between different roles, although the un-

derlying neural network could hypothetically learn to en-

code such reuse during fine tuning. Instead, we introduce

compositional potentials that make such reuse explicit.

To formulate our compositional potential, we introduce

a set of m-dimensional vectors D = {dn 2 Rm|n 2 N},

one vector for each noun in N , the set of nouns. We create

a set matrices T = {H(v,e) 2 Rp×o|(v, e) 2 Ef}, one ma-

trix for each verb, semantic role pair occurring in all frames

Ef , that map image representations to o-dimensional verb-

role representations. Finally, we introduce a tensor of global

composition weights, C 2 Rm×o×p. We define a tensor

weighting function, T , which takes as input a verb, v, se-

mantic role, e, noun, n, and image representation, gi as:

T (v, e, n, gi) = C % (dn ⌦ gTi H(v,e) ⌦ gi) (6)

The tensor weighting function constructs an image spe-

cific verb-role representation by multiplying the global im-

age vector and the verb-role matrix gTi H(v,e). Then, it com-

bines a global noun representation, the image specific role

representation, and the global image representation with

outer products. Finally, it weights each dimension of the

outer product with a weight from C. The weights in C in-

dicate which features of the 3-way outer product are impor-

tant. The final potential is produced by summing up all of

the elements of the tensor produced by T :

φe(v, e, ne, i) =

M
X

x=0

O
X

y=0

P
X

z=0

T (v, e, ne, gi)[x, y, z] (7)

1imSitu provides three realized frames per example image.
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Figure 4: An overview of our compositional Conditional Random Field (CRF) for predicting situations. A deep neural network is used

to compute potentials in a CRF. The verb-role-noun potential is built from a global bank of noun representations, image specific role

representations and a global image representation that are combined with a weighted tensor product. The model allows for sharing among

the same nouns in different roles, leading to significant gains, as seen in Section 5.

The tensor produced by T in general will be high dimen-

sional and very expressive. This allows use of small dimen-

sionality representations, making the function more robust

to small numbers of samples for each noun.

The potential defined in Equation 7 can be equivalently

formulated as :

φe(v, e, ne, i) = gTi A(dne
⌦ gTi H(v,e)) (8)

Where A is a matrix with the same parameters as C but

flattened to layout the noun and role dimensions together.

By aligning terms with Equation 5, one can see that tensor

potential offers an alternative parametrized to the linear re-

gression that uses many more general purpose parameters,

those of C. Furthermore, it eliminates any one parameter

from ever being uniquely associated with one regression,

instead compositionally using noun and verb-role represen-

tations to build up the parameters of the regression.

3.2. Semantic Data Augmentation

Situation recognition is strongly connected to language.

Each situation can be thought of as simple declarative sen-

tence about an activity happening in an image. For example,

the first situation in Figure 1 could be expressed as “man

carrying baby on chest outside” by knowing the prototyp-

ical ordering of semantic roles around verbs and inserting

prepositions. This relationship can be used to reduce se-

mantic sparsity by using image search to find images that

could contain the elements of a situations.

We convert annotated situations to phrases for se-

mantic augmentation by exhaustively enumerating all

possible sub-pieces of realized situations that occur in

the imSitu training set (see Section 4 for implementa-

tion details). For example, in first situation of Fig-

ure 1, we get the pieces: (carrying, {(agent,man)}),

(carrying, {(agent,man), (item,baby)}), ect. Each of

these substructures is converted deterministically to a

phrase using a template specific for every verb. For ex-

ample, the template for carrying is “{agent} carrying

{item} {with agentpart} {in place}.” Partial situ-

ations are realized into phrases by taking the first gloss in

Wordnet of the synset associated with every noun in the

substructure, inserting them into the corresponding slots of

the template, and discarding unused slots. For example, the

phrases for the sub-pieces above are realized as “man car-

rying” and “man carrying baby.” These phrases are used to

retrieve images from Google image search and construct a

set, W = {(i, v, Rf )}, of images annotated with a verb and

partially complete realized frames, by assigning retrieved

images to the sub-piece that generated the retrieval query.2

2While these templates do not generate completely fluent phrases, pre-

liminary experiments found them sufficiently accurate for image search
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Pre-training Images retrieved from the web can be incor-

porated in a pre-training phase. The images retrieved only

have partially specified realized situations as labels. To ac-

count for this, we instead compute the marginal likelihood,

p̂, of the partially observed situations in W :

p̂(S|i; θ) / ψv(v, i; θ)
Y

(e,ne)∈Rf

ψe(v, e, ne, i; θ)

⇥
Y

e/∈Rf∧e∈Ef

X

n

ψe(v, e, n, i; θ)
(9)

During pretraining, we optimize the marginal log-likelihood

of W . This objective provides a partial clustering over the

unobserved roles left unlabeled during the retrieval process.

Self Training Images retrieved from the web contain sig-

nificant noise. This is especially true for role-noun combi-

nations that occur infrequently, limiting their utility for pre-

training. Therefore, we also consider filtering images in W

after a model has already been trained on fully supervised

data from imSitu. We rank images in W according to p̂ as

computed by the trained model and filter all those not in the

top-k for every unique Rf in W . We then pretrain on this

subset of W , train again on imSitu, and then increase k. We

repeat this process until the model no longer improves.

4. Experimental Setup

Models All models were implemented in Caffe [21] and

use a pretrained VGG network [40] for the base image rep-

resentation with the final two fully connected layers re-

placed with two fully connected layers of dimensionality

1024. We finetune all layers of VGG for all models. For

our tensor potential we use noun embedding size, m = 32,

and role embedding size o = 32, and the final layer of

our VGG network as the global image representation where

p = 1024. Larger values of m and o did seem to improve

results but were too slow to pretrain so we omit them. In

experiments where we use the image regression in conjunc-

tion with a compositional potential, we remove regression

parameters associated with combinations seen fewer than

10 times on the imSitu training set to reduce overfitting.

Baseline We compare our models to two alternative meth-

ods for introducing effective sharing between nouns. The

first baseline (Noun potential in Table 1 and 2) adds a po-

tential into the baseline CRF for nouns independent of roles.

We modify the probability, from Equation 9 of a situation,

S, given an image i, to not only decompose by pairs of roles,

e and nouns ne in a realized frame Rf , but also nouns ne:

p(S|i; θ) / ψv(v, i; θ)
Y

(e,ne)∈Rf

ψe(v, e, ne, i; θ)ψne
(ne, i)

(10)

because often no phrase could retrieve correct images. Longer phrases

tended to have much lower precision.

The added potential, ψne
, is computed using a regression

from a global image representation for each unique ne.

The second baseline we consider is compositional but

does not use a tensor based composition method. The model

instead constructs many verb-role representations and com-

bines them with noun representations using inner-products

(Inner product composition in Table 1 and 2). In this model,

as in the tensor model in Section 3, we use a global image

representation gi 2 Rp and a set noun vectors, dn 2 Rm

for every noun n. We also assume t verb-role matrices

Ht,v,e 2 Ro×p for every verb-role in Ef . We compute the

corresponding potential as in Equation 11:

φe(v, e, ne, i) =
X

k

dTne
H(k,v,e)qi (11)

The model is motivated by compositional models used for

semantic role labeling [14] and allows us to trade-off the

need to reduce parameters associated with nouns and ex-

pressivity. We grid search values of t such that t · o was at

most 256, the largest size network we could afford to run

and o = m, a requirement on the inner product. We found

the best setting at t = 16, o = m = 16.

Decoding We experimented with two decoding meth-

ods for finding the best scoring situation under the CRF

models. Systems which used the compositional poten-

tials performed better when first predicting a verb vm

using the max-marginal over semantic roles: vm =
argmaxv

P

(e,ne)
p(v,Rf |i) and then predict a real-

ized frame, Rm
f , with max score for vm: Rm

f =
argmaxRf

p(vm, Rf |i). All other systems performed bet-

ter maximizing jointly for both verb and realized frame.

Optimization All models were trained with stochastic

gradient descent with momentum 0.9 and weight decay 5e-

4. Pretraining in semantic augmentation was conducted

with initial learning rate of 1e-3, gradient clipping at 100,

and batch size 360. When training on imSitu data, we use

an initial learning rate of 1e-5. For all models, the learning

rate was reduced by a factor of 10 when the model did not

improve on the imSitu dev set.

Semantic Augmentation In experiments with semantic

augmentation, images were retrieved using Google image

search. We retrieved 200 medium sized, full-color, safe

search filtered images per query phrase. We produced over

1.5 million possible query phrases from the imSitu training

set, the majority extremely rare. We limited the phrases to

any that occur between 10 and 100 times in imSitu and for

phrases that occur between 3 and 10 times we accepted only

those containing at most one noun. Roughly 40k phrases

were used to retrieve 5 million images from the web. All du-

plicate images occurring in imSitu were removed. For pre-

training, we ran all experiments up to 50k updates (roughly
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top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

im
S

it
u

1 Baseline: Image Regression [44] 32.25 24.56 14.28 58.64 42.68 22.75 65.90 29.50 36.32

2 Noun Potential + reg 27.64 21.21 12.21 53.95 39.95 21.45 68.87 32.31 34.70

3 Inner product composition + reg 32.13 24.77 14.71 58.33 42.93 23.14 66.79 30.2 36.62

4 Tensor composition 31.73 24.04 13.73 58.06 42.64 22.7 68.73 32.14 36.72

5 Tensor composition + reg 32.91 25.39 14.87 59.92 44.5 24.04 69.39 33.17 38.02

+
S

A

6 Baseline : Image Regression 32.40 24.14 15.17 59.10 44.04 24.40 68.03 31.93 37.53

7 Tensor composition + reg 34.04 26.47 15.73 61.75 46.48 25.77 70.89 35.08 39.53

8 Tensor composition + reg + self train 34.20 26.56 15.61 62.21 46.72 25.66 70.80 34.82 39.57

Table 1: Situation recognition results on the full imSitu development set. The results are divided by models which were only trained on

imSitu data, rows 1-5, and models which use web data through semantic data augmentation, marked as +SA in rows 6-8. Models marked

with +reg also include image regression potentials used in the baseline. Our tensor composition model, row 5, significantly outperforms

the existing state of the art, row 1, addition of a noun potential, row 2, and a compositional baseline, row 3. The tensor composition model

is able to make better use of semantic data augmentation (row 8) than the baseline (row 6).

top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

im
S

it
u

1 Baseline: image regression [44] 19.89 11.68 2.85 44.00 24.93 6.16 50.80 9.97 19.92

2 Noun potential + reg 15.88 9.13 1.86 38.22 22.28 5.46 54.65 11.91 19.92

3 Inner product composition + reg 18.96 10.69 1.89 42.53 23.28 3.69 49.54 6.46 19.63

4 Tensor composition 19.78 11.28 2.26 42.66 24.42 5.57 54.06 11.47 21.43

5 Tensor composition + reg 21.12 11.89 2.20 45.14 25.51 5.36 53.58 10.62 21.93

+
S

A

6 Baseline : image regression 19.95 11.44 2.13 43.08 24.56 4.95 51.55 8.41 20.76

7 Tensor composition + reg 20.08 11.58 2.22 44.82 26.02 5.55 55.45 11.53 22.16

8 Tensor composition + reg + self train 20.52 11.91 2.34 45.94 26.99 6.06 55.90 12.04 22.71

Table 2: Situation prediction results on the rare portion imSitu development set. The results are divided by models which were only trained

on imSitu data, rows 1-5, and models which use web data through semantic data augmentation, marked as +SA in rows 6-8. Models marked

with +reg also include image regression potentials used in the baseline. Semantic data augmentation with the baseline hurts for rare cases.

Semantic augmentation yields larger relative improvement on rare cases and a composition-based model is required to realize these gains.

4 epochs). For self training, we only self train on rare re-

alized frames (those 10 or fewer times in imSitu train set).

Self training yielded diminishing gains after two iterations

and we ran the first iteration at k=10 and the second at k=20.

Evaluation We use the standard data split for imSitu[44]

with 75k train, 25k development, and 25k test images. We

follow the evaluation setup defined for imSitu, evaluating

verb predictions (verb) and semantic role-value pair predic-

tions (value) and full structure correctness (value-all). We

report accuracy at top-1, top-5 and given the ground truth

verb and the average across all measures (mean). We also

report performance for examples requiring rare (10 or fewer

examples in the imSitu training set) predictions.

5. Results

Compositional Tensor Potential Our results on the full

imSitu dev set are presented in Table 1 in rows 1-5. Over-

all results demonstrate that adding a noun potential (row

2) and our baseline composition model (row 3) are ineffec-

tive and perform worse than the baseline CRF (row 1). We

hypothesize that systematic variation in object appearance

between roles is challenging for these models. Our tensor

composition model (row 4) is able to better capture such

variation and effectively share information among nouns,

reflected by improvements in value and value-all accuracy

given ground truth verbs while maintaining high top-1 and

top-5 verb accuracy. However, as expected, many situations

cannot be predicted only compositionally based on nouns

(consider that a horse sleeping looks very different than a

horse swimming and nothing like a person sleeping). Com-

bination of the image regression potential and our tensor

composition potential (row 5) yields the best performance,

indicating they are modeling complementary aspects of the

problem. Our final model (row 5) only trained on imSitu

data outperforms the baseline on every measure, improving

over 1.70 points overall.

Results on the rare portion of the imSitu dataset are pre-

sented in Table 2 in rows 1-5. Our final model (row 5) pro-

vides the best overall performance (mean column) on rare

cases among models trained only on imSitu data, improving

by 0.64 points on average. All models struggle to get cor-

rectly entire structures (value-all columns), indicating rare

predictions are extremely hard to get completely correct

while the baseline model which only uses image regression

potentials performs the best. We hypothesize that image

regression potentials may allow the model to more easily

coordinate predictions across roles simultaneously because

role-noun combinations that always co-occur will always

have the same set of regression weights.
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top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

imSitu
Baseline: Image Regression [44] 32.34 24.64 14.19 58.88 42.76 22.55 65.66 28.96 36.25

Tensor composition + reg 32.96 25.32 14.57 60.12 44.64 24.00 69.2 32.97 37.97

+ SA
Baseline : Image Regression 32.3 24.95 14.77 59.52 44.08 23.99 67.82 31.46 37.36

Tensor composition + reg + self train 34.12 26.45 15.51 62.59 46.88 25.46 70.44 34.38 39.48

Table 3: Situation prediction results on the full imSitu test set. Models were run exactly once on the test set. General trends are identical

to experiments run on development set.

top-1 predicted verb top-5 predicted verbs ground truth verbs

verb value value-all verb value value-all value value-all mean

imSitu
Baseline: Image Regression [44] 20.61 11.79 3.07 44.75 24.85 5.98 50.37 9.31 21.34

Tensor composition + reg 19.96 11.57 2.30 44.89 25.26 4.87 53.39 10.15 21.55

+ SA
Baseline : Image Regression 19.46 11.15 2.13 43.52 24.14 4.65 51.21 8.26 20.57

Tensor composition + reg + self train 20.32 11.87 2.52 47.07 27.50 6.35 55.72 12.28 22.95

Table 4: Situation prediction results on the rare portion of imSitu test set. Models were run exactly once on the test set. General trends

established on the development set are supported.

Semantic Data Augmentation Our results on the full im-

Situ development set are presented in Table 1 in rows 6-

8. Overall results indicate that semantic data augmentation

helps all models, while our tensor model (row 7) benefits

more than the baseline (row 6). Self training improves the

tensor model slightly (row 8), making it perform better on

top-1 and top-5 predictions but hurting performance given

gold verbs. On average, our final model outperforms the

baseline CRF trained on identical data by 2.04 points.

Results on the rare portion of the imSitu dataset are pre-

sented in Table 2 in rows 6-8. Surprisingly, on rare cases se-

mantic augmentation hurts the baseline CRF (line 6). Rare

instance image search results are extremely noisy. On close

inspection, many of the returned results do not contain the

target activity at all but instead contain target nouns. We

hypothesize that without an effective global noun represen-

tation, the baseline CRF cannot extract meaningful infor-

mation from such extra data. On the other hand, our tensor

model (line 7) improves on these rare cases overall and with

self training improves further (line 8).

Overall Results Experiments show that (a) our tensor

model is able perform better in comparable data settings,

(b) our semantic augmentation techniques largely benefit all

models, and (c) our tensor model benefits more from seman-

tic augmentation. We also present our full performance on

top-5 verb across all numbers of samples in Figure 5. While

our compositional CRF with semantic augmentation outper-

forms the baseline CRF, both models continue to struggle on

uncommon cases. Our techniques seem to give most bene-

fit for examples requiring predictions of structures seen be-

tween 5 and 35 times, while providing somewhat less bene-

fit to even rarer ones. It is challenging future work to make

further improvements for extremely rare outputs.

We also evaluated our models on the imSitu test set ex-

actly once. The results are summarized in Table 3 for the

full imSitu test set and in Table 4 for the rare portion. Gen-
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Figure 5: Top-5 verb accuracy on the imSitu development set.

Our final compositional CRF with semantic data augmentation

outperforms the baseline CRF on rare cases (fewer than 10 train-

ing examples), but both models continue to struggle with semantic

sparsity. For our final model, the largest improvement relative to

the baseline are for cases with 5-35 examples on the training set.

eral trends established on the imSitu dev set are supported.

We provide examples in Figure 6 of predictions our final

system made on rare examples from the development set.

6. Related Work

Learning to cope with semantic sparsity is closely related

to zero-shot or k-shot learning. Attribute-based learning

[24, 25, 12], cross-modal transfer [39, 28, 15, 26] and using

text priors [32, 18] have all been proposed but they study

classification or other simplified settings. For the structured

case, image captioning models [45, 22, 7, 11, 33, 20, 35, 31]

have been observed to suffer from a lack of diversity and

generalization [42]. Recent efforts to gain insight on such

issues extract subject-verb-object (SVO) triplets from cap-

tions and count prediction failures on rare tuples [3]. Our

use of imSitu to study semantic sparsity circumvents the

need for intermediate processing of captions and general-
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Figure 6: Output from our final model on development examples containing rare role-noun pairs. The first row contains examples where

the model correctly predicts the entire structures in the top-5 (top-5, value-all). We highlight the particular role-noun pairs that make the

examples rare with a yellow box and put the number occurrences of it in the imSitu training set. The second row contains examples where

the verb was correctly predicted in the top-5 but not all the values were predicted correctly. We highlight incorrect predictions in red. Many

such predictions occur zero times in the training set (ex. the third image on the second row). All systems struggle with such cases.

izes to verbs with more than two arguments.

Compositional models have been explored in a number

of applications in natural language processing, such as sen-

timent analysis [41], dependency parsing [27], text simi-

larity [4], and visual question answering [1] as effective

tools for combining natural language elements for predic-

tion. Recently, bilinear pooling [30] and compact bilinear

pooling [16] have been proposed as second-order feature

representations for tasks such as fine grained recognition

and visual question answer. We build on such methods,

using low dimensional embeddings of semantic units and

expressive outer product computations.

Using the web as a resource for image understand-

ing has been studied through NEIL [6], a system which

continuously queries for concepts discovered in text, and

Levan [10], which can create detectors from user speci-

fied queries. Web supervision has also been explored for

pretraining convolutional neural networks [5] or for fine-

grained bird classification [5] and common sense reason-

ing [38]. Yet we are the first to explore the connection

between semantic sparsity and language for automatically

generating queries for semantic web augmentation and we

are able to show improvement on a large scale, fully super-

vised structured prediction task.

7. Conclusion

We studied situation recognition, a prototypical instance

of a structured classification problem with significant se-

mantic sparsity. Despite the fact that the vast majority of

the possible output configurations are rarely observed in

the training data, we showed it was possible in introduce

new compositional models that effectively share examples

among required outputs and semantic data augmentation

techniques that significantly improved performance. In the

future, it will be important to introduce similar techniques

for related problems with semantic sparsity and generalize

these ideas to the zero-shot learning.
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