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Abstract

In this paper, a self-learning approach is proposed

towards solving scene-specific pedestrian detection prob-

lem without any human’ annotation involved. The self-

learning approach is deployed as progressive steps of object

discovery, object enforcement, and label propagation. In

the learning procedure, object locations in each frame are

treated as latent variables that are solved with a progressive

latent model (PLM). Compared with conventional latent

models, the proposed PLM incorporates a spatial regu-

larization term to reduce ambiguities in object proposals

and to enforce object localization, and also a graph-based

label propagation to discover harder instances in adjacent

frames. With the difference of convex (DC) objective

functions, PLM can be efficiently optimized with a concave-

convex programming and thus guaranteeing the stability of

self-learning. Extensive experiments demonstrate that even

without annotation the proposed self-learning approach

outperforms weakly supervised learning approaches, while

achieving comparable performance with transfer learning

and fully supervised approaches.

1. Introduction

With widespread use of surveillance cameras, the need

for automatically detecting objects, e.g., pedestrians, has

significantly increased. Recent methods [9, 13, 18, 27]

have achieved encouraging progress for detecting objects

in images. However, their performance in video scenes is

limited for the following reasons: 1) Supervised learning

of detectors for different scenes requires repeated human

effort; 2) Offline-trained detectors usually degrade with

changes in the scene or camera; 3) Scene specific cues

including object resolution, occlusions, and background

structures are not incorporated into the detectors [29].
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Figure 1. Proposed self-learning framework. Given a video

where pedestrians are dominant moving objects, self-learning

progressively constructs a scene-specific detector using object

discovery, object enforcement, and label propagation procedures.

Learning scene-specific detectors, which aims at model-

ing objects in video scenes by incorporating scene-specific

discriminative information, has been increasingly inves-

tigated [19, 25, 31]. To learn scene-specific detectors

with less human supervision, transfer learning and semi-

supervised learning are commonly used [19, 25, 31]. Trans-

fer learning adapts pre-trained detectors to new specific

domains, reduces annotation requirements and improves de-

tector performance [35, 36, 37]. Semi-supervised learning

saves human annotation effort by initially training detectors

with a few annotated examples, and incrementally improv-

ing the detectors by extending the sample domains [11,

25, 41]. However, transfer learning is challenged when

the object appearance in the target domains has significant

differences with that in the source domains; while semi-

supervised models might drift away from the intended aims

given noisy or unrelated samples [25]. Most importantly,

both methods require partial object-level annotations, and

therefore, do not fully eliminate human supervision.

As a promising direction, recent unsupervised video ob-

ject discovery techniques [23, 26, 39] had been significant-

ly improved, which are supposed to break the bottleneck
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of the self-taught learning in practical applications. This

paper discusses the possibility of self-learning pedestrian

detectors in specific and dynamically changing scenes, e.g.,

a city square, to build a pedestrian detection system in a

fully unsupervised manner, given video sequences where

pedestrians are the dominant moving objects and additional

negative images randomly collected from the Web, Fig. 1.

The problem of self-learning is decomposed into three main

components: object discovery, object enforcement, and

label propagation. Object discovery is implemented with a

latent SVM method [43], which outputs coarse models and

annotations by minimizing frame-level classification error.

Object enhancement targets at enforcing object localization

and reducing ambiguity, i.e., discriminate object parts with

the objects themselves, by leveraging spatial regularization

objective. Label propagation optimizes a graph-based

objective function to gradually discover harder-positive

instances in frames. It also enables the self-learning frame-

work to find complex sample domains, e.g., a manifold s-

pace comprising multi-posture and multi-view objects [42].

The three procedures are formulated in a progressive latent

model (PLM) with difference of convex (DC) objective

functions, which are efficiently optimized with concave-

convex programming in a progressive manner.

The main contributions of this paper consist of: (1)

A self-learning pedestrian detection framework, which is

deployed as iterative procedures of object discovery, object

enforcement and label propagation, posing a new direc-

tion in the field of (unsupervised) object detection; (2)

A progressive latent model (PLM), which uses spatial-

temporal regularization to reduce ambiguity of samples, as

well as addressing the stability of self-learning; and (3)

Extensive experiments on PETS2009, Towncenter, PNN-

Parking-Lot2/Pizza, CUHK Square, and 24-Hours datasets

verify the performance of the proposed approach.

2. Related Works

Pedestrian detection using supervised methods has been

extensively investigated [4, 10, 21, 32, 42, 45]. This

work, however, is more related to scene-specific detection

using transfer learning, online learning, weakly supervised

learning, and unsupervised object discovery.

Transfer learning: The motivation behind transfer

learning is that contexts and object distributions in target

domains might be leveraged to improve the performance of

pre-trained detectors in source domains. Researchers have

explored context cues [35, 37], confidence propagation

[37, 44], and virtual-real world adaptation [33] to realize

smooth transfer. Gaussian process regression [40] and

super-pixel region clustering [29] have been explored to

select “safe” samples in target domains. Large margin

embedding [22] and transductive multi-view embedding

[15] have been explored to expand detector horizons.

Researchers have also been using domain adaptation to

construct a self-learning-camera [16].

Transfer learning can obviously reduce human anno-

tations. Nevertheless, it suffers from the concept gap

problem, i.e., the major differences of object appearance,

viewpoint, and illumination between source and target

domains. When the gap is significant, the adaptation of

pre-trained models becomes non-smooth or infeasible. By

contrast, self-learning initializes and improves detectors

in the same scenes, naturally avoiding the concept gap

problem.

Online/semi-supervised learning: Online learning and

semi-supervised learning improves scene-specific detectors

by taking advantage of the continuous incoming data stream

from the target domains. Classical detection-by-tracking

(DBT) [1, 24] initializes the system using offline trained

detectors and leverages temporal cues to extend sample

domains and cancel detection errors. Tracking-Learning-

Detection (TLD) [20] initializes the system with a single

sample, and uses tracking and online learning to boost

detectors. Despite the popularity of DBT and TLD ap-

proaches, recent studies [25] demonstrated that the simple

combination of detection with tracking might introduce

poor detectors because the errors from both detection and

tracking could be amplified in a coupled system. A P-N

expert [20] is used in TLD to control precision and recall

rates, guaranteeing the learning stability as a linear dynamic

system. The learning stability of our approach can also

be guaranteed as the difference of convex (DC) objective

functions of PLM converge at each learning iteration.

Weakly supervised learning: The inputs of WSL are

image/video level tags (object category), and the algorithm

discovers objects when learning detectors [23, 30]. A

general assumption behind WSL is that objects of the same

category are from a potential cluster while the backgrounds

are diverse. Under such an assumption, clustering [8, 34],

tracking [23], boosting [38], region matching [6], graph

labeling [30], and multi-instance learning [7, 28] are

used to find the correspondence of objects, depress the

backgrounds and learn detectors.

WSL alternates between sample labeling and detector

learning in a way similar to Expectation Maximization

optimization. Due to the missing annotations, however,

this optimization is non-convex and therefore prone to

getting stuck in a local minimum and outputting wrong

labelings [3]. Cinbis et al. [7] use a multi-fold splitting

of the training set while Bilen et al. [3] use convex

clustering to prevent getting stuck to wrong labels. This

work alleviates the local optima problem with a more

reasonable way by introducing regularization terms about

domain knowledge, i.e., intra-frame hard-negative mining

and inter-frame similarity propagation.

Unsupervised video object discovery: An early ap-
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proach developed in [38] learns scene-specific object de-

tector by online boosting of part detectors, but it requires

general seed detectors learned offline. Recent research

[23, 39] formulates unsupervised video object discovery

as a combination of two complementary steps: discovery

and tracking. The first step establishes correspondences

between prominent regions across video frames, and the

second step associates successive similar object regions

within the same video. Xiao et al. [39] propose a fully

unsupervised video object proposal approach which first

discovers a set of easy-to-group instances by clustering and

then updates its appearance model to gradually detect hard-

er instances by the initial detector and temporal consistency.

This unsupervised approach can automatically generate

object proposals, but cannot output precise detections.

3. Proposed Self-learning Framework

In the supervised object detection setting, the locations

of training samples would simply be given, while in self-

learning, the annotations of object locations are not avail-

able. The primary objective of self-learning is guiding the

missing annotations to a solution that disentangles object

samples from noisy object proposals, as shown in Fig. 2.

3.1. Progressive Latent Model

Modeling: The self-learning framework is decomposed

into three basic procedures: object discovery, object en-

hancement, and label propagation. Given a set of object

proposals that have salient object-like appearance and mo-

tion, Fig. 2a and Fig. 2b, the object discovery step aims

to find object windows from video frames that best dis-

criminates positive video frames from the negative images.

The object enhancement discovers hard negatives that help

reducing falsely localized object parts, as well as improving

object localization. The label propagation step mines harder

instances of the corresponding object and throughout the

entire video, Fig. 2c and Fig. 2d. The three procedures

iterate until an error rate based stability criteria is met.

Let x ∈ X denotes a video frame or a negative image,

y ∈ Y,Y = {0, 1} are labels denoting if x contains a

pedestrian object. y = 1 indicates that there is at least

one pedestrian in the frame while y = 0 indicates a frame

without pedestrian object or a negative image. The self-

learning is formulated with a multi-objective function that

targets at jointly determining the latent object h and a latent

model β in a progressive optimized procedure,

{h∗, β∗} = min
β,h

F(X ,Y)(β, h)

= min
β,h

Fl(β, h)− λFs(β) + γFg(β, h),
(1)

(a) (b)

(d)(c)

Figure 2. Object discovery from noisy proposals. (a) The score

map in the first learning iteration and (b) candidate objects (red

boxes) discovered. (c) The score map and in the fifth learning

iteration. (d) Candidate objects (red boxes) and hard negatives

(yellow boxes). (Best viewed in color.)

where Fl(β, h), Fs(β) and Fg(β, h)
∗, as defined below,

are the objectives for object discovery, spatial regularization

and score propagation respectively. λ and γ are regulariza-

tion factors.

Object Discovery: The object discovery procedure is

implemented with a latent SVM (LSVM) model to choose

object proposals that best discriminate positive frames from

negative images,

{y∗, h∗, β∗} = argmax
y∈Y,h∈H,β

βT · v (x, y, h) , (2)

where v(x, y, h) denotes a normalized feature vector, i.e.,

HOG features. H denotes the set of object proposals,

made up of proposals Hi, i = 1, ..., N from video frames.

Basically, solving Eq. 2 produces a high score βT ·v(x, y, h)
for each positive frame (y = 1) and a low score for each

negative image (y = 0). Concretely, we learn the model

β on a collection of video frames and negative images

X = {(xi, yi), i = 1, ..., N} with

min
β,h

Fl(β, h) = min
β,h

1

2
||β||2 + C

N∑

i=1

l(β, xi, yi, h), (3)

where C is a regularization factor and l is a difference-

convex loss function defined as

l(β, xi, yi, h) =max
y,h

(
βT · v(xi, y, h) + ∆(yi, y)

)

−max
h

βT · v(xi, yi, h),
(4)

where ∆(yi, y) = 0 if y = yi, and 1 otherwise. Eqs. 3 and

4 target at choosing and discriminating the highest scoring

∗(X ,Y) is omitted for short.
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proposals h from the other configurations, defining a max-

margin formulation to measure the mismatch between the

image, label, and proposals.

Object Enforcement: The object discovery procedure

aims at optimizing the image-level classification instead

of the sample-level classification. Once the classification

objective function is optimized, whether or not the sample-

level classification is optimized, the learning procedure

stops [43]. Considering that all positive images contain the

object parts but none of negative images does, LSVM could

falsely select object parts as positive samples since Eq. 3 is

non-convex and is easy to get stuck to local minimum.

Motivated by the success of hard negative mining [17],

we propose using spatial regularization to enforce the lo-

calization of objects and the model. Denoting by Hi

object proposals in frame i and h′ the hard negatives

corresponding to an object h in a video frame, we define

a function to maximize the distance between the potential

object and its spatial neighbors,

max
β

Fs(β)=
N∑

i=1

∑

h∈Hi
h′∈ΩHi,h

||βT ·
(
v(xi, h)−v(xi, h

′)
)
||2,

(5)

where ΩHi,h denote the spatial neighbors of h in Hi. The s-

patial neighbors are high score object parts and surrounding

image patches that have IoU (Intersection of Union) with h

in the interval (0.0 0.25). Eq. 5 optimizes the model β using

fixed h, and thus is a convex regularization function. Such a

function enforces the latent model, yielding a consistent and

significant boosts in object localization with a progressive

learning procedure.

Label Propagation: The object discovery procedure

outputs only one sample for each frame. To mine more

positives and negatives, we propose using the inter-frame

label propagation for incremental learning.

Suppose there are l labeled samples from previous learn-

ing iterations. We select u = l × (r − 1.0) high-scored

proposals as unlabeled samples, where r > 1.0 is the

learning rate, related to the expected density of pedestrians.

Given labeled samples {hi}, i = 1, ..., l, and unlabeled

proposals {hj}, j = l, ..., l + u, a kNN graph in the

feature space is first constructed. The graph vertex defines

the nearest neighbor vertices of samples. hi and hj are

connected if one of them is among the others kNN [46].

The graph-based label propagation procedure is defined as

g(β, hj) =
∑l

k=l
wjkg(β,hk)∑
l
k=l

wjk
, j = l+1, ..., l+ u, where wik

denotes the edge weight defined with a Gaussian Function

on Euclidean distance between hi and hk. This is equivalent

to a convex optimal problem [46],

min
g(β,h)

Fg(β, h) = min
g(β,h)

l∑

i=1

l+u∑

j=l

wij

(
g(β, hi)− g(β, hj)

)2

s.t. g(β, hi) = yi, i = 1, ..., l,
(6)

where g(β, hj) is the propagated score of proposal hj and

yi is the label of the frame/image that hi belongs to.

Progressive Optimization: In the learning procedure,

the optimization of Fs(β) (object enforcement) and

Fg(β, h) (label propagation) depends on the results of

Fl(β, h). Eq. 1 is thus a progressive model, where Fl ,

Fs and Fg are alternatively optimized. According to Eq.

4, Fl could be written as A(x) − B(x) and F could be

written as A(x) − B(x) + C(x) − D(x). This means that

the objective functions of Eq. 1 could be written as the

difference of convex functions. This allows us to optimize

it with a two-step Concave-Convex Procedure (CCCP)

[43]. The first-step CCCP for Fl discovers potential

pedestrian objects in frames and initializes the latent

model, the second-step CCCP for γFg − λFs performs

object enforcement and label propagation. The two-steps

CCCP progressively optimizes the PLM until the change

of the estimated sample error rate is negligible. CCCP

algorithms guarantee the optimization with difference of

convex objective functions converges to a local minimum

or saddle point [43]. Therefore, iterative usage of the

two-steps CCCP algorithm and keeping the decreasing of

the sample error rates (discussed in Sec. 3.3) can guarantee

the stability of self-learning.

3.2. Selflearning a Detector

With the proposed PLM, a self-learning approach is

implemented as described in Fig. 3. The proposal gener-

ation component localizes potential objects using object-

ness, motion, and appearance cues. The proposal ranking

component chooses the high-ranked proposals as positive

candidates, and low-ranked proposals as negatives. The

proposal tracking component helps in finding proposals in

successive video frames. The PLM identifies positives and

hard negatives from given proposals. With mined positive

samples, a DPM detector fβ(h) is trained to perform

pedestrian detection.

Given a video of static background, a motion score

map is calculated for each video frame with a background

modeling algorithm. On the motion score map, detection

proposals (as shown in Fig. 2b) are extracted using the

EdgeBoxes approach [47], according to which edge maps

are computed first, and contours, i.e., edge groups, are

obtained by aggregating high affinity edges. On the con-

tours, the regions of high confidence are extracted as object

proposals using a sliding window strategy in locations,

scales, and aspect ratios. From the second iteration, with
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Figure 3. Block diagram of the proposed self-learning approach

an initialized detector, a sliding window strategy is used to

generated object proposals, as shown in Fig. 2d. To extend

the proposals in the temporal domain, a KLT tracking

algorithm is employed to track and collect proposals from

frame t to frame t+ τ , where τ is empirically set to

10. Before feeding these spatial-temporal proposals to the

learning algorithm, their aspect ratios are normalized to the

average aspect ratio. To prevent falsely choosing static

backgrounds in videos of sparse pedestrians, the average

background probability of a proposal is required to be larger

than a threshold, empirically set to 0.20 in our experiments.

We propose using a combinatorial score, i.e., f(h) =
αT · (fβ(h), fm(h), fo(h)), to choose high-ranked propos-

als, where αT is a ranking weight vector. fβ(x), fm(h)
and fo(h), respectively, are the detection, motion, and

objectness scores. The motion score fm(h) of a proposal

is defined as the averaged motion scores of all pixels in

its image region. Objectness score fo(h) is defined by

calculating contours in the proposal regions [47]. A

larger score gives higher confidence that the proposal is

an object. Detection score fβ(h) is calculated from the

second learning iteration, by the learned detector. From

this iteration, the proposal region centers are set as root

locations, around which we use sliding window to localize

proposals.

In each learning iteration, the ranking weight vector αT

is updated using a zero-space regression method [5], which

performs learning without using output values. It basically

minimizes the regression error of all samples, as well as

maximizing the distance from a hyperplane to the origin.

This results in a weight vector which captures regions in the

input sample space where the probability density of the data

is found, and enables the proposal ranking to be adaptive.

3.3. Error Rate Discussion

PLM incorporates a label propagation procedure, which

iteratively introduces new samples and updates the model.

In this procedure, the primary problems to be solved are

avoiding model drift and reducing the error rate. Eq. 6

implies that a larger γ value introduces more newly labeled

samples, as well as a larger error rate ξ, and vice versa.

The number of newly labeled samples u is determined to

be an implicit function of γ, u(γ). The value of γ needs

to essentially guarantee that the error rate of newly labeled

samples is smaller than that of existing samples, meaning

the error rate of the training set is monotonically non-

increased. It is also expected that there is a large γ, which

implies that more samples could be labeled in each iteration.

To decide the value of γ, an optimization objective function

is defined:

max
γ,β,yj

γ

s.t. ξu(γ) ≤ ξl

≅
1

l + u(γ)

l+u(λ)∑

j=1

(fβ(hj)− ỹj) ≤
1

l

l∑

i=1

(fβ(hi)− ỹi),

(7)

where l and u(γ), respectively, denote the numbers of la-

beled samples in previous iterations and unlabeled samples

in current iteration.

The optimization of Eq. 7 guarantees that the estimated

error rate of newly labeled samples ξu(γ) is smaller than that

of labeled samples ξl by finding a proper γ in each learning

iteration. γ is optimized with a linear searching algorithm

[12], which searches in the interval [0.0, 1.0] with step size

0.1 and updates fβ(hj) to f
β̃
(hj) at each step. Meanwhile,

ỹj is estimated with ỹj = f
β̃
(·), with which the error rate

ξu(γ) is calculated.

4. Experiments

4.1. Datasets and Performance Metrics

The proposed approach is evaluated on five real-world

datasets (six sequences) captured with surveillance cam-

eras. The datasets involve challenges from object occlu-

sions, low resolution, and/or moving distractors.

PETS2009 [14]: A crowded video sequence captured in a

public space, with 720×576 resolution.

Towncenter [2]: A moderately crowded video sequence of

a town center, with 1920×1080 resolution.

PNN-Parking-Lot2/Pizza [29]: Moderately crowded

video sequences including groups of pedestrians walking in

queues with complex motion and similar appearance, with

1920×1080 resolution. It is challenging due to the large

amounts of pose variations and occlusions.

CUHK Square [37]: A 60-minutes long video of sparse

pedestrians and other moving distractors, e.g., moving

vehicles. The resolution of the video is 704×576. The

resolution of pedestrian objects is much lower than those

of other datasets. As the camera has an approximately 45-

degree bird-view, objects have perspective deformation.

24Hours: A 24-hours long video of sparse/dense pedes-

trians, 24-hour illumination change and other moving dis-

tractors, e.g., moving vehicles, which allows to asses model
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Figure 4. Model effect.

drift. The resolution of the video is 704×576. 6000 frames

were uniformly sampled from the long video for learning

and 2600 frames for testing.

For all datasets except the 24Hours, half of the video

frames are used for learning while the other annotated

frames are used for testing. The proposed approach is

evaluated and compared against the following supervised

learning, transfer learning, and weakly supervised learning

approaches.

Offline-DPM [13]: A DPM detector off-line trained on the

PASCAL VOC person class.

Supervised-DPM: A supervised DPM detector trained

with human annotated samples on specific scenes and

additional negative samples mined from negative images.

Supervised-SLSV [19]: A state-of-the-art scene-specific

pedestrian detector learned from virtual pedestrians whose

appearance is simulated in the specific scene under consid-

eration. Without public available source code, SLSV is only

compared on the Towncenter dataset using author reported

results.

Transfer-DPM [29]: A scene-specific detection approach

based on transfer learning. Detections are originally ob-

tained with a DPM detector off-line trained using PASCAL

VOC person class and then improved using super-pixel

based clustering and classification.

Transfer-SSPD [37]: A state-of-the-art scene-specific

pedestrian detector with transfer learning.

Weakly-MIL [7]: A widely used weakly supervised ap-

proach based on multi-instance learning. A DPM learner is

then learned from annotated positive samples.

4.2. Model Effect

In Fig. 4a and Fig. 4b, we respectively evaluate the ef-

fects of object enforcement and label propagation, showing

that the PLM is more effective than the LSVM model.

Object enforcement: Considering that the objective

function in Eq. 3 is non-convex, learning tends to get stuck

into local minimum in the optimization procedure. By using

the object enforcement procedure, Eq. 5, the performance

of the learned detector significantly improved, Fig. 5a. The

reason is that pedestrians are more precisely localised and
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Figure 5. Learning stability. (a) Monotonical decrease of sample

error rates. (b) Evolution of proposal ranking weights.

Table 1. Label propagation parameters on different datasets.

Dataset PETS Towncenter PNN CUHK 24Hours

γ 0.50 0.70 0.60 0.30 0.30

most falsely detected object parts are depressed. Given

the 0.7 recall rate, the precision improved more than 10%

when using such a regularization term, which shows that

the convex objective function does help the non-convex

optimization to escape from poor local minimum.

Label propagation: Combined with the proposal rank-

ing strategy, label propagation can incrementally annotate

pedestrian samples without supervision. Fig. 5b clearly

shows that the detection model is iteratively improved,

showing the effectiveness of the graph-prorogation based

incremental learning. After tens of iterations of learning,

no additional positives are labeled and the performance is

observed to be stable.

Stability: Fig. 5a shows that the error rates of labeled

training samples basically monotonically decreased, show-

ing the stability of the proposed self-learning approach. Fig.

5b shows the evolution of proposal ranking weights in the

learning procedure of the PETS2009 dataset. The weight

for the objectness score quickly decays to zero, which

implies that the objectness score is not as discriminative

as the detection and the motion scores. The weight for

the detection score keeps increasing in learning, which

indicates that the detector is progressively improved. The

weight for motion cue decreases to a value that is similar to

the detection cue, which implies that the motion feature is

also discriminative.

Tab. 4.2 shows the largest γ values for the four datasets.

γ of the Towncenter dataset is the largest, while γ of the

CUHK dataset is the smallest. Larger γ implies that the

object proposals have fewer noises. The Towncenter dataset

is a video with little illumination variance and few moving

distracters, and therefore use a larger γ. The CUHK and

24Hours datasets have many moving distracters, so they

need a smaller γ.
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Figure 6. Performance of our approach and comparisons with

weakly supervised, supervised, and transfer learning approaches.

On five datasets the Precision-Recall metric is adopted to evaluate

the approach and compare it with other approaches. On the CUHK

dataset the FPPI-Recall metric is adopted, consistent with the

state-of-the-art scene-specific detection approach [37].

4.3. Performance

The PR and FR curves in Fig. 7 show that our ap-

proach significantly outperforms the off-line learned DPM

detector on all datasets. It also significantly outperforms

the Weakly-MIL approach. On the PETS2009 and PNN-

Parking-Lot2 datasets, our approach outperforms all of the

compared approaches. On the CUHK dataset our approach

significantly outperforms the scene-specific approach with

transfer learning [37], which reports the state-of-the-art

performance on this dataset. It is even comparable to the

supervised learning approach (Supervised-DPM). On the

Towncenter dataset, our approach outperforms the MIL

approach as well. However, it shows lower performance

than the fully supervised approach SLSV [19] and the

transfer learning approach [29]. The reason could be that

the pedestrians in that video scene are sparse, thus our

approach could not label sufficient positive samples. It

should be stressed once again that our proposed approach

does not use any annotated training sample.

On the 24Hours dataset, the AP (average precision) of

our approach is highest among all compared approaches,

Fig. 7e. It is about 6% higher than the transfer learning

method, validating our previous analysis: transfer learning

suffers from the concept gap problem, e.g., adapt a model

trained on day-time captured images to a video sequence of

24-hours illumination changes. By contrast, the proposed

self-learning approach just applies the learned detectors

from the same scenes, naturally avoiding the concept gap

problem. More surprisingly, using additional motion cues,

the proposed approach outperforms the fully supervised

approaches in this dataset.

In Fig. 7, we use key frames in each row to illustrate

the incremental learning procedure. It can be seen that

the positive samples are incrementally labeled and noise

samples are reduced. On the crowded PES2009 dataset

and the PNN-Pizza dataset of significant occlusions our

approach accurately labels samples, demonstrating that the

learned detector has incorporated scene-specific discrimina-

tive information. On the Towncenter and CUHK dataset-

s, although there exist moving distractors, e.g., bicycles

and vehicles, the proposed approach correctly localize the

pedestrians, demonstrating its robustness in noisy envi-

ronments. In the 24Hours dataset, some video frames

have dense pedestrians (daytime) but others have sparse

pedestrians (at night). Learning from the early morning to

the middle of the night, our approach could progressively

improve its performance, without model drift. In the

last column of Fig. 7, the detection results show that the

learned scene-specific detectors are discriminative, showing

robustness to occlusions, low resolution, and appearance

variations. In Fig. 8, it can be seen that the self-learning

approach is adaptive to view variance and 24-hours illumi-

nation changes, but transfer leaning suffers from those.

5. Conclusions

Supervised learning of detectors for all scenes requires

significant human effort on sample annotation. Commonly

used transfer learning and semi-supervised learning do not

eliminate human supervision, as they require partial object-

level annotations. We show that by leveraging extremely

weakly annotated video data, it is possible to automatically

learn customized pedestrian detectors for specific scenes. A

new progressive latent model is proposed by incorporating

discriminative and incremental functions. A self-learning

approach is implemented by optimizing the model over

spatio-temporal proposals. Experiments demonstrated that

the self-learned detectors are comparable to supervised

ones, taking a step towards self-learning cameras [16].
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Pets2009 (crowd)

Towncenter (moving distracters)

PNN-Parking-Lots2

PNN-Pizza(crowd)

CUHK Square (low resolution video with moving distracters)

24Hours(long video with moving distracters))

Figure 7. Illustration of learning and detection. First three columns: score maps in the first, firth and tenth learning iterations, respectively.

Fourth column: annotated positive samples (red boxes). Last column: detection examples in the test sets. (Best viewed in color)

Our proposed self-learning approach The transfer-learning approach

Figure 8. Detection results on 24Hours dataset. The self-learning detection correctly detects all pedestrians from the daytime (left) and

night (right), but transfer learning has missed and false detections.
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