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Abstract

We propose a simple but effective tracking-by-segmen-

tation algorithm using Absorbing Markov Chain (AMC) on

superpixel segmentation, where target state is estimated by

a combination of bottom-up and top-down approaches, and

target segmentation is propagated to subsequent frames in

a recursive manner. Our algorithm constructs a graph for

AMC using the superpixels identified in two consecutive

frames, where background superpixels in the previous frame

correspond to absorbing vertices while all other superpix-

els create transient ones. The weight of each edge depends

on the similarity of scores in the end superpixels, which are

learned by support vector regression. Once graph construc-

tion is completed, target segmentation is estimated using the

absorption time of each superpixel. The proposed track-

ing algorithm achieves substantially improved performance

compared to the state-of-the-art segmentation-based track-

ing techniques in multiple challenging datasets.

1. Introduction

Visual tracking is a traditional topic in computer vision,

but remains as a challenging task since target appearances

involve significant variations and high-level scene under-

standing is often required to handle exceptions. Tracking-

by-detection [14, 2, 4, 20, 16, 42] is one of the common

strategies to deal with these challenges. However, they

typically depend on bounding boxes for target representa-

tions, and often suffer from drifting problem when a target

involves substantial non-rigid or articulated motions. Re-

cently, segmentation-based tracking algorithms have been

investigated actively [3, 13, 6, 10, 34], but most of them

rely only on pixel-level information that is not sufficient to

model semantic structure of target, or utilize external seg-

mentation algorithms such as Grabcut [33]. Compared to

the information from bounding boxes or pixels, mid-level

cues such as superpixels may be effective to model both

feature- and semantic-level information of target.

Superpixels have been used for various computer vision

tasks, e.g., object segmentation and recognition [31, 12, 28,

8, 32], background subtraction [24], and multi-target track-

ing [26, 29] due to its effectiveness in representation based

on mid-level cues. In addition, the use of superpixels greatly

reduces the complexity of sophisticated image processing

and computer vision tasks since the number of superpixels

is much smaller than the number of pixels obviously.

Visual tracking techniques often employ superpixels.

Segmentation-based tracking algorithms relying on super-

pixels have been proposed to handle non-rigid and de-

formable targets [36, 37, 18, 40]. Wang et al. [36] uses su-

perpixels for discriminative appearance modeling by mean-

shift clustering, and they incorporate particle filtering to

find the optimal target state. Instead of representing each

object with a single holistic model, dynamic Bayesian net-

work tracking [37] adopts a superpixel-based constellation

model to deal with non-rigid deformations. However, since

both methods categorize each superpixel into foreground

or background independently based on low-level features,

semantic relations between superpixels are not considered

properly for segmentation. To overcome the limitation in-

duced from the flat representations, Hong et al. [18] pro-

posed a tracking method based on a hierarchical appear-

ance representation using multiple quantization levels such

as pixel, superpixel and bounding box. Xiao et al. [40] also

presented a dynamic multi-level appearance modeling tech-

nique for tracking, which maintains an adaptive clustered

decision tree using the information obtained from three dif-

ferent levels—pixel, superpixel, and bounding box. Re-

cently, a tracking-by-segmentation algorithm that combines

the information from pixels with bounding boxes has been

proposed [34]. Note that [34, 18] require an external seg-

mentation technique such as Grabcut [33].

We propose a novel tracking-by-segmentation frame-

work using Absorbing Markov Chain (AMC) on superpixel

segmentation, where the estimated target segmentation is

propagated to subsequent frames in a recursive manner. To

obtain target segmentation in the current frame, we first con-

struct a graph for AMC using the superpixels in the previous

and current frames, where a vertex corresponds to a super-

pixel and the weight of each edge is given by the scores

learned from Support Vector Regression (SVR). Once the

graph is constructed, target segmentation is obtained from
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absorption time of each superpixel in the AMC, and the fi-

nal tracking result is given by identifying connected compo-

nents of superpixels corresponding to target. Our algorithm

naturally estimates target segmentation through AMC on a

graph defined in a spatio-temporal domain.

Our algorithm has several interesting features compared

to the existing methods as summarized below:

• We propose a novel and principled tracking-by-

segmentation framework well-suited for non-rigid and

articulated objects using AMC. Our algorithm obtains

initial segmentation masks as well as target segmenta-

tions naturally within the proposed framework.

• The proposed algorithm distinguishes foreground and

background superpixels accurately based on the scores

from a support vector regressor, which learns discrim-

inative features more efficiently than metric learning.

• Our algorithm outperforms the state-of-the-art tech-

niques substantially in challenging benchmark datasets

for non-rigid and deformable object tracking.

The rest of this paper is organized as follows. We first

review AMC in Section 2, and overview the proposed al-

gorithm in Section 3. Section 4 presents the details about

graph construction for AMC in the proposed algorithm,

and Section 5 describes the procedure of our segmentation-

based tracking. We illustrate experimental results including

comparison with existing methods in Section 6.

2. Absorbing Markov Chain (AMC)

AMC is a specific kind of Markov chain that has at least

one absorbing state, which can be reached from other states

but may not be escaped from once entered since all the

outgoing transition probabilities are zeros. Non-absorbing

states in AMC are referred to as transient states. Each ver-

tex has its absorption time, which is the expected number

of steps from itself to any absorbing state by random walk.

We employ AMC to estimate and propagate target segmen-

tations in a spatio-temporal domain. AMC has been stud-

ied for several computer vision tasks, which include image

matching [7], image segmentation [15], co-activity detec-

tion [41] and saliency detection [19].

Denote a graph for AMC by G = (V,E), where V and

E indicate a set of vertices (states) and edges, respectively.

The vertex set can be further divided into transient and ab-

sorbing vertex sets, denoted by V
T and V

A, respectively,

where Mt = |VT| and Ma = |VA|.
To compute the absorption time of a vertex in an AMC,

we first define the canonical transition matrix as follows:

P =

(

Q R

0 I

)

, (1)

where Q ∈ R
Mt×Mt is the transition probability matrix for

all pairs of transient states and R ∈ R
Mt×Ma contains tran-

sition probabilities from transient states to absorbing states.

Each row in P is normalized to sum to one. All transition

probabilities from absorbing states to transient states are ze-

ros, and all absorbing states only have single edges, which

are self-loops; the corresponding transition submatrices are

given by the zero matrix 0, and the identity matrix I.

Suppose that qTij is the probability of transition from vi ∈

V
T to vj ∈ V

T in T steps. Then, a random walk starting

from vi would visit vj several times before arriving at one

of absorbing states, and the expected number of visits to

each transient node is given by the summation of qTij , where

T ∈ [0,∞). This procedure is simplified even further by a

single matrix inversion as

F =

∞
∑

T=0

QT = (I−Q)−1, (2)

where F is referred to as the fundamental matrix. The ab-

sorption time yi of a random walk from vi is given by the

summation of the elements in the ith row of F.

3. Algorithm Overview

Our tracking algorithm is a combination of the bottom-

up and top-down procedures, and Figure 1 illustrates the

overall framework of the proposed algorithm.

We first construct a graph for AMC using all superpix-

els within the regions of interest in two consecutive frames.

The vertices corresponding to background superpixels in

the previous frame create absorbing states while all other

superpixels are regarded as transient vertices. Edges con-

nect two adjacent superpixels, where motion information is

incorporated to determine temporal adjacency between su-

perpixels in two different frames. The weight of each edge

is given by the similarity of the predicted scores of the end

superpixels, where the score is obtained by learning a sup-

port vector regressor that maximizes differences between

the superpixels with different labels while minimizing dif-

ferences between superpixels with same labels.

In the next step, an initial binary segmentation mask is

identified by simply computing absorption times of tran-

sient vertices in the AMC. Since the initial segmentation

mask may be noisy due to unexpected feature similarity be-

tween foreground and background superpixels and/or po-

tential feature dissimilarity between foreground superpix-

els, we identify the final foreground segment corresponding

to target by extracting multiple connected components of

foreground superpixels within two hops in the AMC graph

and selecting the most similar connected component to the

global target appearance model based on color histogram.

In the first frame, given the target bounding box anno-

tation, we set superpixels outside the bounding box as ab-
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Figure 1: The overall framework of the proposed tracking algorithm. We first identify background superpixels in frame t− 1
and set them as absorbing vertices in AMC. The AMC graph is constructed with two consecutive frames, t− 1 and t, where

inter-frame edges are created by spatial proximity found with motion information. Edge weights are determined by similarity

of connected superpixels in the embedded space, which is learned by SVR using the representations of superpixels. The

final tracking results for segmentation are obtained by evaluating connected components of superpixels based on a holistic

appearance model after thresholding individual vertices using the absorption time.

sorbing vertices and obtain the initial segmentation mask by

thresholding absorption times. Note that we have no inter-

frame edges in the graph corresponding to the first frame.

4. Graph Construction for AMC

This section describes the details about the graph con-

struction procedure for the AMC including discriminative

edge weighting based on support vector regression.

4.1. Graph Topology

A graph for our AMC, G = (V,E), is constructed based

on the superpixels, which correspond to vertices in the

graph. SLIC [1] superpixel segmentation algorithm is in-

corporated to obtain a set of superpixels from the region of

interest (ROI) in each frame. Note that the ROI in the cur-

rent frame is given by an enlarged bounding box surround-

ing the foreground propagated from the segmentation in the

previous frame using optical flows. The formal definitions

of vertices and edges are described below.

Vertices The vertices are divided into two subsets; one

is a transient vertex set and the other is an absorbing vertex

set, which are denoted by V
T and V

A, respectively. All su-

perpixels have corresponding transient vertices in the graph

while background superpixels create absorbing vertices ad-

ditionally. This setting is particularly effective to handle

false negative segments in the previous frame since the mis-

labeled background superpixels can be recovered depending

on the features in the superpixels.

Edges There are two types of edges in the graph: intra-

frame and inter-frame edges. The intra-frame edges connect

the superpixels within 2 hops based on vertex adjacency

in the same frame. A vertex within 1 hop means a direct

neighbor while a vertex within 2 hops indicates a neighbor

of neighbor. If a single superpixel is associated with both

transient and absorbing vertices, they are 1 hop neighbors

to each other. The inter-frame edges connect superpixels in

two consecutive frames based on their temporal adjacency,

which is determined by spatial overlap of superpixels after

warping a superpixel by the motion vectors. We employ

EPPM [5] to obtain pixelwise optical flow.

All edges are bi-directional and have symmetric weights,

except the ones going to the absorbing vertices; such edges

are unidirectional to satisfy the absorbing property. We de-

fine two edge types for convenience; transient edges con-

nect two transient vertices, and the edges from transient ver-

tices to absorbing ones are referred to as absorbing edges.

4.2. Embedding Features using Regression

The weight of each edge is given by the similarity of the

scores associated with individual vertices, which are learned

with features in superpixels. Edge weights between super-

pixels with the same labels should be larger than those be-

tween superpixels with the different labels. Therefore, we

learn contrastive scores, which maximize differences be-

tween foreground and background samples while minimiz-

ing differences between examples with the same labels.

For the purpose, we adopt a support vector regression,

where regressor learns a score by projecting the original fea-

ture of each superpixel onto an embedded space. To train

the regressor, the superpixels within the target segment in

the previous frame and the first frame are treated as fore-

ground examples. Background examples consist of back-

ground superpixels, which do not correspond to the target

in the previous and the first frame, and superpixels at the

ROI boundary in the current frame, which are used to rep-

resent unseen backgrounds. Note that the information from

the first frame is exploited to avoid drift problem.

Let {(x1, y1), . . . , (xn, yn)} denote training dataset,
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where xi ∈ R
d is a feature vector of sample i and yi ∈ R

is the label of each example. Note that the labels are real

numbers conceptually but annotated as either +1 or -1 for

foreground and background samples, respectively, since it is

difficult to provide individual examples with real-numbered

labels in practice. We employ simple features for repre-

senting superpixels, mean colors in LAB space, to learn the

SVR efficiently. Optionally, a feature descriptor from con-

volutional neural network [27] is also used to learn SVR.

Then the objective function is defined as follows:

arg min
w,ξ,ξ̂

1

2
‖w‖2 + C

n
∑

i=1

(ξi + ξ̂i) (3)

s.t. yi − 〈w,Φ(xi)〉 − b ≤ ε+ ξi, ξi ≥ 0,

〈w,Φ(xi)〉+ b− yi ≤ ε+ ξ̂i, ξ̂i ≥ 0,

where C is a constant, and Φ : Rd → R
d∗

(d < d∗) denotes

a nonlinear feature mapping function. We employ a radial

basis function as a kernel,

κ(xi,xj) = 〈Φ(xi),Φ(xj)〉 = exp

(

||xi − xj ||
2

γ2

)

, (4)

for implicit nonlinear feature mapping, where γ is a con-

stant. After training, the regression score of an arbitrary

input xi is given by,

ri = f(xi) = 〈w,Φ(xi)〉. (5)

The weight of an edge is given by the similarity of the

regression scores associated with two end vertices as

wij = exp

(

−
|ri − rj |

σr

)

, (6)

where ri and rj are the regression scores of two adjacent

vertices, vi ∈ V and vj ∈ V, and σr is a constant.

5. Tracking-by-Segmentation using AMC

This section describes the procedure of our tracking-by-

segmentation algorithm, which is mainly about how to com-

bine the bottom-up and top-down estimations for robust tar-

get tracking. We also discuss how to initialize the segmen-

tation at the first frame from the bounding box annotation.

5.1. Segmentation using Modified Absorption Time

The initial target segmentation mask in each frame is ob-

tained by computing modified absorption times in the con-

structed AMC graph and thresholding the absorption times

of transient vertices. To compute the absorption times in the

standard AMC, we typically employ a canonical transition

matrix, P, which is constructed based on the weights of the

edges in the graph given by Eq. (6). However, we slightly

(a) Input Image (b) Ground-truth

(c) πt = 1 and πa = 1 (d) πt = 1 and πa = 5

Figure 2: The impact of the weight adjustment coefficients

on the segmentation results. The coefficient tends to in-

crease discriminativeness of absorption times of foreground

and background superpixels.

adjust the weight to increase discriminativeness of the ab-

sorption times of foreground and background superpixels.

Let qij and rij denote the adjusted edge weights and cor-

respond to the elements of Q and R at (i, j), respectively.

Then, they are given by

qij =
πtwij

∑|V|
l=1

πilwil

and rik =
πawik

∑|V|
l=1

πilwil

, (7)

where vi, vj ∈ V
T, vk ∈ V

A, and

πil =

{

πt, if vl ∈ V
T

πa, if vl ∈ V
A
. (8)

Note that different coefficients are multiplied by the origi-

nal weights depending on the type of edge, πt < πa, which

facilitates fast absorption of a random walk starting from

background superpixels and results in more discriminative

absorption times. Figure 2 illustrates the impact of parame-

ter setting of the coefficients. When the transition probabil-

ity to absorbing and transient nodes are equally weighted,

i.e. πa = πt, background superpixels are often labeled as

foreground as illustrated in Figure 2(c).

Once the transition matrix is constructed based on the

adjusted edge weights, we compute the absorption time of

each superpixel using the fundamental matrix in Eq. (2).

However, instead of the standard absorption time, we em-

ploy a modified version, which is the expected number of

visits at the vertices corresponding to the foreground in the

previous frame, for classification between foreground and

background superpixels. The modified absorption time is

formally defined as

ynew
i =

∑

vj∈VF

t−1

fij , (9)
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(a) (b)

(c) (d)

Figure 3: Comparison of segmentation results with the orig-

inal and the modified absorption times: (a) input image, (b)

ground-truth, (c) result with the original absorption time,

and (d) result with the modified absorption time.

where VF

t−1
is a set of vertices corresponding to foreground

superpixels in frame t − 1. The original absorption time

computes the time spent on every transient vertex until a

random walk reaches any absorbing vertex. In this formu-

lation, the superpixels corresponding to the unseen back-

grounds often have the large absorption times. The impact

of the modified absorption time is demonstrated in Figure 3,

where our modified absorption time is more effective to

handle unseen background regions. Note that the threshold

for classification is given by the average absorption time of

the all transient vertices within the ROI in the current frame.

5.2. Target Detection by Global Appearance Model

The target segmentation mask generated by the pure

bottom-up approach described in the previous subsection

may be fragmented due to missing foreground superpix-

els and contain false-positive superpixels. To alleviate the

target fragmentation problem, we group together the fore-

ground segments connected within 2 hops in the AMC

graph to construct target region candidate. Figure 4 illus-

trates an example of the foreground superpixel grouping.

Since there can be multiple target region candidates after

superpixel merges within 2 hops, we select the most sim-

ilar connected component to the holistic target appearance

model, which is based on the normalized color histogram

of the pixels in the foreground segmentation mask. The dis-

similarity is defined by the Bhattacharyya distance between

two histograms. Once the target is identified, the histogram,

hnew
t , is updated recursively as

hnew
t = (1− wc) · ht + wc · hc, (10)

where ht is the current appearance model, hc is the appear-

ance model of the candidate, and wc = 0.1 is the learning

Figure 4: Comparison of target superpixel merge with (left)

1-hop and (right) 2-hop neighborhood systems of surper-

pixel adjacency. Bounding boxes denote target candidates,

and the magenta indicates the identified target using our

holistic model. The 2-hop neighborhood system is effective

to merge split superpixels belonging to target.

Figure 5: Benefit of holistic appearance model. There are

two target region candidates in both frames, and our algo-

rithm chooses the true target (magenta) using the holistic

model based on color histogram.

rate. Figure 5 presents the benefit of the holistic target mod-

eling to identify the true target connected component.

5.3. Initial Segmentation at the First Frame

We apply a similar approach to initialize the target seg-

mentation at the first frame. Since the optical flows are not

available in the first frame, the initial segmentation is ob-

tained by thresholding absorption time on the AMC graph

using only intra-frame edges. The transient vertices are

given by the superpixels overlapped with the initial ground-

truth bounding box of target more than 50%. The super-

pixels in the extended target bounding boxes, which do not

correspond to transient vertices, create absorbing vertices.

The weight of each edge is computed based on the L2-norm

of the mean colors of two superpixels as in

w0

ij = exp

(

−
‖ci − cj‖

σc

)

, (11)

where ci and cj are the mean colors in LAB space of the su-

perpixels corresponding to vi ∈ V and vj ∈ V, respectively,

and σc is a constant. We construct the fundamental ma-

trix by multiplying different constant factors to the weights

depending on edge types as in Eq. (7), and categorize indi-

vidual superpixels using the modified absorption times.

6. Experiments

This section describes the details about datasets and our

evaluation protocols, and presents the quantitative and qual-
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itative results of our algorithm.

6.1. Datasets

We evaluate our algorithm in five independent datasets:

non-rigid object tracking dataset (NR) [34], generalized

background subtraction dataset (GBS) [22, 25, 24], video

saliency dataset (VS) [11], SegTrack v2 dataset (ST2) [23],

and DAVIS dataset [30]1. The targets are annotated with

both pixelwise binary segmentation masks and axis-aligned

minimum bounding boxes. NR consists of 11 videos, which

contain deformable and articulated objects, and has been

used to evaluate segmentation-based tracking algorithms in-

cluding [34]. The other datasets are constructed for other

kinds of tasks such as foreground and background segmen-

tation [25, 24, 23] and video saliency detection [11]. Some

videos in GBS and ST2 have multiple foreground objects

in each frame so we construct separate sequences for indi-

vidual objects. Hence, GBS and ST2 initially contain 13

and 14 sequences, respectively, while now having 15 and

24 targets, respectively. Note that the targets in these two

datasets also involve large deformations, occlusions, and

low-resolution. VS consists of 10 sequences with target

scale variations, where one video in VS contains multiple

objects but we choose to track only one of them because the

others are too small throughout the video. DAVIS contains

50 high quality videos for segmentation, where each video

contains a single deformable and articulated object.

6.2. Algorithms for Comparison

Our tracking algorithm, denoted by AMC Tracking

(AMCT), is compared with four recent segmentation-based

trackers and a few bounding box trackers. The tested

segmentation-based tracking techniques include Online

Gradient Boosting Decision Tree Tracker (OGBDT) [34],

HoughTrack (HT) [13], Superpixel Tracker (SPT) [36] and

PixelTrack (PT) [10]. We choose DSST [9], MUSTer [17]

and MEEM [42] among regular bounding box trackers.

In addition to the comparison with these external algo-

rithms, we implement variations of our approach, which in-

clude AMCT without SVR (AMCT-NR), AMCT without

holistic appearance model (AMCT-NA) and AMCT with

CNN feature descriptor (AMCT+CNN). For AMCT-NR,

we replace SVR scores with Lab colors to define an edge

weight as in Eq. (11). AMCT+CNN integrates the fea-

ture descriptors from CNN as well as Lab color to learn

SVR. We employ the CNN pre-trained for semantic seg-

mentation [27], which is already used for online video seg-

mentation in [35]. For these three internal variations, the

rest of the implementation is identical to our full algorithm.

1The primary goal of our algorithm is pixel-level segmentation with

tracking, so it is not directly comparable to the bounding box tracking

methods evaluated on the online tracking benchmark [39] and visual object

tracking benchmark [21].

The performance is measured based on pixel-level masks

for segmentation accuracy while we employ bounding box

annotations to compare with regular trackers.

We also apply AMCT to online video segmentation task,

which aims to propagate segmentation masks given initial

segmentation annotations at the first frame. This task is dif-

ferentiated from our main problem, tracking-by-detection,

which has bounding box annotations at the first frame.

We select the two state-of-the-art video segmentation al-

gorithms for this comparison: Joint Online Tracking and

Segmentation (JOTS) [38] and Object Flow (OF) [35]. For

fair comparison, we provide the initial ground-truth seg-

mentation masks to all methods. Among the variations

of our algorithm, we choose AMCT+CNN for this experi-

ment, which is denoted by AMCT+CNN*, where the aster-

isk means the use of ground-truth segmentation annotation

at the first frame.

6.3. Evaluation Metrics

There are two main criteria to evaluate tracking al-

gorithm quantitatively, tracking success rate and preci-

sion, which are given by online tracking benchmark pro-

tocol [39]. Each tracker is evaluated using tracking success

rate based on overlap ratios (intersection over union) be-

tween ground-truths and tracking results. We employ both

bounding boxes and segmentation masks to compute suc-

cess rates. The representative success rate of each algo-

rithm is given by area under curve (AUC) of success plot,

for which tracking success rates are computed at various

overlap ratio thresholds. Another criterion, precision, is

based on the center location errors between ground-truths

and tracking results. The center location is given by the

centroid of a bounding box, and precision is estimated with

the Euclidean distances between the center locations of two

bounding boxes. Typically, the precisions of tracking algo-

rithms are compared using 20 pixel center location errors.

In addition to the standard evaluation measures, we present

the average overlap ratios between ground-truths and track-

ing results additionally.

6.4. Implementation Details

We employ SLIC [1] and EPPM [5] for superpixel seg-

mentation and dense optical flow computation, respectively.

These two algorithms are run with the publicly available

source codes using the default parameters. The number of

superpixels is proportional to the size of ROI in each frame

with maximum 600. In the first frame, we start with 600

superpixels and ground-truth bounding box annotation to

estimate the initial segmentation mask as described in Sec-

tion 5.3.

There are several parameters in our algorithm. For SVR,

C in Eq. (3) and γ in Eq. (4) are set to 10 and 1, respectively.

The two free parameters for edge weights computation, σr
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Table 1: Average overlap ratio of segmentation masks for tracking-by-segmentation algorithms.

AMCT AMCT+CNN AMCT-NR AMCT-NA OGBDT [34] HT [13] SPT [36] PT [10]

NR 58.6 66.3 23.1 49.3 53.3 41.1 29.7 28.3

GBS 74.8 77.1 53.0 70.4 59.7 40.4 45.9 35.3

VS 84.1 82.3 71.4 83.8 79.8 51.2 61.0 73.9

ST2 58.8 71.3 47.2 60.7 47.6 43.0 26.3 21.2

DAVIS 59.2 65.1 41.2 56.9 44.9 33.1 27.1 26.1

Table 2: Average overlap ratio of bounding boxes for tracking-by-segmentation algorithms.

(a) Segmentation-based trackers (b) Regular trackers

AMCT AMCT+CNN AMCT-NR AMCT-NA OGBDT [34] HT [13] SPT [36] PT [10] DSST [9] MUSTer [17] MEEM [42]

NR 66.9 73.3 25.7 50.8 60.8 40.9 35.7 16.1 35.4 36.2 33.1

GBS 80.0 81.9 53.7 71.4 61.2 43.0 55.2 44.7 62.9 59.4 52.6

VS 88.2 88.7 75.4 88.1 78.8 57.6 61.5 51.9 66.9 64.1 60.3

ST2 64.8 76.3 50.3 64.3 50.2 44.9 53.5 32.2 62.0 58.8 59.5

DAVIS 60.9 67.8 44.5 60.1 50.0 35.8 43.2 41.6 58.4 25.9 52.7

in Eq. (6) and σc in Eq. (11) are set to 0.1 and 0.05, re-

spectively. The parameters to define transition probability

in Eq. (7) are πt = 1 and πa = 3. All the parameters are

fixed throughout the evaluation.

6.5. Results

We now present and analyze comparative evaluation re-

sults on five different datasets for tracking-by-segmentation

including NR, GBS, VS, ST2 and DAVIS. The overall per-

formance of all compared algorithms in the five datasets are

summarized in Table 1 and 2, where the best and second

best trackers are highlighted with red and blue, respectively.

We mark the best accuracy of online segmentation methods

in bold in Table 3.

The proposed algorithms, AMCT and AMCT+CNN

demonstrates outstanding performance in both segmenta-

tion mask and bounding box overlap ratios compared to

the other tracking methods including OGBDT [34], which

is the current state-of-the-art in tracking-by-segmentation.

Note that the accuracy of AMCT is improved by incorpo-

rating CNN features. AMCT without support vector re-

gression (AMCT-NR) works poorly in most datasets while

AMCT without holistic appearance model (AMCT-NA) is

competitive but still worse than our full algorithm in aver-

age. These results illustrate the contribution of two addi-

tional components in our algorithm; in particular, support

vector regression plays very important role for robust track-

ing. The proposed methods, AMCT and AMCT+CNN,

also outperform the state-of-the-art tracking algorithms for

bounding box prediction in all tested datasets by large mar-

gins. This is mainly because bounding box tracking is not

effective to follow highly articulated or deformable objects.

Success and precision plots in all five datasets are illustrated

in Figure 6.

Figure 7 illustrates target segmentation results of all

compared tracking-by-segmentation algorithms in the five

datasets. The second column presents the ground-truths in

Table 3: Average overlap ratio of segmentation masks for

online video segmentation algorithms.

AMCT+CNN* JOTS [38] OF [35]

NR 66.4 22.3 41.6

GBS 79.0 47.2 76.5

VS 89.7 79.2 88.8

ST2 74.5 51.5 69.5

DAVIS 73.2 47.6 70.7

segmentation and bounding box. Our algorithms extracts

target object boundaries more accurately even with low con-

trast between foreground and background in high-jump se-

quences thanks to use of SVR. AMCT and AMCT+CNN

track the target successfully in board sequence while other

algorithms generate unreasonable segmentations in their re-

sults, and identify the non-convex object shape accurately

in humming bird2 sequence. AMCT+CNN tends to capture

more precise target segmentation in high-jump, dunk, hum-

ming bird2 and motocross-jump sequences by incorporating

high-level semantic representations produced by CNN [27].

Although AMCT is originally designed for tracking-by-

segmentation but it also achieves excellent performance in

online video segmentation task as shown in Table 3. Espe-

cially, AMCT+CNN* outperforms OF by a significant mar-

gin in NR, which contains videos with deformable objects.

The proposed algorithm, AMCT, runs at about 4 fps,

which includes time for EPPM optical flow computation

(0.11 sec), SLIC superpixel segmentation (0.02 sec), graph

construction (0.10 sec) and absorption time computation

(0.01 sec). Compared to AMCT based only on LAB color

descriptors, AMCT+CNN is slow since SVR training is

substantially slow due to the high dimensionality of CNN

features. AMCT+CNN takes 15 seconds per frame but is

still much faster than JOTS and OF, which need about 80

seconds and 150 seconds per frame. The algorithms are

tested with Intel Core i7-5930K CPU@3.50 GHz in MAT-

LAB. We use a single NVIDIA Titan-X PASCAL GPU for
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(a) Success plots of segmentation results

AMCT+CNN [69.1]

AMCT [64.0]

AMCT-NA [61.3]

OGBDT [53.7]

AMCT-NR [42.1]

HT [35.5]

SPT [34.0]

PT [33.1]

DSST [32.8]

MEEM [31.2]

MUSTer [24.1]

Overlap threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u

c
c
e

s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Success plots of bounding box results
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(c) Precision plots

AMCT+CNN [76.2]

AMCT [65.6]

OGBDT [53.3]

AMCT-NA [52.8]

DSST [51.1]

MEEM [37.7]

SPT [36.3]

AMCT-NR [32.5]

HT [31.9]

MUSTer [31.6]

PT [29.2]

Figure 6: Success and precision plots in all five datasets: (a) success plots in terms of segmentation overlap ratio (b) success

plots in terms of bounding box overlap ratio (c) precision plots

Input frame Ground-truth AMCT AMCT+CNN OGBDT [34] HT [13] SPT [36] PT [10]

Figure 7: Qualitative performance evaluation results. The number in each image denotes segmentation overlap ratio. From

top to bottoms, we present results of high-jump in NR, dunk in GBS, board in VS, humming bird2 in ST2 and motocross-jump

in DAVIS.

CNN feature computation.

Refer to our project page2 for more detailed results. We

plan to release source codes and all results from our experi-

ment to facilitate reproduction of our algorithm.

7. Conclusion

We have proposed a simple but powerful superpixel-

based tracking-by-segmentation algorithm using AMC. The

proposed algorithm has a few interesting features, which

include the application of AMC to visual tracking, edge

weight learning using SVR, and accurate initial segmenta-

tions from bounding box annotations. Since our algorithm

estimates target segmentations instead of target bounding

boxes, it is more effective to track non-rigid and deformable

objects. We compared our algorithm with the existing tech-

2http://cvlab.postech.ac.kr/research/AMCT/

niques related to tracking-by-segmentation and the state-of-

the-art regular trackers in multiple challenging datasets, and

achieved substantially better performance.
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