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Abstract

Understanding the simultaneously very diverse and in-

tricately fine-grained set of possible human actions is a

critical open problem in computer vision. Manually label-

ing training videos is feasible for some action classes but

doesn’t scale to the full long-tailed distribution of actions. A

promising way to address this is to leverage noisy data from

web queries to learn new actions, using semi-supervised or

“webly-supervised” approaches. However, these methods

typically do not learn domain-specific knowledge, or rely on

iterative hand-tuned data labeling policies. In this work, we

instead propose a reinforcement learning-based formula-

tion for selecting the right examples for training a classifier

from noisy web search results. Our method uses Q-learning

to learn a data labeling policy on a small labeled training

dataset, and then uses this to automatically label noisy web

data for new visual concepts. Experiments on the challeng-

ing Sports-1M action recognition benchmark as well as on

additional fine-grained and newly emerging action classes

demonstrate that our method is able to learn good labeling

policies for noisy data and use this to learn accurate visual

concept classifiers.

1. Introduction

Humans are a central part of many visual scenes, and un-

derstanding human actions in videos is an important prob-

lem in computer vision. However, a key challenge in action

recognition is scaling to the long tail of actions. In many

practical applications, we would like to quickly and cheaply

learn classifiers for new target actions where annotations are

scarce, e.g. fine-grained, rare or niche classes. Manually

annotating data for every new action becomes impossible,

so there is a need for methods that can automatically learn

from readily available albeit noisy data sources.

A promising approach is to leverage noisy data from web

Riding a camel Riding a bullRiding animals

Feeding animals Feeding camels Feeding cattle

TRAINING: Learn to select queries from “YouTube”

Grazing animals

TESTING: Select right queries from “YouTube”

Our model

Semi-supervised

Running horse

?

Figure 1: Our model uses a set of annotated data to learn a

policy for how to label data for new, unseen classes. This

enables learning domain-specific knowledge and how to se-

lect diverse exemplars while avoiding semantic drift. For

example, it can learn from training data that human motion

cues are important for actions involving animals (e.g. “rid-

ing animals”) while animal appearance is not. This knowl-

edge can be applied at test time to label noisy data for new

classes such as “feeding animals”, while traditional semi-

supervised methods would label based on visual similarity.

queries. Training models for new classes using the data re-

turned by web queries has been proposed as an alternative

to expensive manual annotation [7, 8, 19, 28]. Methods

for automated labeling of new classes include traditional

semi-supervised learning approaches [14, 33, 34] as well

as webly-supervised approaches [7, 8, 19]. However, these

methods typically rely on iterative hand-tuned data label-

ing policies. This makes it difficult to dynamically manage

the risk trade-off between exemplar diversity and semantic

drift. Going further, as a result these methods typically can-
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not learn domain-specific knowledge. For example, when

learning an action recognition model from a set of videos

returned by YouTube queries, videos prominently featuring

humans are more likely to be positives while those with-

out are more likely to be noise; this intuition is difficult to

manually quantify and encode. Even more, when learning

an animal-related action such as “feeding animals”, videos

containing the action with different animals are likely to be

useful positives even though their visual appearance may be

different (Fig. 1). Such diverse class-conditional data selec-

tion policies are impossible to manually encode. This in-

tuition inspires our work on learning data selection policies

for noisy web search results.

Our key insight is that good data labeling policies can

be learned from existing manually annotated datasets. In-

tuitively, a good policy labels noisy data in a way where a

classifier trained on the labels would achieve high classifi-

cation accuracy on a manually annotated held-out set. Al-

though data labeling is a non-differentiable action, this can

be naturally achieved in a reinforcement learning setting,

where actions correspond to labeling of examples and the

reward is the effect on downstream classifier accuracy.

Concretely, we introduce a joint formulation of a Q-

learning agent [29] and a class recognition model. In con-

trast to related webly-supervised approaches [7, 19], the

data collection and classifier training steps are not disjoint

but rather integrated into a single unified framework. The

agent selects web search examples to label as positives,

which are then used to train the recognition model. A sig-

nificant challenge is the choice of the state representation,

and we introduce a novel representation based on the distri-

bution of classifier scores output by the recognition model.

At training time, the model uses a dataset of labeled train-

ing classes to learn a data labeling policy, and at test time

the model can use this policy to label noisy web data for

new unseen classes.

In summary, our main contribution is a principled formu-

lation for learning how to label noisy web data, using a re-

inforcement learning framework. To enable this, we also in-

troduce a novel state representation in terms of the classifier

score distributions from a jointly trained recognition model.

We demonstrate our approach first in the controlled setting

of MNIST, then on the large-scale Sports-1M video bench-

mark [16]. Finally, we show that our method can be used for

labeling newly emerging and fine-grained categories where

annotated data is scarce.

2. Related work

The difficulty of building large-scale annotated datasets

has inspired methods such as [5, 7, 6, 12, 19, 8, 28, 21]

which attempts to learn visual (or text [4]) models from

noisy web-search results. Such methods usually focus on it-

eratively gathering examples and using them to improve the

visual classifier. Often specific constraints or hand-tuned

rules are used for data collection, and successive iterations

can cause the model to deviate from the initial concept. We

overcome these limitations by automatically learning robust

data collection policies resulting in accurate classifiers.

The task of semi-supervised learning also works with

limited annotated examples. Popular approaches like trans-

ductive SVM [14], label spreading [33] and label propaga-

tion [34] induce labels for unannotated examples to explain

their distribution. Recent approaches [17, 20, 24, 25, 26, 30]

learn an embedding space which captures this distribu-

tion. However, these methods do not learn domain-specific

knowledge which can help in pruning noisy examples or

understanding the multiple subcategories within a class. In

contrast, our learned policies adjust for such biases in web-

examples of a specific domain.

Approaches like co-segmentation [2, 15], multiple in-

stance learning [1] and zero-shot learning [11, 23, 27, 31]

do incorporate domain-specific knowledge. However, un-

like our method they do not utilize the large amount of web-

search data available for test classes.

Our setup is similar in spirit to meta-learning [3, 10],

which attempts to identify both the correct learning algo-

rithm and the parameters required for high accuracy. How-

ever, we target a unique goal of building a good dataset for a

given class from a large set of noisy web-search examples.

Our key insight is that we can learn policies to directly

optimize our goal of choosing a positive set (nondifferen-

tiable actions) leading to an accurate visual classifier, by

formulating it in a reinforcement learning setup. We lever-

age recent advances that enable the use of deep neural net-

works as function approximators in deep Q-learning [22],

and which has shown successful performance in learning

policies for game-playing [22], large-scale control prob-

lems [9], and simple algorithms [32].

3. Method

The goal of our method is to automatically learn an ac-

curate classifier of a visual concept directly from noisy web

search results. We refer to these noisy search results as the

candidate set Dcand = {D1, . . . , DK}, and wish to select

a good subset of positives from Dcand. Such weakly super-

vised data typically contains diverse subclasses, and the key

challenge is to capture this diversity without succumbing to

semantic drift. These properties are difficult to objectively

quantify. Hence, we want a model which can learn them

from existing labeled datasets. One way to achieve this is

through an iterative strategy for positive selection, where

the model is aware of the positives chosen so far, so that

it can promote diversity in future selections. On the other

hand, it also needs to avoid semantic drift by being aware

of the remaining candidates and learning to estimate long-

term change in classifier accuracy. This can be elegantly
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Figure 2: Overview of our model. We learn a classifier for a given visual concept using a candidate set of examples obtained from web

search. At each time step t we use the Q-learning agent to select examples, e.g., DK , to add to our existing set of positive examples Dt−1
pos .

The examples are then used to train a visual classifier. The classifier both updates the agent’s state st+1 and provides a reward rt. At test

time the trained agent can be used to automatically select positive examples from web search results for any new visual concept.

achieved through a Q-learning formulation.

Hence, our model consists of two components as shown

in Fig. 2: (1) a classifier model trained using selected posi-

tive examples from the candidate set, and (2) a Q-learning

agent which repeatedly selects the positives from the candi-

date set to train the classifier model.

Note that the visual classes used for training and testing

our method are disjoint. For every visual class used during

training, in addition to the candidate set, we are also pro-

vided a reward set, which is a set of examples annotated

with the presence or absence of the target class. The reward

set is used to evaluate our model’s ability to produce a good

classifier from the candidate set. At test time, we are given

just the candidate set for new visual classes.

3.1. Classifier model

The classifier model corresponds to the current visual

class considered during a data collection episode and is

trained simultaneously with the agent’s data collection pol-

icy. At the beginning of an episode, the classifier is

seeded with a small set of S positive examples Dseed =
{x1, ..., xS}, as well as a set of negative examples Dneg =
{x1, ..., xN}. In the case of a video search-engine, we as-

sume that the top few retrieved examples are of high enough

quality to serve as the seed positives. A random collection

of videos from multiple unrelated searches are used to con-

struct the negative set. At each time step t, the Q-learning

agent makes a selection at corresponding to examples Dat

to be removed from the candidate set Dcand and added to

the positive training set. The classifier is then trained to dis-

tinguish between Dpos = {Dseed ∪ Da1
∪ ... ∪ Dat

} and

Dneg . The classifier is treated as a black box by the agent;

in our experiments, we use a multi-layer perceptron.

3.2. Q­learning agent

The core of our model is a Q-learning agent. Each

episode observed by the agent corresponds to data collec-

tion for a specific class. At each timestep t, the agent ob-

serves the current state st, and selects an action at from a

discrete set of actions A = {1, ...,K}. The action updates

the classifier as in Sec. 3.1, and the agent receives a reward

rt and the next state observation st+1. The agent’s goal

at each timestep is to choose the action that maximizes the

future discounted reward Rt =
∑T

t′=t γ
t′−trt′ , where an

episode terminates at time T and γ is the discount factor.

There are several key decisions: (1) How to encode the

current state of the agent? (2) How to translate this state

to a Q-value which can inform the agent’s action? (3) How

to formulate a reward function that incentivizes the agent to

select optimal examples from the candidate set?

State representation. Our insight in formulating the state

representation is that in order to improve the visual classi-

fier, the best examples to use may not be the ones that are

the strongest positives according to the current classifier. In-

stead, it may be better to add some examples with diversity

that increase entropy in the positive set. However, too much

diversity will cause semantic drift. In order to reason about

this, the agent needs to fully understand the distribution of

data in the previously selected positive examples Dpos, in

the negative set Dneg , and in the remaining noisy set Dcand.

We therefore formulate the agent’s state using the distri-

bution of the classifier scores. Concretely, the state repre-

sentation is s = {Hpos, Hneg, {HD1
, ..., HDK

}, P} where

Hpos, Hneg, {HD1
, ..., HDK

} are histograms of classifier

scores for the positive set, the negative set, and each can-

didate subset, respectively. P is the proportion of desired

number of positives already obtained. The histograms cap-
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Figure 3: The Q-network, which at each time-step chooses

a subset of examples from D1, . . . , DK . The state repre-

sentation is s = {Hpos, Hneg, {HD1
, ..., HDK

}, P} where

Hpos, Hneg, {HD1
, ..., HDK

} are histograms of classifier scores

for the positive set, the negative set, and each candidate subset. P

is the proportion of desired number of positives already obtained.

Generally correct and similar Generally correct and dissimilar

Generally incorrect and similar Generally incorrect and dissimilar

Figure 4: Histograms of classifiers scores for several query buck-

ets with different characteristics, for an example class “Netball”.

Example videos from each query are also shown. Buckets with

correct vs. incorrect videos have high vs. low scores, while ap-

pearance diversity is reflected in histogram peakiness.

ture the diversity and “prototypicality” of each set (Fig. 4).

Q-network. The agent takes an action at at time t us-

ing a policy at = maxa Q(st, a), where st is the state

representation above. The Q-value Q(st, a) is determined

by a neural network as illustrated in Fig. 3. Concretely,

αa = φ (Hpos, Hneg, HDa
; θ) where φ(.) is a multi-layer

perceptron. We use Q(s, a) = softmax(αa; τ) where τ is a

temperature parameter and helped performance in practice.

Reward function. The agent is incentivized to select the

optimal examples from Dcand for training a good classifier.

We capture this intuition by setting the reward at time t to

be the change in the classifier’s accuracy after updating its

positive set with the newly chosen examples Dat
. Accuracy

is computed on the held-out annotated data Dreward. This

reward is only available during training.

3.3. Training and testing

We train the agent using Q-learning [29], a standard re-

inforcement learning algorithm that can be used to learn

policies for an agent interacting with an environment. In

our case the environment is the visual classifier model.

Each episode during training corresponds to a specific vi-

sual class, where the agent selects the positive examples of

the class from a collection of web-search videos.

The Q-network parameters θ are learned by optimizing:

Li(θi) = Es,a

[

(V (θi−1)−Q(s, a; θi))
2
]

, (1)

where i is an iteration of optimization and

V (θi−1) = Es′

[

r + γmax
a′

Q(s′, a′; θi−1)|s, a

]

. (2)

We optimize it using stochastic gradient descent and ex-

perience replay, with random minibatches of past experi-

ence (st, at, rt, st+1) sampled for training.

The agent is trained to learn data collection policies

which can generalize to unseen visual classes. At test time,

the agent and the classifier are again run simultaneously on

Dcand for a new class, but without access to any labeled ex-

amples Dreward. The agent selects videos using the learned

greedy policy: at = maxa Q(st, a; θ).

4. Experiments

We evaluate our method in three settings: (1) Noisy

MNIST digit classification, where we add noise and diver-

sity to MNIST [18] to study our method in a controlled set-

ting, (2) challenging Sports-1M [16] action classification

for videos in the wild, and (3) newly emerging and fine-

grained classes where annotated data is scarce.

Setup. We evaluate our model on test classes unseen dur-

ing training. For every test class, the model selects posi-

tive examples from Dcand and uses them to train a 1-vs-all

classifier. We report the mean average precision (mAP) of

this classifier on a manually annotated test set. We con-

sider three scenarios, where the maximum number of pos-

itive examples chosen from Dcand is limited to 60, 80 and

100 respectively. This allows us to measure performance

trade-offs at different budgets. Classifiers are initialized

with Dseed containing the first 10 web-search results.

Baselines. We compare our model with multiple baselines:

1. Seed. Support vector machine (SVM) learned only

from the positive Dseed.

2. Label propagation. Semi-supervised model from [34]

used in an inductive setting to learn from the test

Dcand and classify the labeled test set.

3. Label spreading. Semi-supervised model from [33] in

an inductive setting.

4. TSVM. Transductive support vector machine from

[14], which learns a classifier from Dcand of test class,

and cross-validated using Dreward.

5. Greedy classifier. An iterative model similar in spirit

to [7, 19] that alternates between greedily selecting

queries with the highest-scoring contents according to

a classifier, and updating the classifier with the newly

labeled examples. We use the same classifier model as

in our method. On Sports-1M we compare with two
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Figure 5: Ten sample query subsets in Noisy MNIST for the digit 7. Top row. Different translation and rotation transformations. Bottom

row. The two leftmost queries have different amounts of noise, the center one is a mixture bucket, and the rightmost two are different digits.

GREEDY
CLASSIFIER

OURS

GREEDY
CLASSIFIER

OURS

Figure 6: Positive query subsets selected using our method versus the greedy classifier baseline. Subsets chosen by each method are

shown from left to right. Top example. The greedy classifier chooses queries with very similar content that would not be useful additional

positives, whereas our model chooses diverse queries representing different subconcepts of translation and rotation. Bottom example.

The greedy classifier chooses subsets for the positive digit 9 that include increasingly more noise, and eventually chooses a subset with

similar-looking 7s that causes it to begin selecting digit 7 subsets instead. In contrast, our model learns policies that are robust to semantic

drift.

additional variants: Greedy-Clustering, which explic-

itly achieves diversity by clustering labeled positives

and ensuring all clusters are represented in new se-

lections; and Greedy-KL which balances diversity and

drift by selecting queries whose classifier score distri-

bution most closely achieves a ratio of 0.6 (determined

through cross-validation) for KL-divergence with the

classifier score distribution of Dpos vs. of Dneg .

Implementation Details. Our Q-network maps 10-d input

histograms in the state representation to a common embed-

ding space of 5 dimensions, with a further hidden layer of

64 units on top. Each episode begins with a seed set of 10

labeled examples, and at training time the network chooses

a maximum of 100 total labeled examples needed to train a

classifier. The classifier model is a 3-layer multi-layer per-

ceptron with 256 units in each hidden layer, on top of 1000-

d ResNet [13] features extracted and then pooled from 10

uniformly sampled frames per video for Sports1M, and on

top of raw 784-d pixels for Noisy MNIST. Training con-

sists of 500 episodes for Sports1M, and 200 episodes for

Noisy MNIST. The Q-network is trained using experience

replay, with mini-batch size 64 and base learning rate 0.01.

A learning update for the agent is taken every 4 iterations,

and the target network is softly updated every iteration. A

temperature of τ = 100 was used in the Q-network.

Digit Bud-

get

Seed Label

prop.

Label

spread.

TSVM Greedy Ours

60 42.6 37.9 41.1 39.5 43.1 60.9

6 80 42.6 40.8 45.6 44.4 43.2 61.3

100 42.6 42.2 46.7 46.2 42.4 71.4

60 48.4 51.1 48.6 46.1 49.7 55.1

7 80 48.4 48.8 48.5 42.6 48.5 57.6

100 48.4 48.1 46.6 39.7 47.4 55.7

60 39.1 35.0 35.2 41.2 38.3 56.2

8 80 39.1 40.0 34.1 39.6 39.6 55.6

100 39.1 42.0 30.2 40.8 38.0 55.5

60 37.9 37.5 36.5 41.4 52.4 52.4

9 80 37.9 37.9 37.4 38.9 53.5 53.5

100 37.9 38.0 37.6 39.5 55.7 55.7

60 42.0 40.4 40.3 42.1 43.4 56.1

All 80 42.0 41.9 41.4 41.4 43.4 57.0

100 42.0 42.6 40.3 41.5 42.3 59.5

Table 1: AP on Noisy MNIST, with budgets of 60, 80 and 100

corresponding to the numbers of positives selected from Dcand.

4.1. Noisy MNIST digit classification

We first evaluate our model in a simulation environment

on MNIST digit classification [18], where we can introduce

noise and subconcept diversity in a controlled manner. The

policies for digit selection are learned from the images of

six digits 0− 5 and tested on the other four digits 6− 9.
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Setup. For every digit class, example images are randomly

split into two sets Sc and Sr of 500 images each. The

Dcand set is constructed using Sc by simulating both the

sub-concept variation and the noise present in web search

results. Concretely, the Sc examples are further split into

10 different query subsets, each containing 5 sets of 10 im-

ages each. Controlled noise is then added to each query

subset: either a specific transformation of the digit (trans-

lation and/or rotation), noise from mixed digits, or a dif-

ferent digit. Examples of query subsets for Dcand for the

digit 7 are shown in Fig. 5. The Dreward set for a digit

is constructed from Sr by applying translation and/or rota-

tion similar to Dcand, combined with 1000 negative images

sampled from other digits.

Training. Policies were learned on the Dcand set of the

training digits to optimize classifier accuracy on the anno-

tated Dreward examples. Each episode during training re-

quires the model to pick the best 10 query subsets from 100
randomly sampled query subsets of the corresponding can-

didate set. Dneg is constructed by randomly sampling 500
negative examples of other digits. The model parameters

were selected by 3-fold cross validation on training digits.

Testing. The Q-network is used to select a set of 60, 80
or 100 examples from the Dcand set of the test digits. The

classifier is trained with the selected positives and a set of

negatives sampled from Dcand of other digits. The same

Dcand examples are used by all baseline methods as well.

Classifier accuracy is evaluated on the annotated test set.

Results. Table 1 shows quantitative results from our

method compared to the baselines, at varying quantities of

positive examples chosen by the methods. Our method out-

performs all other baselines at all levels by at least 12.7%
mAP. Interestingly, as more positive examples are collected

(from 60 to 100), baselines typically improve only slightly

or even drop in accuracy, whereas our model consistently

improves. Traditional semi-supervised methods such as

TSVM, label propagation and spreading are designed to se-

lect examples similar to the seed set and thus are unable to

cope with the large subclass variations.

Qualitative comparison of our method with the strongest

greedy classifier baseline is shown in Fig. 6. It illustrates

two major pitfalls of greedy methods: (1) in the first exam-

ple of the digit 6, the greedy classifier selects images overly

similar to the seed-set, to the point of including noise, and

(2) in the second example of the digit 9, it gets carried away

by semantic drift. Our method is more robust, opting for

a diverse selection of subconcepts. It is able to learn that

rotations and translations are useful positives for the do-

main of digits. Interestingly, it tends to gradually expand

its understanding of subconcepts, selecting subtle transfor-

mations first before more extreme ones. This flexibility to

trade-off variety with intra-class similarity allows our model

to outperform other methods.

Method Budget-60 Budget-80 Budget-100

Seed 64.3 64.3 64.3

Label propagation 65.4 65.4 67.2

Label spreading 65.4 66.6 67.3

TSVM 71.6 72.7 73.6

Greedy 71.7 73.8 74.8

Greedy-clustering 72.3 73.2 74.3

Greedy-KL 74.1 74.7 74.7

Ours 75.4 76.2 77.0

Table 2: mAP on Sports-1M with different budgets for the num-

ber of selected positive examples.

4.2. Sports­1M action recognition

We evaluate our method in a real-world setting where

we want to classify the 487 human actions in the Sports-

1M video dataset [16]. Collecting high-quality video ex-

amples for human actions can be very laborious and ex-

pensive. Hence, we wish to learn classifiers using only the

videos returned by a web search engine without the need for

human annotation. The classifiers are trained on noisy ex-

amples from YouTube and tested on Sports-1M test videos

with ground-truth annotations. We remove any overlapping

videos between Sports-1M and YouTube search results to

avoid mixing of training and test data. Throughout this sec-

tion, we ignore the Sports-1M training videos.

We use 300 classes for training, 105 classes for test-

ing and the remaining classes for validation, and note that

this task is fundamentally different from standard 487-way

Sports-1M classification. There is no intersection between

the training, testing and validation classes.

Setup. The videos returned by YouTube query search were

used to construct the candidate sets for both training and test

classes. We constructed 30 different query expansions for

each class using the YouTube query suggestion feature. The

top 30 videos returned from each query were then split into

6 different pages of 5 videos each. 20 queries are sampled

for each episode during training, resulting in candidate sets

of 600 videos per action class split into 120 different sub-

sets. The annotated Sports-1M videos of the training classes

serve as reward sets used to train the Q-network. Sports-1M

videos of test classes are used for evaluation.

Training. In each training episode, the Q-network policies

select 20 subsets (100 videos) from the 120 different query

splits of the candidate-set. At each iteration of the episode,

the selected positive examples are combined with 500 ran-

dom examples from other classes to update the classifier.

Testing and validation. The model parameters were cho-

sen by cross-validation on the validation classes. The final

policies are used to select positive examples of test classes

from the corresponding YouTube search results. These

videos are used to train separate 1-vs-all classifiers for each

test class. Each classifier is then evaluated on the annotated

positive examples of the corresponding class and 1000 neg-
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Figure 7: Comparison of positive query subsets selected using our method versus the greedy classifier baseline, for two Sports-1M test

classes. Rather than show all 100 selected videos, we highlight interesting differences and show the remaining in Appendix. Each row

shows a selected query subset (query phrase and corresponding 5 videos), with the numerical position of the selection out of 100. The

first row shows seed videos. Top example. The greedy classifier chooses many similar-looking examples, while our method learns that

examples of the action in different environments are useful positives. Bottom example. The greedy classifier drifts from bobsleigh to video

games, while our method is robust to semantic drift and selects useful subcategories of bobsleigh videos such as crashes and pov.

ative examples sampled from videos of other classes.

Results. Table 2 compares our model with baselines. Our

model outperforms at all budgets, and at Budget-100 by

2.2% mAP. The margin over the Greedy baseline is higher

at smaller budgets, indicating that our model more quickly

selects the best positive examples. While Greedy-clustering

and Greedy-KL improve over Greedy at small budgets, they

perform worse at Budget-100. This illustrates that while

using heuristics to explicitly balance diversity and drift can

help early on, it is hard to ultimately avoid noise.

Fig. 7 shows positive examples selected by our method

compared to the greedy classifier. In the top example of net-

ball, the greedy classifier is overly conservative and selects

positives very similar to existing positives, which does not

improve classifier accuracy. On the other hand, our model

learns domain-specific knowledge that examples of the tar-

get action in visually different environments are useful. In

the bottom example of bobsleigh, the greedy classifier suf-

fers from the opposite problem: after the classifier selects

some queries containing video games, it drifts to queries

with more and more video games. In contrast, our model is

more robust and returns to clean bobsleigh videos with min-

imal drift. Furthermore, it selects different subcategories of

bobsleigh videos: crash videos, and pov videos, which are

useful for training a classifier.

4.3. Long­tail action labeling

We show examples of the policy we learned for Sports-

1M on new action classes for which annotated data does

not exist in Fig. 8. We compare our learned policy vs. the

greedy classifier, for a recent societal-concept: “Taking a

selfie”, and a fine-grained class: “Olympic gymnastics”.
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GREEDY CLASSIFIER   OURS

Taking a selfie

Taking a selfie with a tornado

Taking a selfie every day

Taking a selfie song

Taking a selfie every day

1                 2  3   4   5

21               22  23   24   25

61               62  63   64    65

Taking a selfie

1                 2  3   4   5

46               47  48   49   50

91               92  93   94   95

Taking a selfie

Olympic gymnasticsOlympic gymnastics

1                 2  3   4    51                 2  3   4    5

Olympic gymnastics hoopOlympic gymnastics bars

26               27   28   29    3021               22  23   24    25

Olympic acrobatic gymnasticsOlympic gymnastics 2016

76               77   78   79    8046               47   48   49    50

Olympic gymnastics
Taking a selfie underwater

96               97  98   99    100

Taking a good selfie

11               12  13   14   15

GREEDY CLASSIFIER   OURS

Olympic gymnastics danceOlympic gymnastics song

86               87   88   89    9076               77   78   79    80

Figure 8: Comparison of positive query subsets selected using our method versus the greedy classifier baseline, for two long-tail classes.

See Fig. 7 caption for figure format. Top example. The greedy classifier selects many similar-looking examples of taking a selfie, while

our method learns domain-specific knowledge that positives in different environments are more useful, e.g. with a tornado or underwater.

Bottom example. The greedy classifier selects similar examples of gymnastics, whereas our method selects visually distinct subcategories.

The videos selected in Fig. 8 for “Taking a selfie” show

that the policy again utilizes domain-specific knowledge

that an action in different environments is useful for posi-

tive examples: e.g. in front of a volcano, and underwater,

even though these have diverse visual appearance. In con-

trast, the greedy classifier tends to select videos that look

very similar to the seed videos. The videos selected for

“Olympic gymnastics” demonstrate that the policy selects

visually different subcategories: gymnastics with hoops,

and gymnastics with acrobatics.

Table 3 measures the diversity and correctness of our

model versus the greedy model. Query recall is the num-

ber of correct queries which contributed to the selected pos-

itives. The correct queries were manually annotated. Our

model selects positives from more queries promoting higher

diversity. Similarly, our model also avoids noisy exam-

ples as seen from video recall: the number of true-positive

videos included in the 100 videos selected by each model.

Query recall Video recall

Class Greedy Ours Greedy Ours

Taking a selfie 6/16 9/16 75% 90%

Olympic gymnastics 7/18 10/18 76% 82%

Table 3: Query and video recall of positive videos for two long-

tail classes, for our method vs. the greedy classifier. Our method

has higher recall of true-positive queries and videos, showing that

it selects diverse subconcepts while avoiding semantic drift.

5. Conclusion

In conclusion, we have introduced a principled, rein-

forcement learning-based formulation for learning how to

label noisy web data. We show that our method is able

to learn domain-specific knowledge, and label data for new

classes in a way that achieves diversity while avoiding se-

mantic drift. We demonstrate our method first in the con-

trolled setting of MNIST, then on large-scale Sports-1M,

and finally on newly emerging and fine-grained classes.
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