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Abstract

In this paper, we study the problem of semantic annota-

tion on 3D models that are represented as shape graphs. A

functional view is taken to represent localized information

on graphs, so that annotations such as part segment or

keypoint are nothing but 0-1 indicator vertex functions.

Compared with images that are 2D grids, shape graphs are

irregular and non-isomorphic data structures. To enable

the prediction of vertex functions on them by convolutional

neural networks, we resort to spectral CNN method that en-

ables weight sharing by parametrizing kernels in the spec-

tral domain spanned by graph Laplacian eigenbases. Un-

der this setting, our network, named SyncSpecCNN, strives

to overcome two key challenges: how to share coefficients

and conduct multi-scale analysis in different parts of the

graph for a single shape, and how to share information

across related but different shapes that may be represented

by very different graphs. Towards these goals, we introduce

a spectral parametrization of dilated convolutional kernels

and a spectral transformer network. Experimentally we

tested SyncSpecCNN on various tasks, including 3D shape

part segmentation and keypoint prediction. State-of-the-art

performance has been achieved on all benchmark datasets.

1. Introduction

As has already happened in the image domain, the wide

availability of 3D models brings with it the need to associate

semantic information with the 3D data. In this work we

focus on the problem of annotating 3D models represented

by 2D meshes with part information. Understanding of the

parts of an object (e.g., the back, seat and legs of a chair)

is essential to its geometric structure, to its style, and to its

function. There has been significant recent progress [29]

in the large scale part annotation of 3D models (e.g., for

a subset of the ShapeNet [4] models) – our aim here is to

leverage this rich data set so as to infer parts of new 3D

object models. Our techniques can also be used to infer

keypoints and other substructures within 3D models.

It is not straightforward to apply traditional deep learning
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Figure 1. Our SyncSpecCNN takes a shape graph equipped with

vertex functions (i.e. spatial coordinate function) as input and

predicts a per-vertex label. The framework is general and not

limited to a specific type of output. We show 3D part segmentation

and 3D keypoint prediction as example outputs here.

approaches to 3D models because a mesh representation

can be combinatorially irregular and does not permit the

optimizations exploited by convolutional approaches, such

as weight sharing, which depend on regular grid structures.

In this paper we take a functional approach to represent

information about shapes, starting with the observation that

a shape part is itself nothing but a 0-1 indicator function

defined on the shape.

Our basic problem is to learn functions on shapes. We

start with example functions provided on a given shape

collection in the training set and build a neural net that can

infer the same function when given a new 3D model. This

suggests the use of a spectral formulation, based on a dual

graph representing the shape, yielding bases for a function

space built over the mesh.

With this graph representation we face multiple chal-

lenges in building a convolutional neural architecture. One

is how to share coefficients and conduct multi-scale analysis

in different parts of the graph for a single shape. Another

is how to share information across related but different

shapes that may be represented by very different graphs. We

introduce a novel architecture, the Synchronized Spectral

CNN (SyncSpecCNN) to address these issues.

The basic architecture of our neural network is similar

to the fully convolutional segmentation network of [17],

namely, we repeat the operation of convolving a vertex

function by kernels and applying a non-linear transforma-
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tion. However, our network combines processing in the

primal and dual (spectral) domains. We deal with the

problem of weight sharing among convolution kernels at

different scales in the primal domain by performing the

convolutions in the spectral domain, where they become

just pointwise multiplications by the kernel duals. Our key

building block consists of passing to the dual, performing

a pointwise multiplication and then returning to the primal

representation in order to perform an appropriate non-linear

step (such operations are not easily dualized).

The issue of information sharing across shapes is more

challenging. Since different shapes give rise to different

nearest neighbor graphs on their point clouds, the eigen-

bases we get for the graph Laplacians are not directly com-

parable. We synchronize all these Laplacians by applying

a functional map in the spectral domain to align them to

a common canonical space. The aligning functional maps

succeed in encoding all the dual information on a common

set of basis functions where global learning takes place. An

initial version of the maps is computed directly from the

geometry and is further refined during training, in the style

of a data-dependent spatial transformer network.

We have tested our SyncSpecCNN on various tasks

including 3D shape part segmentation and 3D keypoint

prediction. We achieve state-of-the-art performance on all

these tasks.

Key contributions of our approach are as follows:

• We are the first to target at non-isometric shapes in the

family of spectral CNNs.

• To allow weight sharing across different non-isometric

shapes, we learn a Spectral Transformer Network.

• We introduce an effective spectral multi-scale kernel

construction scheme.

2. Background

3D Shape Segmentation An important application of our

framework is to obtain semantic part segmentation of 3D

shapes in a supervised fashion. Along this track, most

previous methods [12, 28, 18, 7] employ traditional ma-

chine learning techniques and construct classifiers based

on geometric features. In the domain of unsupervised

shape segmentation, there is one family of methods [15, 16]

emphasizing the effectiveness of spectral analysis for 3D

shape segmentation. Inspired by this, our framework aims

to marry the power of deep neural network and spectral

analysis for 3D shapes segmentation.
Spectral analysis on graphs We model a 3D shape S
as a graph G = (V, E), whose vertices V are points in

R
3 and edges E connect nearby points. At each vertex

of the graph, we can assign a vector. In this way, we

define a vector-valued vertex function on G. For example,

a segment on a shape can be represented as an indicator

vertex function. The space of functions F defined on G

can be represented under different bases, i.e., f =
∑

i αibi

for f ∈ F . One way to construct bases of F is through

spectral analysis – for each shape graph, the eigenvectors

of its graph Laplacian L form an orthogonal basis B =
{bi}. One type of graph Laplacian can be constructed as

L = I − D−1/2WD−1/2, where I is identity matrix, D
is the degree matrix and W is the adjacency weight matrix

of G. Under this construction, the eigenvalues λ = {λi}
corresponding to B satisfy 0 ≤ λi ≤ 2.

The spectral decomposition also introduces the concept

of frequency. For each basis function bi, the eigenvalue

λi in the decomposition defines its frequency, depicting its

smoothness. By projecting f on each basis function bi, the

coefficient αi can be obtained. α = {αi} is the spectral

representation of f , in analogy to the Fourier coefficients

in flat space. According to the convolution theorem of

Fourier analysis, the convolution between a kernel and a

function on the shape graph is equivalent to the point wise

multiplication of their spectral representations [3, 22].

Functional map Different shapes define shape graphs

with varied Laplacian eigenbases and spectral domains,

which result in incompatible graph vertex functions and

obstruct harmonic analysis being conducted in many ap-

plications. Inspired by the recent work on synchronization

[23, 25, 26, 9], we propose to align these different spectral

domains using functional map [21]. Functional map is

initially introduced for this purpose on shapes. Specifically,

given a pair of shape graphs Gi and Gj , a functional map

from Fi to Fj is given by a matrix Xij , which maps a

function f ∈ Fi with coefficient vector α to the function

f ′ ∈ Fj with coefficient vector α′ = Xijα. α and α
′ are

computed according to a pair of bases. We refer the reader

to [21] for detailed introduction and intuition.

CNN on Graphs We call such CNNs as “graph CNNs”.

Graph CNNs take a graph with vertex function as input.

Conventional image CNN can be viewed as a graph CNN

on 2D regular grids of pixels, with RGB values as the vertex

function. There have been some previous works studying

graph CNN on more general graphs instead of 2D regular

grids [3, 6, 8, 5], and [19, 1, 2] have a special focus on

3D shape graphs like human bodies. Their constructions

of deep neural network usually fall into two types: spatial

construction and spectral construction. The approach we

propose belongs to the family of spectral construction but

with two key differences: we explicitly design an effective

multi-scale information aggregation scheme; we synchro-

nize different spectral domains to allow parameter sharing

among very different shape graphs thus increasing general-

izability of our SyncSpecCNN.

3. Problem

Given a 3D shape S represented as a shape graph G =
(V, E), we seek for a per-vertex label l, such as segmen-
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tation or keypoints. These labels are represented as vertex

functions f on G, i.e., f : V → R
K . We precompute a set

of 3D features for each vertex v ∈ V and use them as input

vertex functions. These features capture location, curvature,

and local context properties of each vertex v and we use the

publicly available implementation [13]. To represent the

functional space on shape graphs G, we also construct the

graph Laplacian L of each shape S, compute the spectral

frequency λ = {λi} and corresponding bases B = {bi}
through eigendecomposition. We note that a basis bi is

also a vertex function. Therefore, our neural network takes

the Laplacian L of a graph G and vertex functions of local

geometric features as input, and predicts a vertex function

f such as segmentation or keypoint indicator function.

4. Approach

4.1. Overview

The basic architecture of our SyncSpecCNN is similar

to the fully convolutional segmentation network as in [17],

namely, we repeat the operation of convolving the vertex

function by kernels and applying non-linear transformation.

However, we have several key differences. First, we achieve

multichannel convolution by multichannel modulation in

the spectral domain. Second, we parametrize kernels in the

spectral domain following a dilated fashion, so that kernel

sizes could be effectively enlarged to capture large context

information without increasing the number of parameters.

This is essentially a spectral counterpart of spatial pooling

in [17]. Last, we design a Spectral Transformer Network to

synchronize the spectral domain of different shapes, allow-

ing better parameter sharing.

4.2. Network Architecture

Similar to conventional CNN, our SyncSpecCNN con-

tains layers including ReLU, DropOut, 1×1 Convolution

[24], and BatchNormalization, which all operate in the

spatial domain on graph vertex functions. The differ-

ence comes from our graph convolution operation, which

introduces the following modules: Forward Transform,

Backward Transform, Spectral Multiplication, and Spectral

Transformer Network, as is shown in Figure 2 and summa-

rized in Table 1. We provide more details about the newly

introduces modules as below.

In a basic convolution block, a vertex function f defined

on G is first transformed into its spectral representation α

through Forward Transform α = B
T f . Then the func-

tional map C predicted by the Spectral Transformer Net-

work will be applied to α and outputs α′ = Cα for spectral

domain synchronization (Sec 4.4). A Spectral Multiplica-

tion layer is followed, pointwisely multiplying α
′ by a set of

multipliers and getting α̃
′ = Wα

′, where W is a diagonal

matrix with its diagonal being the set of multipliers, and α̃
′

is used to denote the multiplication result. This is how we

Layer 1 2 3 4 5 6 7 8 9 10

Dilation (γ) 1 1 4 4 16 16 64 64 1 1

SpecTN No No No No No No Yes Yes No No

#Kernel Param 7 1 7 1 7 1 45 45 7 1

#Out Channel c c c c 2c 2c 2c 2c 2c 2c

Table 1. Parameters used in different layers of the architecture,

including dilation parameter γ which controls convolution kernel

size, whether use spectral transformer network (SpecTN), the

number of learnable parameters in convolution kernels, the num-

ber of output channels after each convolution operation.

conduct convolution in the spectral domain, where spectral

dilated kernels are used to capture multi-scale information

(Sec 4.3). Then we apply the inverse functional map Cinv to

α̃
′, so that we get the spectral representation α̃ = Cinvα̃

′

in the original spectral domain before canonicalization. α̃

is then converted back to a graph vertex function through

Backward Transform f̃ = Bα̃. This building block was re-

peated for several times and forms the backbone of our deep

architecture. We also add skip links into our SyncSpecCNN

to better facilitate information flow across earlier and later

layers.

One interesting observation is worth mentioning: small

convolution kernels correspond to smoothly transiting mul-

tipliers in the spectral domain (see Figure 3), therefore not

very sensitive to bases misalignment among shapes graphs

in a certain range of spectrum and are more generalizable

across graphs. As a result, we omit the spectral transformer

network when the convolution kernels are small.

4.3. Spectral Dilated Kernel Parametrization

Yu et al. [30] has proved the effectiveness of multi-

scale kernels for aggregating context information at dif-

ferent scales in image segmentation. They propose to use

dilated kernels to increase the kernel size without increasing

the number of parameters. We parametrize our convolution

kernels in a similar flavor but in the spectral domain, which

turns out to be straightforward and effective. Essentially,

we find that multi-resolution analysis on graphs could be

achieved without complicated hierarchical graph clustering.

Before explaining what the exact parametrization is, we

first discuss the intuition behind our design. The Spectral

Multiplication layer modulates the spectral representation

α = {αi} by a set of multipliers from the kernel, where

αi is the spectral coordinate of vertex function at basis

bi. Note that λi can be interpreted as the frequency of

its corresponding eigenbasis function bi, and bi itself is a

vertex function that captures the intrinsic geometry of the

shape. We assume that λi’s are sorted ascendingly and

arrange bi’s accordingly.

The multipliers are the spectral representation of convo-

lution kernel. Denote the set of multipliers as m = {mi},

each corresponds to one λi. Regard m as a function of λi.

Again, generalized from conventional Fourier analysis
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Figure 2. Architecture of our SyncSpecCNN. Spectral convolution is done through first transforming graph vertex functions into their

spectral representation and then pointwise modulating it with a set of multipliers. The multiplied signal is transformed back to spatial

domain to perform nonlinear operations. We introduce spectral transformer network to synchronize different spectral domains and allow

better parameter sharing in spectral convolution. Convolution kernels are parametrized in a dilated fashion for effective multi-scale

information aggregation.

[3], if m is concentrated in the low-end of the spectrum, the

corresponding spatial kernel function is smooth; conversely,

if the corresponding spatial functions is localized, m is

smooth. Therefore, to obtain a smoother kernel function

as in [30], we constrain the bandwidth of m, enabling us to

learn a smaller number of parameters; in addition, varying

the smoothness of m would control the kernel size.

To be specific, we associate each Spectral Multiplication

layer with a dilation parameter γ and parametrize mi as a

combination of some modulated exponential window func-

tions, namely

mi =
n∑

j=0

ω2j+1e−jγλicos(jγλiπ) +
n∑

j=1

ω2je−jγλisin(jγλiπ)

Here ω is a set of 2n + 1 learnable parameters, n is

a hyper-parameter controlling the number of learnable pa-

rameters. Large γ corresponds to rapidly changing mul-

tipliers with small bandwidth, thus a smooth kernel with

large spatial support. And small γ corresponds to slowly

changing multipliers with large bandwidth, corresponding

to kernels with small spatial support. Instead of using an

exponential window only, we add sin/cos modulation to

increase the expressive power of the kernel. Figure 3 shows

a visualization of modulated exponential window function

with different dilation parameter.

Our parametrization has three main advantages: First, it

allows aggregating multi-scale information since the size of

convolution kernels vary in different layers; Second, large

kernels could be easily acquired with a compact set of

parameters, which effectively increases the receptive field

while mitigates overfitting; Third, reduced parameters allow

more efficient computation.

4.4. Spectral Transformer Network

As is shown in Figure 3, the same spectral parametriza-

tion of kernels could lead to very different vertex func-

tions when the underlying spectral domains are different.

This problem is especially prominent when the kernel size

is large. Therefore, being able to synchronize different

λ

0 0.1 0.2 0.3 0.4 0.5

m

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Convolution Kernel Parametrization

λ

0 0.1 0.2 0.3 0.4 0.5

m

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Convolution Kernel Parametrization

modulated exponential window 

spectral representation

modulated exponential window 

spatial representation

Figure 3. Visualization of modulated exponential window function

with different dilation parameters in both spectral domain and

spatial domain. The same spectral representation could induce

spatially different kernel functions, especially when the kernel size

is large. Also notice smoothly transiting multipliers correspond

to small convolution kernels while sharply transiting multipliers

correspond to large convolution kernels in general.

spectral domains is the key to allow large kernels sharing

parameters across different shape graphs.

4.4.1 Basic idea

According to [21] and [25], one way to synchronize the

spectral domains of a group of shapes is through a tool

named functional map. In the functional map framework,

one can find a linear map to pull the spectral domain of each

individual shape to a canonical space, so that representa-

tions in the individual spectral domains become comparable

under a canonical set of bases. Indeed, given each shape S,

this linear map is as simple as a matrix C, which linearly

transforms the spectral representation α on one shape to its

counterpart α′ in the canonical space. Note that, from the

synchronization in the spectral domain, one induces a

spatial correspondence on the graph, vice versa. View-

ing the spectral domain as the dual space and spatial domain

on graph as the primal space, this primal-dual relationship
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is the pivotal idea behind functional map.

Inspired by this idea, we design a Spectral Transformer

Network (SpecTN) for the spectral domain synchronization

task. Our SpecTN takes a shape S as input and predicts a

matrix C for it (see Figure 2), so that α′ = Cα. Thus,

without SpecTN, α will be directly passed to subsequent

modules of our network; with SpecTN, α′ will be passed.

Our SpecTN draws inspiration from Spatial Transformer

Network (STN) [11]. From a high level, both SpecTN and

STN are learned to align data to a canonical form.

4.4.2 Input to SpecTN

A proper representation for shape S is needed as the input

to our SpecTN. To allow SpecTN predicting a transform

between different spectral domains, certain depiction about

the underlying spectral domain is greatly helpful, i.e. graph

Laplacian eigenbases. In addition, since spectral synchro-

nization couples with graph alignment, providing shape

graph correspondences could facilitate good prediction.

Based on these, we use voxel functions Bv that is com-

puted from Laplacian eigenbases as the input to SpecTN:

C = SpecTN(Bv; Θ). Specifically, Bv is a volumetric

reparametrization of the graph Laplacian eigenbases B,

defined voxel-wise in 3D volumetric space. The volumetric

reparametrization is conducted by converting graph vertex

function B into voxel function Bv in a straightforward

manner – we simply assign a vertex function value to the

voxel where the vertex lies. Since all Bv live in the same

3D volumetric space, correspondences among them are as-

sociated accordingly.

4.4.3 Optimization of SpecTN

Ideally, SpecTN should be learned automatically along with

the minimization of the prediction loss, as the case in

STN; however, in practice we find that such optimization

is extremely challenging. This is because the parameters

of C in SpecTN is quadratic w.r.t the number of spectral

basis functions, hundreds of times more than in the affine

transformation matrix of STN.

We address this challenge from three aspects: limit our

scope to a reduced set of prominent spectral bases to curtail

the parameters of C; add regularization to constrain the

optimization space; smartly initialize SpecTN with a good

starting point.

Reduced bases Synchronizing the whole spectrum could

be a daunting task given its high dimensionality. In par-

ticular, free parameters in C grow quadratically as the di-

mension of spectral domain increases. To favor optimiza-

tion, we adopt a natural strategy that only synchronizes the

prominent part of the spectrum. In our case, the spectral

parametrization of large kernels are mainly determined by

the low-frequency end of the spectrum, indicating that the

Figure 4. Visualization of low frequency eigenbasis functions be-

fore and after spectral synchronization. Before synchronization,

eigenbasis functions on different shapes are not aligned. After

applying the transform predicted from SpecTN, different spectral

domain could be synchronized and the eigenbasis functions align.

synchronization in this part is sufficient. In practice, we

synchronize the top 15 basis functions sorted by the fre-

quency. This idea has been verified effective by [21].

Regularization Regularizations are used during training

to enforce the functional maps to be injective and prevent

them from becoming degenerate. To be specific, we force

the output C of SpecTN to be close to an orthogonal

map, namely, in the overall loss function we add a term

‖CCT − I‖2F . With this regularization, CT can be used

to approximate the inverse map. Such a maneuver is more

friendly to differentiation and easier to train.

Initialization by precomputed functional map Given

the huge optimization space and the non-convex objective, a

good starting point helps to avoid optimization from getting

stuck in bad local minima. As stated above, our linear

transformation C can be interpreted as a functional map;

therefore, it is natural for us to initialize C accordingly and

then refine it to better serve the end-task. To this end, we

first precompute a set of function maps Cpre for each shape

by an external routine, which roughly align each individual

spectral domain of S to a canonical domain. Then we

pretrain the SpecTN separately in a supervised manner:

minimize
Θ

∑

i

‖SpecTN(Bv,i; Θ)− Cpre,i‖
2

where i indexes shapes. This pretrained SpecTN is plugged

into the SyncSpecCNN pipeline and fine-tuned while op-

timizing a specific task such as shape segmentation. Vali-

dated by our experiment, the pretraining step is crucial.

Next we introduce how the external routine precomputes

a functional map, which aligns the spectral domain of S to

a canonical one of an “average” shape S̄. We start from the

construction of the “average” shape and then proceed to the

computation of the functional map.

The geometry of S̄ is not generated explicitly. Instead,

S̄ is represented by its volumetric adjacency matrix W̄v ,

which depicts the connectivity of voxels in the volumetric
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space that all shapes are voxelized. W̄v is obtained by aver-

aging the volumetric adjacency matrices Wv of all shapes.

The Wv for each shape S is the adjacency matrix of the

corresponding volumetric graph, whose vertices are all the

voxels and edges indicate the adjacency of occupied voxels

in the volumetric space.

The functional map C from S to S̄ could be induced

from the spatial correspondences between S and S̄, by the

primal-dual relationship [21]. Specifically, we already have

the bases of S and S̄, as well as the rough spatial corre-

spondences between them from the volumetric occupancy.

This map can then be discovered by the approach proposed

in [21]. For more implementation details of our framework,

please refer to our supplementary.

In Figure 4, we show an example of how different spec-

tral domains are synchronized after applying the functional

map predicted from our SpecTN.

5. Experiment

Our proposed SyncSpecCNN takes one graph vertex

function as input and predicts another as output. As a

generic framework, the prediction is not limited to a specific

type of graph vertex function and can be tailored towards

different goals. To evaluate the effectiveness of our frame-

work, we divide our experiments into four parts. First, we

evaluate on a benchmark of 3D shape segmentation [4, 29].

Second, we evaluate on keypoint prediction task using a

new large scale keypoint annotation dataset. Third, we

perform control experiments to compare different design

choices of the framework. Last, we show qualitative results

and analyze error patterns. We also analyze the stability

of our system under input sampling density variations and

we refer the readers to supplementary for details. Worth

to mention, in most of our experiments, input shapes are

represented as point clouds instead of meshes. We convert

each point cloud into a k-nearest neighbor graph (k = 6 in

all experiments), which will be used as our shape graph G.

5.1. Dataset

For 3D shape segmentation task, we use a large scale

shape part annotation dataset introduced by [29], which

augments a subset of ShapeNet models with semantic part

annotations. The dataset contains 16 categories of man-

made shapes, with 2 to 6 parts per category. In total there

are 16,881 models with expert verified part annotations. In

addition, we use the official train/test split provided along

with ShapeNet models.

For the keypoint prediction task, we build a large scale

keypoint annotation dataset, containing 1,337 chair models

with 10 keypoints per shape, in contrast to traditional small

scale dataset [14] which has at most 100 shapes annotated

per category. These keypoints are all manually annotated

by experts with consistency across different shapes.

5.2. Shape Part Segmentation

Per-category shape part segmentation We first conduct

part segmentation assuming the category label of each shape

is known, as the setting in [29]. The task is to predict a

part label for each sample point on shapes. We compare

our framework with traditional learning-based techniques

[27, 29] leveraging on local geometric features and shape

alignment cues, as well as recent deep learning based ap-

proaches [2] which also fall into the family of graph CNNs.

In addition we design an additional baseline using a 3D vol-

umetric CNN architecture, denoted as Voxel CNN, which

generalizes VoxNet [20] for segmentation tasks. The net-

work has 10 convolutional layers without down-sampling

and keeps a receptive field of 19 with spatial resolution of

32. We compute per-point features in the preprocessing step

as is in [29] and use the same set of input for all baselines

except Voxel CNN. The set of input shapes are pre-aligned

using a hierarchical joint alignment algorithm described in

[4]. Point intersection over union (IoU) is used as evaluation

metric, averaged across all part classes. Cross-entropy loss

is minimized during training.

We evaluate our framework in two settings, with or

without SpecTN, and compare the results in Table 2.

Note that on most categories our approach achieves the

best performance and on average outperforms state of the

art by a large margin. In comparison to [2], the state of the

art in the family of graph CNNs, our approach introduces

spectral dilated kernel parametrization, which increases the

effectiveness of spectral CNN framework. Moreover, the

performance gain from SpecTN shows that synchronizing

spectral domains would greatly increase the generalizability

across shapes of different topology and geometry.

Cross-category shape part segmentation Next we eval-

uate our approach on the part segmentation task in a cross-

category setting. In this task, shape category label is not

known during the test phase and for each point the network

needs to select one of the part label from all possible part

labels in all categories. Cross-category setting introduces

larger geometric and topological variance among shapes,

thus could help examining the spectral CNN’s ability of

recognizing objects. At the same time the impact of spectral

domain misalignment becomes stronger, providing a better

testbed for validating the effectiveness of SpecTN. Since

this experiment is proposed to verify design choices of

spectral CNN, we mainly compare with [2]. We mix the 16

categories of shapes in [29] and train a single network for all

categories. After predicting point segmentation labels, one

can classify shapes through a point-wise majority voting

scheme. Point IoU and classification accuracy (Acc) are

chosen as the evaluation metric for part segmentation and

object categorization, respectively. The results are shown in

the 2nd and 3rd column of Table 3.

Our approach outperforms the baseline ACNN by a large

margin on both segmentation and classification. Note that
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category mean plane bag cap car chair ear-

phone

guitar knife lamp laptop motor-

bike

mug pistol rocket skate-

board

table

Wu14 [27] - 63.20 - - - 73.47 - - - 74.42 - - - - - - 74.76

Yi16 [29] 81.43 80.96 78.37 77.68 75.67 87.64 61.89 91.79 85.36 80.59 95.58 70.59 91.85 85.94 53.13 69.81 75.33

ACNN [2] 79.63 76.35 72.89 70.80 72.72 86.12 71.14 87.84 81.98 77.43 95.49 45.68 89.49 77.41 49.23 82.05 76.71

Voxel CNN 79.37 75.14 72.80 73.28 70.00 87.17 63.50 88.35 79.58 74.43 93.92 58.67 91.79 76.41 51.16 65.25 77.08

Ours1 83.48 80.61 81.62 76.92 73.86 88.65 74.48 89.03 85.34 83.47 95.53 62.74 92.01 80.88 62.10 82.23 81.36

Ours2 84.74 81.55 81.74 81.94 75.16 90.24 74.88 92.97 86.10 84.65 95.61 66.66 92.73 81.61 60.61 82.86 82.13

Table 2. IoU for part segmentation on 16 categories. To compute mean IoU, per category IoU is weighted by the corresponding shape

number and then averaged. Ours1 represents a variation of our framework without SpecTN and Ours2 corresponds to our full pipeline

with SpecTN. On average, our approach outperforms all the baseline including both traditional machine learning and deep learning based

methods by a large margin. We also achieve the highest IoU on most of the categories.

cross cat IoU Acc partial complete

ACNN 69.22 93.99 69.21 79.63

Ours1 79.65 99.59 76.19 83.48

Ours2 81.97 99.71 78.02 84.74

Table 3. The 2nd and 3rd column of the table reports IoU for cross

category part segmentation along with an induced classification

accuracy. 4th and 5th column of the table reports IoU for part seg-

mentation on partial shapes and complete shapes correspondingly.

Our1 and Our2 corresponds to our framework without and with

SpecTN respectively. In all experiments we beat the baseline by a

large margin.

ACNN [2] does not explicitly conduct multi-scale analysis

and is not designed for 3D shapes with large non-isometric

variations, thus generalizes less well across a diverse set

of shapes. Our framework, in contrast, could effectively

capture multi-scale context information, a feature that is

highly important for both segmentation and classification.

The spectral domain synchronization ability of SpecTN

further improves our generalizability, leading to an extra

performance gain as is shown in Table 3.

Partial data part segmentation To evaluate the robust-

ness of our approach to incomplete data, we conduct part

segmentation on simulated scans of 3D shapes from a single

viewpoint. To be specific, we generate N = 6 simulated

scans for each 3D shape in the part annotation dataset [29]

from random viewpoints, and then use these partial point

cloud with part annotations for train and test. All the

partial point clouds are normalized to fit into a unit cube.

Following the train/test split provided by [4], we train our

network to segment shape parts for each category. Again

we compare our method with ACNN [2]. IoU is used as

evaluation metric and the results are shown in the 4th and

5th column of Table 3.

Our approach outperforms the baseline on partial data

part segmentation by a large margin. In particular, from

complete shape to partial shape setting, the performance

drop of our approach is less significant than the baseline,

reflected by the gap of mean IoU between the complete data

setting and the partial setting. It verifies that our method

is more robust to data incompleteness. We surmise that

the performance of ACNN is heavily influenced by noisy

and sensitive principal curvature estimation on partial scans

since this step plays a crucial role in determining its local

frames; whereas our approach makes less assumption about

quality of the underlying shape.

5.3. Keypoint Prediction

Our framework is not limited to part segmentation but

could learn more general functions on graphs. In this

section, we evaluate our framework on the keypoint pre-

diction task. We associate each keypoint an individual

label and assign all the non-keypoints a background class

label. The keypoint prediction problem could be treated as

a multi-class classification problem and the cross-entropy

loss is optimized during training. We evaluate our ap-

proach against previous state-of-the-art method [10]. [10]

first jointly aligns all the shapes in 3D space via free-form

deformation and then propagates keypoint labels to test

shapes from its K nearest training shapes. We manually

tune K and report the best performance of this method.

Five-folds cross validation is adopted during evaluation, and

PCK (percentage of correct keypoints) is used as evaluation

metric. We show the PCK curve for the two approaches

in Figure 5. Each point on a curve indicates fraction of

correctly predicted keypoints for a given Euclidean error

threshold. Our approach outperforms [10], in particular,

more precise predictions can be obtained by our method

(see the region close to y-axis).

5.4. Diagnosis

Spectral Dilated Kernel Parametrization We evaluate

our dilated kernel parametrization from two aspects: the

basis function choice and kernel scale choice. Table 4

summarizes all the comparison results, as explained below.

We explore the expressive power of different kernel ba-

sis. In the family of spectral CNN, convolution kernels are

parametrized by a linear combination of basis functions,

i.e. modulated exponential window in our case. Previous

methods have proposed to use different basis functions such

as cubic spline basis [3] and exponential window basis [2].

Each row of Table 4 corresponds to a basis choice.

We also evaluate the effectiveness of multi-scale analysis

by changing the spatial sizes of convolution kernels. We
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Figure 5. Keypoint prediction comparison. We draw PCK curves

for both methods while changing the error threshold. Our ap-

proach outperforms [10] on average and has particularly high local

accuracy when the error threshold is small, i.e. our approach

reaches pck = 0.29 when error threshold equals 0.01, while [10]

reaches pck = 0.16

compare with two baseline choices: set all kernel size to be

the smallest one in the current network; set to be the largest

one. Each column of Table 4 corresponds to a choice.

All numbers are reported on the cross-category part seg-

mentation task, by IoU. We only take the XYZ coordinate

function of graph vertices as network input as opposed to

handcrafted geometric features which may have already

capture some multi-scale information. Also we remove the

7th and 8th layers from our network which involves SpecTN

and is designed for very large convolution kernels.

It can be seen that modulated exponential window ba-

sis has a better expressive power compared with baselines

for our segmentation task. Using multi-scale kernels also

enables the aggregation of multi-scale information, thus

producing better performance.

small large multi-scale

Cubic Spline 0.5369 - -

Exp Window 0.6285 0.7223 0.7386

Modulated Exp Window 0.6997 0.7341 0.7524

Table 4. We compare different kernel basis and kernel size choices,

using cross category part segmentation task for evaluation. IoU is

reported in the table. In particular, we compare cubic spline basis

[3], exponential window basis [2] and our modulated exponential

window. All convolution kernels are parametrized by the same

number of parameters and we tweak the hyper parameters of

different basis functions so that their spatial sizes are comparable.

We also compare three different kernel size choices. ”small”

indicates using small convolution kernel only; ”large” indicates

using large convolution kernel only; ”multi-scale” uses kernels of

different sizes in different layers, as in our current design. It’s not

obvious how to parametrize multi-scale convolution kernels using

cubic spline basis functions, therefore we evaluate cubic spline

basis with small-sized kernels only.

5.5. Qualitative Results and Error Analysis

Figure 6 shows segmentation results generated from our

network on two categories, Chair and Lamp. Representative

good results are shown in the first block and typical error

patterns are summarized from the second to fourth blocks.

Most of our segmentation is very close to ground truth

fuzzy part boundaries semantic ambiguity part missing

ground truth prediction ground truth prediction ground truth prediction

correct segmentation

ground truth prediction

Figure 6. We visualize some segmentation results from our net-

work prediction. The first block shows typical correct segmenta-

tions, notice the huge shape variation we can cover. The second to

fourth blocks summarize different error patterns we observe in the

results.

as is shown in the first block. We can accurately segment

shapes with large geometric or topological variations like

wide bench v.s. ordinary chair, pendant lamp v.s. table

lamp. The lamp base on the first row and the lampshade

on the second row are very similar regarding their local

geometry; however, since our network is able to capture

large scale context information, it could still differentiate

the two and segment shapes correctly.

We observe several typical error patterns in our results.

Most segmentation error occurs along part boundaries.

There are also cases where the semantic definition of parts

has inherent ambiguities. We also observe a third type of

error pattern, in which our prediction might miss a certain

part completely, as is shown in the fourth block.

6. Conclusion

Spectral domain incompatibility among non-isometric

spaces is an important issue for deep learning on graphs,

obstructing effective parameter sharing. Our solution is

to incorporate end-to-end learnable maps across the func-

tional space of graphs to synchronize their spectral domains.

In addition, we propose a spectral domain dilated kernel

parametrization to allow efficient multi-scale information

aggregation. Other applications that analyze general graphs

beyond 3D shapes may also benefit from our framework. In

the future, it would be interesting to explore how to increase

the robustness of SpecTN on general graphs where good ini-

tializations may not be easy to acquire. A possible direction

is to tighten the family of functional map regularizers.
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