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Abstract

Tensor completion has attracted attention because of its

promising ability and generality. However, there are few

studies on noisy scenarios which directly solve an optimiza-

tion problem consisting of a “noise inequality constraint”.

In this paper, we propose a new tensor completion and

denoising model including tensor total variation and ten-

sor nuclear norm minimization with a range of values and

noise inequalities. Furthermore, we developed its solution

algorithm based on a primal-dual splitting method, which

is computationally efficient as compared to tensor decom-

position based non-convex optimization. Lastly, extensive

experiments demonstrated the advantages of the proposed

method for visual data retrieval such as for color images,

movies, and 3D-volumetric data.

1. Introduction

Completion is a technique of filling missing elements of

incomplete data using the values of reference (available)

elements and the structural assumptions (priors) of data.

When the reference and missing elements are independent,

e.g., white noise, completion is impossible. However, most

real-world data have a few redundant properties that can

be used for completion, such as symmetry, repetition, and

sparsity. For example, the frequency-domain of natural im-

ages is typically considerably sparse, and this property leads

to an efficient compression ratio in a JPEG encoder [31].

Moreover, data obtained using multi-spectral imaging or

microphone arrays can frequently be represented by linear

combinations of a few patterns, which allows for efficient

data analysis, such as low-rank matrix/tensor decomposi-

tions [25, 12]. Structural assumptions must be used in com-

pletion to obtain good performance, and assumptions about

the structure of data affect the results of completion.

In recent years, low-rank priors have gained importance

in matrix and tensor completion problems [6, 23] and sig-

nal separation [21, 4]. A promising application of low-rank

based completion is a recommender system, which auto-

matically recommends appropriate products for customers

based on purchase history. As there is no noise in this type

of data, standard noiseless matrix and tensor completion

frameworks can be applied [3, 7, 24, 18, 8, 23, 20]. In this

case, nuclear norm minimization is regarded as the standard

approach because strict rank minimization is NP-hard [11],

and a nuclear norm relaxes the NP-hard problem to a convex

optimization problem [26].

Visual data retrieval is another application of low-rank

based completion. However, it typically requires ma-

trix and tensor completion frameworks in a noisy scenario

[17, 5, 15], and using only low-rank priors may not be suf-

ficient. In this study, we address the challenging problem

of simultaneous matrix and tensor completion and denois-

ing. Low-rank based matrix completion in a noisy scenario,

which minimizes a matrix nuclear norm under a noise in-

equality constraint, has been discussed in [5]. However, this

algorithm involves solving convex optimization problems

multiple times to tune a hyperparameter. The following two

critical issues exist: (1) Solving an optimization problem,

which includes a noise inequality constraint, using convex

optimization only once. (2) Developing a robust model of

matrix/tensor completion in a noisy scenario.

To resolve issue (1), in this study, we propose a primal-

dual splitting (PDS) algorithm [9] for problems consisting

of proximable functions and constraints. For this purpose,

we derive that the proximal mapping of a noise inequal-

ity constraint, which is not trivial, can be obtained using

analytical calculation. Furthermore, to improve the robust-

ness against noise (issue (2)), we introduce total variation

(TV) regularization for a tensor while considering tensor

nuclear norm minimization. The proposed flexible model

can include low-rank exact/inexact matrix/tensor comple-

tion with/without TV regularization. In practice, there are

several types of visual data such as low-rank oriented, low-

TV oriented, and intermediate. As the proposed model can

adjust the weights of low-rank and low-TV priors, various
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types of data can be retrieved flexibly.

The remainder of this paper is organized as follows: In

Section 2, prior studies on matrix and tensor completion

methods are reviewed. In Sections 3 and 4, we propose a

new model for tensor completion based on low rank and

TV, and its optimization algorithm using a PDS approach.

In Section 5, we demonstrate the advantages of the pro-

posed method over selected state-of-the-art methods using

color images, movies, and 3D-volumetric images. Lastly,

we state the conclusions in Section 6.

1.1. Notations

The notations used in this paper follow several rules. A

vector, a matrix, and a tensor are denoted by a bold lower-

case letter, a ∈ R
I , a bold uppercase letter, B ∈ R

I×J ,

and a bold calligraphic letter, C ∈ R
J1×J2×···×JN , respec-

tively. An N th-order tensor, X ∈ R
I1×I2×···×IN , can

be transformed into a vector and N matrix forms, which

are denoted using the same character, x ∈ R

∏N
n=1

In and

X(n) ∈ R
In×

∏
k 6=n Ik for n ∈ {1, 2, ..., N}, respectively.

An (i1, i2, ..., iN )-element of X is denoted by xi1,i2,...,iN or

[X ]i1,i2,...,iN . Operator ⊛ represents the Hadamard prod-

uct, defined as [X ⊛Z]i1,i2,...,iN = xi1,i2,...,iN zi1,i2,...,iN .

2. Review of prior works in matrix and tensor

completion

We consider a general matrix/tensor completion problem

as follows:

minimize
X

f(X ), s.t. ||PΩ(X − T )||2F ≤ δ, (1)

where T and X ∈ R
I1×I2×···×IN are the input and out-

put N -th order tensors, respectively, a cost function, f(·) :
R

I1×I2×···×IN → R, is used to evaluate structural assump-

tions, PΩ(Z) := Q ⊛ Z with Q ∈ {0, 1}I1×I2×···×IN is

an index tensor that represents the missing and available el-

ements of T as 0 and 1, respectively. A support set, Ω, is

defined as Ω := {(i1, i2, ..., iN ) | qi1,i2,...,iN = 1}. The

value of δ depends on the noise level of the observed ele-

ments in T , and on missing ratio ρ := 1− |Ω|
∏

N
n=1

In
.

As an inequality constraint is relatively difficult to ad-

dress, its Lagrange-like optimization problem is commonly

used, given by

minimize
X

f(X ) +
µ

2
||PΩ(X − T )||2F , (2)

where µ is a trade-off parameter between a prior and an

error term.

Problems (1) and (2) are linked by δ and µ. Figure 1

shows the relationship between δ and µ in tensor comple-

tion. In hyperparameter selection, δ can be selected from

[0, σ2|Ω|] or a narrower range considered in [5] if noise vari-

ance σ2 is known; in contrast, µ is typically selected from
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Figure 1. Examples of relationships of µ vs δ (left), µ vs signal-

to-distortion ratio (SDR) (center), and δ vs SDR (right).

(0,∞). Based on this, we claim that Problem (1) is more

suitable than Problem (2) for hyperparameter selection.

2.1. Matrix completion models

First, we consider a matrix completion problem, which

is a case of N = 2 in (1). When δ = 0, Problem (1) is

referred to as ‘exact’ matrix completion.

In [5], a case where the cost function is given by

a nuclear norm has been discussed, where the nuclear

norm of matrix Z ∈ R
I×J is defined by ||Z||∗ :=∑min(I,J)

i=1 σi(Z), and σi(Z) is the i-th largest singular

value of Z. To solve Problem (1) with the nuclear norm,

an algorithm has been proposed, which requires solving

X∗
µ = argmin

X

||X||∗ +
µ

2
||PΩ(X − T )||2F , (3)

multiple times to determine an appropriate value of µ > 0
such that ||PΩ(X

∗
µ − T )||2F = δ. As iterative calculations

of singular value decomposition are required to solve Prob-

lem (3) [24], the algorithm is computationally expensive.

We refer to this algorithm as low-rank matrix completion

with noise (LRMCn).

There are several studies about applications of image de-

blurring, denoising, and interpolation [27, 30, 13], where a

cost function is given by TV. The standard TV for matrix

Z ∈ R
I×J is defined by

||Z||TV :=
∑

i,j

√
(∇1zi,j)2 + (∇2zi,j)2, (4)

where an n-th mode partial differential operator is defined

by ∇nzi1,i2,...,iN := zi1,...,(in+1),...,iN − zi1,...,in,...,iN .

Problem (2) with the nuclear norm and TV is discussed

in [28], in which it was proposed to minimize the nuclear

norm using singular value thresholding and TV using gradi-

ent descent, alternately. However, using standard gradient-

based optimization is not appropriate because the nuclear

norm and TV are not differentiable functions. An alterna-

tive efficient optimization approach referred to as ‘proximal

splitting’ is gaining attention [9, 1]. We discuss using this

approach for Problem (1) in this paper.

2.2. Tensor completion models

When N ≥ 3 in (1), it is not a simple extension of ma-

trix completion because of special properties of tensors. For
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example, there are two types of ranks in tensors, i.e., the

canonical polyadic (CP) rank and Tucker rank [19]. As the

CP rank has several difficult properties, low Tucker-rank

based completion is relatively well studied.

In [22, 23], a case of exact tensor completion, which is

Problem (1) with δ = 0, where the cost function is given

by a tensor nuclear norm has been discussed, in which the

tensor nuclear norm, fLR(X ), is defined by

fLR(X ) :=

N∑

n=1

λn||X(n)||∗, (5)

where λn ≥ 0 (∀n) represents the weight parameters for

individual tensor modes, and X(n) ∈ R
In×

∏
k 6=n Ik is the

n-th mode unfolded matrix of tensor X . The alternating

direction method of multipliers (ADMM) [2] has been em-

ployed. Furthermore, its noisy scenario has been discussed

in [10], which is formulated as Problem (2) with the tensor

nuclear norm. We refer to this method as low n-rank tensor

completion (LNRTC).

In [14], a case of Problem (2), in which the cost func-

tion is given by generalized TV (GTV) has been discussed,

where GTV is defined by the sum of the generalized matrix

TV of individual mode-unfolded matrices of a tensor as

fGTV(X ) :=

N∑

n=1

wn||X(n)||GTV, (6)

where wn ≥ 0 (∀n) represents the weight parameters for in-

dividual tensor modes, and ||Z||GTV for matrix Z ∈ R
I×J

is a GTV-norm, which is defined by

||Z||GTV :=
∑

i,j

√∑

θ∈Θ

τθ(∇̃θzi,j)2, (7)

where τθ ≥ 0 represents weight parameters, ∇̃θ is

the differential operator for direction θ, for example,

∇̃0zi,j = z(i+1),j − zi,j , ∇̃45zi,j = z(i+1),(j+1) − zi,j ,

∇̃90zi,j = zi,(j+1) − zi,j , and ∇̃135zi,j = z(i−1),(j+1) −
zi,j . This convex optimization problem is solved us-

ing the ADMM in [14]. We typically consider Θ =
{0, 90} for standard matrix TV (4). In contrast, Θ =
{0, 45, 90, 135} is considered for GTV. When we consider

Θ = {0} and τ0 = 1 for all n in GTV, it is given

by fGTV(Z) =
∑N

n=1 wn

∑
i1,i2,...,iN

|∇nzi1,i2,...,iN | =∑
i1,i2,...,iN

∑N
n=1 wn|∇nzi1,i2,...,iN |. In this case, GTV is

anisotropic with respect to N modes in the tensors, which

leads to corruption of diagonal edges.

Note that we can consider a more simple, straightfor-

ward, and isotropic tensorial extension of matrix TV, which

is defined by

fTV(Z) :=
∑

i1,i2,...,iN

√√√√
N∑

n=1

wn(∇nzi1,i2,...,iN )2. (8)

Instead of GTV, we consider this TV in this paper.

3. Proposed model

In this section, we propose a new model for tensor com-

pletion and denoising using a tensor nuclear norm and

TV simultaneously. The proposed optimization problem is

given by

minimize
X

αfTV(X ) + βfLR(X ),

s.t. vmin ≤ X ≤ vmax, (9)

||PΩ(T −X )||2F ≤ δ,

where 0 ≤ α ≤ 1 and β := 1 − α are the weight param-

eters between the TV and nuclear norm terms, and the first

constraint in (9) imposes all values of the output tensor to

be included in a range, [vmin, vmax]. The first and second

constraints are convex and the indicator functions are given

by

iD(X ) :=

{
0 vmin ≤ X ≤ vmax

∞ otherwise
, (10)

iδ(X ) :=

{
0 ||PΩ(T −X )||2F ≤ δ
∞ otherwise

. (11)

Using iD(X ) and iδ(X ), tensor completion problem (9)

can be rewritten as the minimization of αfTV(X ) +
βfLR(X )+iD(X )+iδ(X ). As these four functions are not

differentiable, traditional gradient-based optimization algo-

rithms, e.g., the Newton method, cannot be applied. In Sec-

tion 4, we introduce and apply an efficient approach, re-

ferred to as PDS, to solve proposed optimization problem

(9).

3.1. Characterization of the proposed model

In this section, we explain the relationship between the

proposed model and prior works introduced in Section 2.

There are three characterizations of the proposed model.

First, when N = 2, α = 0, β = 1, λ = [1, 0]T ,

vmin = −∞, and vmax = ∞, the proposed model can

be characterized as LRMCn [5]. In contrast with LRMCn,

which solves several convex optimization problems to tune

µ, the proposed method can obtain its solution by solving

only one convex optimization problem, and provides its ten-

sorial extension.

Second, when α = 0, β = 1, vmin = −∞, and

vmax = ∞, the proposed method can be characterized as

LNRTC [10]. In contrast with LNRTC, which employs the

ADMM for solving a type of Problem (2), the proposed

method employs the PDS algorithm for solving a type of

Problem (1).

Third, when α = 1, β = 0, vmin = −∞, and vmax =∞,

the proposed model can be characterized as an isotropic ver-

sion of GTV [14]. In contrast with GTV, in which a problem
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is solved using the ADMM, which requires matrix inversion

through the fast Fourier transform (FFT) and inverse FFT,

the proposed method does not need to consider matrix in-

version. Furthermore, the proposed method tunes the value

of δ instead of µ.

Additionally, our model differs from a recent work pro-

posed in [16] because it applies some constrained fixed-

rank matrix factorization models into individual mode-

matricization of a same tensor in noiseless scenario. The

problem is non-convex and it is not designed for a noise

reduction model.

4. Optimization

4.1. Primaldual splitting algorithm

The PDS [9] algorithm is a framework used to split

an optimization problem including non-differentiable func-

tions into several sub-optimization processes using proxi-

mal operators. The proximal operator of a function, g(·), is

defined as

proxg(Z) := argmin
X

g(X ) +
1

2
||X −Z||2F , (12)

where Z and X are arbitrary variables. When the proximal

operator of g(·) can be calculated analytically, g(·) is re-

ferred to as a ‘proximable function’. First, we introduce the

general framework of the PDS algorithm for convex opti-

mization. We consider the following optimization problem:

minimize
x

f(x) +

J∑

j=1

hj(yj),

s.t. yj = Ljx, (13)

where f(·) and hj(·) are convex proximable functions, x

and yj are the primal and dual variables, respectively, and

Lj represents linear operators. Optimization problem (13)

is convex and can be solved using the following PDS algo-

rithm:

xk+1 = proxγ1f


xk − γ1

J∑

j=1

LT
j y

k
j


 ; (14)

ỹk+1
j = yk

j + γ2(2x
k+1 − xk); (∀j) (15)

yk+1
j = ỹk+1

j − γ2prox 1

γ2
hj

[
1

γ2
ỹk+1
j

]
; (∀j) (16)

where γ1 > 0 and γ2 > 0 are step-size parameters for the

primal and dual steps, respectively.

4.2. Proposed algorithm

In this section, we apply the PDS algorithm to the pro-

posed optimization problem. Introducing dual variables

U ∈ R
I1×I2×···×IN , Y = [y1,y2, ...,yN ] ∈ R

∏N
n=1

In×N ,

and {Z(n) ∈ R
I1×I2×···×IN }Nn=1, Problem (9) can be

rewritten as

minimize
x

iδ(X ) + iD(U)

+ α||Y ||2,1 + β

N∑

n=1

λn||Z(n)
(n)||∗, (17)

s.t. U = X , yn =
√
wnDnx (∀n),

Z
(n) = X (∀n),

where x ∈ R

∏N
n=1

In is the vectorized form of X and Dn

is the linear differential operator of the n-th mode of the

tensor. || · ||2,1 is the l2,1-norm of the matrix, defined as

||Z||2,1 :=
∑I

i=1

√∑J
j=1 z

2
ij for matrix Z ∈ R

I×J . Al-

gorithm 1 can be derived using the PDS framework in Prob-

lem (17). We refer to this algorithm as the “low-rank and

TV (LRTV)–PDS” algorithm.

Note that the l2,1-norm, the nuclear norm, iD, and iδ are

proximable functions whose calculations are given by

proxγ||·||2,1(Z) = Z ⊛ [s, ..., s], (18)

proxγ||·||∗(Z) = U max(Σ− γ, 0)V T , (19)

proxiD
(Z) = max(min(Z, vmax), vmin), (20)

proxiδ
(Z) = Q̃⊛ T + (1− Q̃)⊛Z, (21)

where s = [s1, ..., sI ]
T ∈ R

I with si =

max
(
1− γ

||zi||2 , 0
)

for Z = [z1, z2, ..., zI ]
T ∈ R

I×J ,

(U ,Σ,V ) are the left, center-diagonal, and right matrices,

respectively, of the singular value decomposition of Z, and

Q̃ = max
(
0, 1−

√
δ

||Q⊛(Z−T )||F

)
Q. Proximal operators

(18), (19), and (20) are well known; however, (21) is not.

Thus, we prove (21) in Section 4.2.1.

4.2.1 Proof of (21)

To prove (21), we consider the following problem:

min
X

1

2
||Z −X ||2F s.t. ||Q⊛ (T −X )||2F ≤ δ. (22)

For elements qi1,i2,...,iN = 0, the optimization problem

can be expressed as the minimization of (zi1,i2,...,iN −
xi1,i2,...,iN )2. Thus, we obtain

x∗
i1,i2,...,iN

= zi1,i2,...,iN (qi1,i2,...,iN = 0). (23)

Eq. (21) satisfies (23).

For elements qi1,i2,...,iN = 1, the optimization problem

is given as

minimize
xq

1

2
||zq − xq||22 s.t. ||tq − xq||22 ≤ δ, (24)
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Algorithm 1 LRTV–PDS algorithm

1: input : T , Q, δ, vmin, vmax, α, w, β, λ, γ1, γ2;

2: initialize : X 0, U0, Y 0, Z(n)0 (∀n), k = 0;

3: repeat

4: v ← uk +
∑N

n=1 z
(n)k +

∑N
n=1

√
wnD

T
ny

k
n ;

5: xk+1 = proxiδ

[
xk − γ1v

]
;

6: h← 2xk+1 − xk;

7: ũ← uk + γ2h;

8: uk+1 = ũ− γ2proxiD

[
1
γ2

ũ
]
;

9: Ỹ ← Y k + γ2[
√
w1D1h, ...,

√
wNDNh];

10: Y k+1 = Ỹ − γ2prox α
γ2

||·||2,1

[
1
γ2

Ỹ
]
;

11: Z̃
(n) ← Z

(n)k
(n) + γ2H(n); (∀n)

12: Z
(n)k+1
(n) = Z̃

(n) − γ2prox βλn
γ2

||·||∗

[
1
γ2

Z̃
(n)

]
; (∀n)

13: k ← k + 1;

14: until convergence
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Figure 2. Convergence curves for various values of γ1.

where zq , tq , and xq are vectors consisting of all elements

of Z , T , and X , respectively, that satisfy qi1,i2,...,iN = 1.

The solution of (24) is given by a projection of zq on the

sphere with center tq and radius
√
δ, or by the zq that is in

that sphere. We obtain

x∗
q = tq +min

(
||zq − tq||2,

√
δ
) zq − tq

||zq − tq||2
= [1−min(1, η)]tq +min(1, η)zq

= max(0, 1− η)tq + [1−max(0, 1− η)]zq, (25)

where η =
√
δ

||zq−tq||2 . Eq. (21) satisfies (25). �

5. Experiments

In this section, we compare the proposed method with

several state-of-the-art methods by conducting image re-

covery experiments. For convex optimization, we selected

LNRTC [10] and GTV [14] for comparison. In contrast,

for non-convex optimization (tensor decomposition), we se-

Table 1. Values of (γ1, γ2)

(α, β) (γ1, γ2)
(0.0, 1.0) (1.00, 0.125)

(0.1, 0.9) (0.50, 0.250)

(0.2, 0.8) (0.20, 0.625)

(0.3, 0.7) (0.10, 1.250)

(0.4, 0.6) (0.10, 1.250)

(0.5, 0.5) (0.05, 2.500)

(0.6, 0.4) (0.04, 3.125)

(0.7, 0.3) (0.03, 4.166)

(0.8, 0.2) (0.02, 6.250)

(0.9, 0.1) (0.01, 12.50)

(1.0, 0.0) (0.01, 12.50)

lected smooth parallel factor (PARAFAC) tensor comple-

tion with total/quadratic variation (SPCTV/SPCQV) [32].

In contrast with LNRTC, which is based on a low Tucker-

rank prior, SPCTV/SPCQV is based on a low CP-rank prior.

We used the SPCTV/SPCQV MATLAB toolbox, which is

distributed by IEEEXPLORE1. As packages for LNRTC

and GTV might not be distributed, we implemented these

algorithms in MATLAB. Please note that we implemented

GTV using the PDS algorithm instead of the ADMM to pre-

vent the FFT, and the solutions obtained using the ADMM

and PDS should be included in the identical convex set be-

cause of the convexity of the optimization problem.

5.1. Evaluation of optimization

In this experiment, we evaluated the convergence

behaviors and computational times of the proposed

method. We prepared various color images in sizes

of (M [pixels] × M [pixels] × 3 [colors]) for M ∈
{64, 128, 256, 512, 1024, 2048}; 30% voxels were arbitrar-

ily removed and Gaussian noise was added to these im-

ages. Figure 2 shows an example of the convergence curves

obtained by applying the proposed algorithm to a (128 ×
128 × 3) image with α = β = 0.5 for various values of

(γ1, γ2), considered as γ1 ∈ {0.0001, 0.001, 0.01, 0.1, 1}
and γ2 = 1/(8γ1). It can be observed that the value of

γ1 should be in a suitable range to achieve convergence in

a short amount of time. In practice, we determined em-

pirically that suitable values of γ1 depend on the values of

α. For all following experiments, we selected the values of

(γ1, γ2) based on (α, β), by referring to Table 1, which was

obtained using hand tuning. Please note that we normalized

the range of values in the input tensors, T , as [0, 1], and

considered vmin = 0 and vmax = 1 for optimization. This

normalization is important for the selected values of γ1, γ2
to work correctly. For evaluation, we restore the range of

values in the output tensors, X , such as [0, 255] for 8-bit

images.

1http://ieeexplore.ieee.org/document/7502115/

media
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Figure 4. Test color images: ‘airplane’, ‘baboon’, ‘barbara’, ‘fa-

cade’ (left to right in the first row), ‘house’, ‘lena’, ‘peppers’, ‘sail-

boat’ (left to right in the second row).

Figure 3 shows a comparison of the computational times

of state-of-the-art tensor completion methods for various

rescaled images. The lines and bars represent the averages

and the standard deviations, respectively, for ten trials. It

can be observed that the proposed algorithm is faster than

other state-of-the-art algorithms, except LNRTC. Particu-

larly, SPCQV and SPCTV, which are tensor decomposition

based methods, were computationally expensive because

they solve non-convex optimization problems. In contrast,

LNRTC, GTV, and the proposed method solved convex op-

timization problems, and their computational times were

considerably lower. LNRTC by ADMM was faster than

GTV and the proposed algorithm by PDS.

5.2. Color image recovery

We evaluated the proposed method using color image

completion and denoising. Figure 4 shows the test im-

ages used in this experiment. Eight images have a size

of (256×256×3). All images were corrupted by remov-

ing arbitrary voxels and adding Gaussian noise, N (0, 20).
Missing ratios were considered as ρ ∈ {10%, 30%, 50%}.
For the proposed method, we tuned the values of α, λ,

and δ to evaluate the peak signal to noise ratio (PSNR).

Other parameters were considered as β = 1 − α, w =
[0.5, 0.5, 0.0]T , and λ = [λ/2, λ/2, 1−λ]T . Figure 5 shows

the color illustration of the PSNR values for various combi-

nations of α and λ in individual images. The most suitable

combinations of α and λ depend on the images. Three im-

ages, referred to as ‘house’, ‘lena’, and ‘peppers’, prefer

TV regularization (large α). In contrast, ‘facade’ prefers

nuclear norm regularization (small α). Other images, re-

ferred to as ‘airplane’, ‘baboon’, ‘barbara’, and ‘sailboat’,

prefer intermediate mixing of TV and nuclear norm regu-

Table 3. PSNR comparison in color movie (4D tensor) completion

and denoising

ρ Proposed GTV LNRTC SPCQV SPCTV

0.1 31.045 30.947 28.820 30.018 30.021

0.3 28.942 28.485 26.920 29.642 29.659

0.5 26.750 26.101 25.006 28.995 29.996

Table 4. SDR comparison for 3D-MR image completion and de-

noising

name ρ Proposed GTV LNRTC SPCQV SPCTV

citrus 0.1 25.646 25.186 23.852 23.743 23.706

citrus 0.3 23.410 22.920 20.948 22.251 22.115

citrus 0.5 20.919 20.644 18.112 20.459 20.162

tomato 0.1 27.980 27.865 26.231 24.896 24.890

tomato 0.3 27.187 26.782 24.516 24.492 24.460

tomato 0.5 26.014 25.429 22.785 23.825 23.717

larizations.

Table 2 shows the performances of color image recovery

for the proposed and selected state-of-the-art methods. For

all methods, we tuned all hyperparameters to obtain the best

performances manually. Except for the case of ‘facade’, the

proposed method outperformed state-of-the-art methods for

lower values of missing ratios (10% and 30%). The pro-

posed method exhibited the best performance for a missing

ratio of 50% for ‘house’, ‘lena’, and ‘peppers’, which pre-

fer TV regularization, as shown in Figure 5. For ‘facade’,

which prefers nuclear norm regularization, SPCTV exhib-

ited the best performance for all missing ratios. For ‘air-

plane’, ‘baboon’, ‘barbara’, and ‘sailboat’, which prefer in-

termediate mixing, SPCQV exhibited the best performance

for a missing ratio of 50%.

5.3. Color movie recovery

We evaluated the proposed method using color movie

completion and denoising. A data set, referred to as ‘boot-

strap’, is distributed by Microsoft Research2 [29]. We cor-

rupted it by removing arbitrary voxels and adding Gaus-

sian noise, N (0, 10). The input movie (4D tensor) has

a size of 120 pixels × 160 pixels × 3 color-channels ×
100 frames. We considered w = [0.4, 0.4, 0.0, 0.2]T and

λ = [0.2, 0.2, 0.2, 0.4]T , and (α, β, δ) were tuned manu-

ally. Figure 6 shows the results of movie recovery for the

proposed and selected state-of-the-art methods with 30%

missing voxels. The result for LNRTC is noisy, and the

result for GTV includes minor artifacts. With respect to

PSNRs, SPCTV and SPCQV were the best; however, the

results were blurred. In contrast, the result for the proposed

method was clear with a good PSNR. Table 3 shows the

values of PSNRs for various missing ratios. The proposed

method was the best for a missing ratio of 10%, and SPCTV

2http://research.microsoft.com/en-us/um/people/

jckrumm/wallflower/testimages.htm
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Figure 5. PSNR color maps for various values of hyperparameters α and λ using eight test color images with 30% missing elements. ‘#’ is

placed on the maximum values of PSNR in each colormap.

Table 2. PSNR comparison for test color image completion and denoising

name ρ (α, λ) Proposed GTV LNRTC SPCQV SPCTV

airplane 0.1 (0.100,0.200) 28.759 28.613 26.374 28.166 27.915

airplane 0.3 (0.100,0.000) 27.575 27.300 25.224 27.316 26.932

airplane 0.5 (0.100,0.200) 26.177 25.964 23.657 26.447 25.896

baboon 0.1 (0.100,1.000) 25.103 25.034 24.163 24.736 24.610

baboon 0.3 (0.100,1.000) 24.070 24.001 22.865 23.927 23.715

baboon 0.5 (0.100,1.000) 23.013 22.959 21.597 23.026 22.612

barbara 0.1 (0.100,0.800) 27.952 27.818 26.206 27.648 27.342

barbara 0.3 (0.100,0.400) 27.183 26.958 25.069 27.033 26.570

barbara 0.5 (0.100,0.200) 26.197 25.900 23.570 26.310 25.499

facade 0.1 (0.001,1.000) 28.242 25.975 27.829 28.897 28.979

facade 0.3 (0.001,1.000) 27.516 24.928 27.354 28.316 28.348

facade 0.5 (0.001,1.000) 26.555 23.672 26.300 27.431 27.469

house 0.1 (0.500,1.000) 30.329 29.962 26.885 29.037 28.633

house 0.3 (1.000,0.000) 29.501 29.106 26.100 28.452 27.923

house 0.5 (1.000,0.000) 27.975 27.780 24.519 27.592 26.929

lena 0.1 (0.500,0.000) 29.086 28.823 26.098 28.060 27.560

lena 0.3 (1.000,0.000) 28.320 27.885 25.048 27.352 26.742

lena 0.5 (0.500,0.200) 27.178 26.752 23.558 26.570 25.701

peppers 0.1 (1.000,0.000) 29.380 29.110 25.895 27.179 26.932

peppers 0.3 (0.500,0.000) 28.442 28.051 24.616 26.625 26.018

peppers 0.5 (0.500,0.000) 27.086 26.757 23.092 25.727 24.933

sailboat 0.1 (0.100,0.000) 27.386 27.162 25.374 26.487 26.316

sailboat 0.3 (0.100,0.200) 26.131 25.872 24.091 25.817 25.462

sailboat 0.5 (0.100,0.400) 24.581 24.315 22.527 24.843 24.224

was the best for missing ratios of 30% and 50%, based on

PSNR comparison.

5.4. 3Dvolumetric image recovery

We evaluated the proposed method using completion and

denoising for 3D-volumetric magnetic resonance (MR) im-

ages. Figure 7 shows test MR images and examples of cor-

rupted and recovered images. MR images were obtained

using a micro-MR imaging system. Original MR images

include minor noise. However, we assumed these images as

ground truth images, and corrupted these images syntheti-

cally for evaluation. Two MR images referred to as ‘citrus’

and ‘tomato’ have a size of (256 × 256 × 24). As each

voxel value is obtained using integration of a (1.5/8 mm ×
1.5/8 mm × 1.5 mm)-volume, the resolutions of the (x,y,z)-

axes are anisotropic. We consider w = [8/17, 8/17, 1/17]T

and λ = [1/3, 1/3, 1/3]T , and (α,β,δ) are tuned manually.

Table 4 shows the signal-to-distortion ratio (SDR) obtained

using the proposed and state-of-the-art methods for MR im-

age completion and denoising. It can be observed that the

proposed method outperforms all state-of-the-art methods

for all missing ratios.

6. Conclusions

In this paper, we proposed a new model and algorithm

for simultaneous tensor completion and denoising based
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(a) Original (b) Corrupted (c) LNRTC (26.92 dB) (d) GTV (28.49 dB)

(e) SPCQV (29.64 dB) (f) SPCTV (29.65 dB) (g) Proposed (28.94 dB)

Figure 6. Experimental results of color movie (4D tensor) completion and denoising: original data has a size of (120 × 160 × 3 × 100) and

is corrupted by 30% missing voxels and Gaussian noise (σ = 10). The 5th frame image, PSNRs, and computational times are described

for all methods.

(a) Original (b) Corrupted

(c) Comparison by zoomed patches: ‘citrus’ and ‘tomato’

Figure 7. Test 3D-MR image in a size of 256 × 256 × 24: (a) original full-observed image: ‘citrus’ (left) and ‘tomato’ (right), (b) image

with 30% missing elements corrupted by Gaussian noise, (c) patches of recovered images using the proposed and selected state-of-the-art

methods.

on nuclear norms and TV minimization. The proposed

model can be characterized as a generalization of several

prior works. Extensive experiments demonstrated that the

proposed method outperformed various state-of-the-art ten-

sor completion methods for color images, movies, and 3D-

volumetric data retrieval.
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