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Abstract

Convolutional networks for image classification progres-

sively reduce resolution until the image is represented by

tiny feature maps in which the spatial structure of the scene

is no longer discernible. Such loss of spatial acuity can limit

image classification accuracy and complicate the transfer

of the model to downstream applications that require de-

tailed scene understanding. These problems can be allevi-

ated by dilation, which increases the resolution of output

feature maps without reducing the receptive field of indi-

vidual neurons. We show that dilated residual networks

(DRNs) outperform their non-dilated counterparts in im-

age classification without increasing the model’s depth or

complexity. We then study gridding artifacts introduced by

dilation, develop an approach to removing these artifacts

(‘degridding’), and show that this further increases the per-

formance of DRNs. In addition, we show that the accuracy

advantage of DRNs is further magnified in downstream ap-

plications such as object localization and semantic segmen-

tation.

1. Introduction

Convolutional networks were originally developed for

classifying hand-written digits [9]. More recently, convolu-

tional network architectures have evolved to classify much

more complex images [8, 13, 14, 6]. Yet a central aspect of

network architecture has remained largely in place. Convo-

lutional networks for image classification progressively re-

duce resolution until the image is represented by tiny feature

maps that retain little spatial information (7×7 is typical).

While convolutional networks have done well, the al-

most complete elimination of spatial acuity may be prevent-

ing these models from achieving even higher accuracy, for

example by preserving the contribution of small and thin

objects that may be important for correctly understanding

the image. Such preservation may not have been important

in the context of hand-written digit classification, in which

a single object dominated the image, but may help in the

analysis of complex natural scenes where multiple objects

and their relative configurations must be taken into account.

Furthermore, image classification is rarely a convolu-

tional network’s raison d’être. Image classification is most

often a proxy task that is used to pretrain a model before

it is transferred to other applications that involve more de-

tailed scene understanding [4, 10]. In such tasks, severe loss

of spatial acuity is a significant handicap. Existing tech-

niques compensate for the lost resolution by introducing

up-convolutions [10, 11], skip connections [5], and other

post-hoc measures.

Must convolutional networks crush the image in order to

classify it? In this paper, we show that this is not neces-

sary, or even desirable. Starting with the residual network

architecture, the current state of the art for image classifica-

tion [6], we increase the resolution of the network’s output

by replacing a subset of interior subsampling layers by di-

lation [18]. We show that dilated residual networks (DRNs)

yield improved image classification performance. Specifi-

cally, DRNs yield higher accuracy in ImageNet classifica-

tion than their non-dilated counterparts, with no increase in

depth or model complexity.

The output resolution of a DRN on typical ImageNet in-

put is 28×28, comparable to small thumbnails that convey

the structure of the image when examined by a human [15].

While it may not be clear a priori that average pooling can

properly handle such high-resolution output, we show that

it can, yielding a notable accuracy gain. We then study grid-

ding artifacts introduced by dilation, propose a scheme for

removing these artifacts, and show that such ‘degridding’

further improves the accuracy of DRNs.

We also show that DRNs yield improved accuracy on

downstream applications such as weakly-supervised object

localization and semantic segmentation. With a remarkably

simple approach, involving no fine-tuning at all, we obtain

state-of-the-art top-1 accuracy in weakly-supervised local-

ization on ImageNet. We also study the performance of

DRNs on semantic segmentation and show, for example,

that a 42-layer DRN outperforms a ResNet-101 baseline on

the Cityscapes dataset by more than 4 percentage points,

despite lower depth by a factor of 2.4.
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2. Dilated Residual Networks

Our key idea is to preserve spatial resolution in convolu-

tional networks for image classification. Although progres-

sive downsampling has been very successful in classifying

digits or iconic views of objects, the loss of spatial infor-

mation may be harmful for classifying natural images and

can significantly hamper transfer to other tasks that involve

spatially detailed image understanding. Natural images of-

ten feature many objects whose identities and relative con-

figurations are important for understanding the scene. The

classification task becomes difficult when a key object is not

spatially dominant – for example, when the labeled object

is thin (e.g., a tripod) or when there is a big background

object such as a mountain. In these cases, the background

response may suppress the signal from the object of inter-

est. What’s worse, if the object’s signal is lost due to down-

sampling, there is little hope to recover it during training.

However, if we retain high spatial resolution throughout the

model and provide output signals that densely cover the in-

put field, backpropagation can learn to preserve important

information about smaller and less salient objects.

The starting point of our construction is the set of net-

work architectures presented by He et al. [6]. Each of these

architectures consists of five groups of convolutional lay-

ers. The first layer in each group performs downsampling

by striding: that is, the convolutional filter is only evaluated

at even rows and columns. Let each group of layers be de-

noted by Gℓ, for ℓ = 1, . . . , 5. Denote the ith layer in group

ℓ by Gℓ
i . For simplicity of exposition, consider an idealized

model in which each layer consists of a single feature map:

the extension to multiple feature maps is straightforward.

Let f ℓ
i be the filter associated with layer Gℓ

i . In the original

model, the output of Gℓ
i is

(Gℓ
i ∗ f

ℓ
i )(p) =

∑

a+b=p

Gℓ
i (a) f

ℓ
i (b), (1)

where the domain of p is the feature map in Gℓ
i . This is fol-

lowed by a nonlinearity, which does not affect the presented

construction.

A naive approach to increasing resolution in higher lay-

ers of the network would be to simply remove subsampling

(striding) from some of the interior layers. This does in-

crease downstream resolution, but has a detrimental side ef-

fect that negates the benefits: removing subsampling corre-

spondingly reduces the receptive field in subsequent layers.

Thus removing striding such that the resolution of the out-

put layer is increased by a factor of 4 also reduces the recep-

tive field of each output unit by a factor of 4. This severely

reduces the amount of context that can inform the prediction

produced by each unit. Since contextual information is im-

portant in disambiguating local cues [3], such reduction in

receptive field is an unacceptable price to pay for higher res-

olution. For this reason, we use dilated convolutions [18] to

increase the receptive field of the higher layers, compensat-

ing for the reduction in receptive field induced by removing

subsampling. The effect is that units in the dilated layers

have the same receptive field as corresponding units in the

original model.

We focus on the two final groups of convolutional layers:

G4 and G5. In the original ResNet, the first layer in each

group (G4
1 and G5

1 ) is strided: the convolution is evaluated at

even rows and columns, which reduces the output resolution

of these layers by a factor of 2 in each dimension. The

first step in the conversion to DRN is to remove the striding

in both G4
1 and G5

1 . Note that the receptive field of each

unit in G4
1 remains unaffected: we just doubled the output

resolution of G4
1 without affecting the receptive field of its

units. However, subsequent layers are all affected: their

receptive fields have been reduced by a factor of 2 in each

dimension. We therefore replace the convolution operators

in those layers by 2-dilated convolutions [18]:

(G4
i ∗2 f

4
i )(p) =

∑

a+2b=p

G4
i (a) f

4
i (b) (2)

for all i ≥ 2. The same transformation is applied to G5
1 :

(G5
1 ∗2 f

5
1 )(p) =

∑

a+2b=p

G5
1(a) f

5
1 (b). (3)

Subsequent layers in G5 follow two striding layers that have

been eliminated. The elimination of striding has reduced

their receptive fields by a factor of 4 in each dimension.

Their convolutions need to be dilated by a factor of 4 to

compensate for the loss:

(G5
i ∗4 f

5
i )(p) =

∑

a+4b=p

G5
i (a) f

5
i (b) (4)

for all i ≥ 2. Finally, as in the original architecture, G5

is followed by global average pooling, which reduces the

output feature maps to a vector, and a 1×1 convolution that

maps this vector to a vector that comprises the prediction

scores for all classes. The transformation of a ResNet into

a DRN is illustrated in Figure 1.

The converted DRN has the same number of layers and

parameters as the original ResNet. The key difference is

that the original ResNet downsamples the input image by a

factor of 32 in each dimension (a thousand-fold reduction

in area), while the DRN downsamples the input by a factor

of 8. For example, when the input resolution is 224×224,

the output resolution of G5 in the original ResNet is 7×7,

which is not sufficient for the spatial structure of the input to

be discernable. The output of G5 in a DRN is 28×28. Global

average pooling therefore takes in 24 times more values,

which can help the classifier recognize objects that cover

a smaller number of pixels in the input image and take such

objects into account in its prediction.
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Figure 1: Converting a ResNet into a DRN. The original

ResNet is shown in (a), the resulting DRN is shown in (b).

Striding in G4
1 and G5

1 is removed, bringing the resolution

of all layers in G4 and G5 to the resolution of G3. To com-

pensate for the consequent shrinkage of the receptive field,

G4
i and G5

1 are dilated by a factor of 2 and G5
i are dilated by

a factor of 4, for all i ≥ 2. c, 2c, and 4c denote the num-

ber of feature maps in a layer, w and h denote feature map

resolution, and d is the dilation factor.

The presented construction could also be applied to ear-

lier groups of layers (G1, G2, or G3), in the limit retaining

the full resolution of the input. We chose not to do this be-

cause a downsampling factor of 8 is known to preserve most

of the information necessary to correctly parse the original

image at pixel level [10]. Furthermore, a 28×28 thumbnail,

while small, is sufficiently resolved for humans to discern

the structure of the scene [15]. Additional increase in res-

olution has costs and should not be pursued without com-

mensurate gains: when feature map resolution is increased

by a factor of 2 in each dimension, the memory consump-

tion of that feature map increases by a factor of 4. Operating

at full resolution throughout, with no downsampling at all,

is beyond the capabilities of current hardware.

3. Localization

Given a DRN trained for image classification, we can di-

rectly produce dense pixel-level class activation maps with-

out any additional training or parameter tuning. This allows

a DRN trained for image classification to be immediately

used for object localization and segmentation.

To obtain high-resolution class activation maps, we re-

move the global average pooling operator. We then connect

the final 1×1 convolution directly to G5. A softmax is ap-

plied to each column in the resulting volume to convert the

c

w
h c

global 

pooling

nK

(a) Classification output

c

w

h

n

K
h

w

(b) Localization output

Figure 2: Using a classification network for localization.

The output stages of a DRN trained for image classifica-

tion are shown in (a). Here K is a 1×1 convolution that

maps c channels to n. To reconfigure the network for lo-

calization, we remove the pooling operator. The result is

shown in (b). The reconfigured network produces n acti-

vation maps of resolution w × h. No training or parameter

tuning is involved.

pixelwise prediction scores to proper probability distribu-

tions. This procedure is illustrated in Figure 2. The output

of the resulting network is a set of activation maps that have

the same spatial resolution as G5 (28×28). Each classifi-

cation category y has a corresponding activation map. For

each pixel in this map, the map contains the probability that

the object observed at this pixel is of category y.

The activation maps produced by our construction serve

the same purpose as the results of the procedure of Zhou et

al. [19]. However, the procedures are fundamentally differ-

ent. Zhou et al. worked with convolutional networks that

produce drastically downsampled output that is not suffi-

ciently resolved for object localization. For this reason,

Zhou et al. had to remove layers from the classification net-

work, introduce parameters that compensate for the ablated

layers, and then fine-tune the modified models to train the

new parameters. Even then, the output resolution obtained

by Zhou et al. was quite small (14×14) and the classification

performance of the modified networks was impaired.

In contrast, the DRN was designed to produce high-

resolution output maps and is trained in this configuration

from the start. Thus the model trained for image classifica-

tion already produces high-resolution activation maps. As

our experiments will show, DRNs are more accurate than

the original ResNets in image classification. Since DRNs

produce high-resolution output maps from the start, there is

no need to remove layers, add parameters, and retrain the

model for localization. The original accurate classification

model can be used for localization directly.

474



(a) Input (b) ResNet-18 (c) DRN-A-18 (d) DRN-B-26 (e) DRN-C-26

Figure 3: Activation maps of ResNet-18 and corresponding DRNs. A DRN constructed from ResNet-18 as described in

Section 2 is referred to as DRN-A-18. The corresponding DRN produced by the degridding scheme described in Section 4 is

referred to as DRN-C-26. The DRN-B-26 is an intermediate construction.

4. Degridding

The use of dilated convolutions can cause gridding arti-

facts. Such artifacts are shown in Figure 3(c) and have also

been observed in concurrent work on semantic segmenta-

tion [17]. Gridding artifacts occur when a feature map has

higher-frequency content than the sampling rate of the di-

lated convolution. Figure 4 shows a didactic example. In

Figure 4(a), the input feature map has a single active pixel.

A 2-dilated convolution (Figure 4(b)) induces a correspond-

ing grid pattern in the output (Figure 4(c)).

In this section, we develop a scheme for removing grid-

ding artifacts from output activation maps produced by

DRNs. The scheme is illustrated in Figure 5. A DRN con-

(a) Input (b) Dilation 2 (c) Output

Figure 4: A gridding artifact.

structed as described in Section 2 is referred to as DRN-A

and is illustrated in Figure 5(a). An intermediate stage of

the construction described in the present section is referred
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(a) DRN-A-18

(c) DRN-C-26

(b) DRN-B-26

Figure 5: Changing the DRN architecture to remove gridding artifacts from the output activation maps. Each rectangle is

a Conv-BN-ReLU group and the numbers specify the filter size and the number of channels in that layer. The bold green

lines represent downsampling by stride 2. The networks are divided into levels, such that all layers within a given level

have the same dilation and spatial resolution. (a) DRN-A dilates the ResNet model directly, as described in Section 2. (b)

DRN-B replaces an early max pooling layer by residual blocks and adds residual blocks at the end of the network. (c) DRN-C

removes residual connections from some of the added blocks. The rationale for each step is described in the text.

to as DRN-B and is illustrated in Figure 5(b). The final con-

struction is referred to as DRN-C, illustrated in Figure 5(c).

Removing max pooling. As shown in Figure 5(a), DRN-A

inherits from the ResNet architecture a max pooling opera-

tion after the initial 7×7 convolution. We found that this max

pooling operation leads to high-amplitude high-frequency

activations, as shown in Figure 6(b). Such high-frequency

activations can be propagated to later layers and ultimately

exacerbate gridding artifacts. We thus replace max pooling

by convolutional filters, as shown in Figure 5(b). The effect

of this transformation is shown in Figure 6(c).

(a) Input (b) DRN-A-18 (c) DRN-B-26

Figure 6: First stage of degridding, which modifies the early

layers of the network. (b) and (c) show input feature maps

for the first convolutional layer in level 3 of DRN-A-18 and

DRN-B-26. The feature map with the highest average acti-

vation is shown.

Adding layers. To remove gridding artifacts, we add con-

volutional layers at the end of the network, with progres-

sively lower dilation. Specifically, after the last 4-dilated

layer in DRN-A (Figure 5(a)), we add a 2-dilated residual

block followed by a 1-dilated block. These become lev-

els 7 and 8 in DRN-B, shown in Figure 5(b). This is akin

to removing aliasing artifacts using filters with appropriate

frequency [16].

Removing residual connections. Adding layers with de-

creasing dilation, as described in the preceding paragraph,

does not remove gridding artifacts entirely because of resid-

ual connections. The residual connections in levels 7 and

8 of DRN-B can propagate gridding artifacts from level

6. To remove gridding artifacts more effectively, we re-

move the residual connections in levels 7 and 8. This yields

the DRN-C, our proposed construction, illustrated in Fig-

ure 5(c). Note that the DRN-C has higher depth and capac-

ity than the corresponding DRN-A or the ResNet that had

been used as the starting point. However, we will show that

the presented degridding scheme has a dramatic effect on

accuracy, such that the accuracy gain compensates for the

added depth and capacity. For example, experiments will

demonstrate that DRN-C-26 has similar image classifica-

tion accuracy to DRN-A-34 and higher object localization

and semantic segmentation accuracy than DRN-A-50.

The activations inside a DRN-C are illustrated in Fig-

ure 7. This figure shows a feature map from the output of

each level in the network. The feature map with the largest

average activation magnitude is shown.

5. Experiments

5.1. Image Classification

Training is performed on the ImageNet 2012 training

set [12]. The training procedure is similar to He et al. [6].

We use scale and aspect ratio augmentation as in Szegedy

et al. [14] and color perturbation as in Krizhevsky et al. [8]

and Howard [7]. Training is performed by SGD with mo-
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Image Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Class activation

Figure 7: Activations inside a trained DRN-C-26. For each level, we show the feature map with the highest average activation

magnitude among feature maps in the level’s output. The levels are defined in Figure 5.

mentum 0.9 and weight decay 10−4. The learning rate is

initially set to 10−1 and is reduced by a factor of 10 every

30 epochs. Training proceeds for 120 epochs total.

The performance of trained models is evaluated on the

ImageNet 2012 validation set. The images are resized so

that the shorter side has 256 pixels. We use two evaluation

protocols: 1-crop and 10-crop. In the 1-crop protocol, pre-

diction accuracy is measured on the central 224×224 crop.

In the 10-crop protocol, prediction accuracy is measured on

10 crops from each image. Specifically, for each image we

take the center crop, four corner crops, and flipped versions

of these crops. The reported 10-crop accuracy is averaged

over these 10 crops.

ResNet vs. DRN-A. Table 1 reports the accuracy of differ-

ent models according to both evaluation protocols. Each

DRN-A outperforms the corresponding ResNet model, de-

spite having the same depth and capacity. For exam-

ple, DRN-A-18 and DRN-A-34 outperform ResNet-18 and

ResNet-34 in 1-crop top-1 accuracy by 2.43 and 2.92 per-

centage points, respectively. (A 10.5% error reduction in

the case of ResNet-34 → DRN-A-34.)

DRN-A-50 outperforms ResNet-50 in 1-crop top-1 ac-

curacy by more than a percentage point. For comparison,

the corresponding error reduction achieved by ResNet-152

over ResNet-101 is 0.3 percentage points. (From 22.44 to

22.16 on the center crop.) These results indicate that even

the direct transformation of a ResNet into a DRN-A, which

does not change the depth or capacity of the model at all,

significantly improves classification accuracy.

DRN-A vs. DRN-C. Table 1 also shows that the degridding

construction described in Section 4 is beneficial. Specif-

Model
1 crop 10 crops

P

top-1 top-5 top-1 top-5

ResNet-18 30.43 10.76 28.22 9.42 11.7M

DRN-A-18 28.00 9.50 25.75 8.25 11.7M

DRN-B-26 25.19 7.91 23.33 6.69 21.1M

DRN-C-26 24.86 7.55 22.93 6.39 21.1M

ResNet-34 27.73 8.74 24.76 7.35 21.8M

DRN-A-34 24.81 7.54 22.64 6.34 21.8M

DRN-C-42 22.94 6.57 21.20 5.60 31.2M

ResNet-50 24.01 7.02 22.24 6.08 25.6M

DRN-A-50 22.94 6.57 21.34 5.74 25.6M

ResNet-101 22.44 6.21 21.08 5.35 44.5M

Table 1: Image classification accuracy (error rates) on the

ImageNet 2012 validation set. Lower is better. P is the

number of parameters in each model.

ically, each DRN-C significantly outperforms the corre-

sponding DRN-A. Although the degridding procedure in-

creases depth and capacity, the resultant increase in accu-

racy is so substantial that the transformed DRN matches

the accuracy of deeper models. Specifically, DRN-C-26,

which is derived from DRN-A-18, matches the accuracy of

the deeper DRN-A-34. In turn, DRN-C-42, which is de-

rived from DRN-A-34, matches the accuracy of the deeper

DRN-A-50. Comparing the degridded DRN to the origi-

nal ResNet models, we see that DRN-C-42 approaches the

accuracy of ResNet-101, although the latter is deeper by a

factor of 2.4.
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5.2. Object Localization

We now evaluate the use of DRNs for weakly-supervised

object localization, as described in Section 3. As shown in

Figure 3, class activation maps provided by DRNs are much

better spatially resolved than activation maps extracted from

the corresponding ResNet.

We evaluate the utility of the high-resolution activation

maps provided by DRNs for weakly-supervised object lo-

calization using the ImageNet 2012 validation set. We first

predict the image categories based on 10-crop testing. Since

the ground truth is in the form of bounding boxes, we need

to fit bounding boxes to the activation maps. We predict

the object bounding boxes by analyzing the class responses

on all the response maps. The general idea is to find tight

bounding boxes that cover pixels for which the dominant re-

sponse indicates the correct object class. Specifically, given

C response maps of resolution W×H, let f(c, w, h) be the

response at location (w, h) on the cth response map. In the

ImageNet dataset, C is 1000. We identify the dominant

class at each location:

g(w, h) =
{

c | ∀1 ≤ c′ ≤ C. f(c, w, h) ≥ f(c′, w, h)
}

.

For each class ci, define the set of valid bounding boxes as

Bi =
{

((w1, h1), (w2, h2))|

∀g(w, h) = ci and f(w, h, ci) > t.

w1 ≤ w ≤ w2 and h1 ≤ h ≤ h2

}

,

where t is an activation threshold. The minimal bounding

box for class ci is defined as

bi = argmin
((w1,h1),(w2,h2))∈Bi

(w2 − w1)(h2 − h1).

To evaluate the accuracy of DRNs on weakly-supervised

object localization, we simply compute the minimal bound-

ing box bi for the predicted class i on each image. In the

localization challenge, a predicted bounding box is con-

sidered accurate when its IoU with the ground-truth box

is greater than 0.5. Table 2 reports the results. Note that

the classification networks are used for localization directly,

with no fine-tuning.

As shown in Table 2, DRNs outperform the correspond-

ing ResNet models. (Compare ResNet-18 to DRN-A-18,

ResNet-34 to DRN-A-34, and ResNet-50 to DRN-A-50.)

This again illustrates the benefits of the basic DRN con-

struction presented in Section 2. Furthermore, DRN-C-26

significantly outperforms DRN-A-50, despite having much

lower depth. This indicates that that the degridding scheme

described in Section 4 has particularly significant benefits

for applications that require more detailed spatial image

analysis. DRN-C-26 also outperforms ResNet-101.

Model top-1 top-5

ResNet-18 61.5 59.3

DRN-A-18 54.6 48.2

DRN-B-26 53.8 49.3

DRN-C-26 52.3 47.7

ResNet-34 58.7 56.4

DRN-A-34 55.5 50.7

DRN-C-42 50.7 46.8

ResNet-50 55.7 52.8

DRN-A-50 54.0 48.4

ResNet-101 54.6 51.9

Table 2: Weakly-supervised object localization error rates

on the ImageNet validation set. Lower is better. The de-

gridded DRN-C-26 outperforms DRN-A-50, despite lower

depth and classification accuracy. DRN-C-26 also outper-

forms ResNet-101.

5.3. Semantic Segmentation

We now transfer DRNs to semantic segmentation. High-

resolution internal representations are known to be impor-

tant for this task [10, 18, 2]. Due to the severe downsam-

pling in prior image classification architectures, their trans-

fer to semantic segmentation necessitated post-hoc adapta-

tions such as up-convolutions, skip connections, and post-

hoc dilation [10, 1, 11, 18]. In contrast, the high resolution

of the output layer in a DRN means that we can transfer

a classification-trained DRN to semantic segmentation by

simply removing the global pooling layer and operating the

network fully-convolutionally [10], without any additional

structural changes. The predictions synthesized by the out-

put layer are upsampled to full resolution using bilinear in-

terpolation, which does not involve any parameters.

We evaluate this capability using the Cityscapes

dataset [2]. We use the standard Cityscapes training and

validation sets. To understand the properties of the models

themselves, we only use image cropping and mirroring for

training. We do not use any other data augmentation and do

not append additional modules to the network. The results

are reported in Table 3.

All presented models outperform a comparable baseline

setup of ResNet-101, which was reported to achieve a mean

IoU of 66.6 [1]. For example, DRN-C-26 outperforms the

ResNet-101 baseline by more than a percentage point, de-

spite having 4 times lower depth. The DRN-C-42 model

outperforms the ResNet-101 baseline by more than 4 per-

centage points, despite 2.4 times lower depth.

Comparing different DRN models, we see that both

DRN-C-26 and DRN-C-42 outperform DRN-A-50, sug-
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DRN-A-50 96.9 77.4 90.3 35.8 42.8 59.0 66.8 74.5 91.6 57.0 93.4 78.7 55.3 92.1 43.2 59.5 36.2 52.0 75.2 67.3

DRN-C-26 97.4 80.7 90.4 36.1 47.0 56.9 63.8 73.0 91.2 57.9 93.4 77.3 53.8 92.7 45.0 70.5 48.4 44.2 72.8 68.0

DRN-C-42 97.7 82.2 91.2 40.5 52.6 59.2 66.7 74.6 91.7 57.7 94.1 79.1 56.0 93.6 56.0 74.3 54.7 50.9 74.1 70.9

Table 3: Performance of dilated residual networks on the Cityscapes validation set. Higher is better. DRN-C-26 outperforms

DRN-A-50, despite lower depth. DRN-C-42 achieves even higher accuracy. For reference, a comparable baseline setup of

ResNet-101 was reported to achieve a mean IoU of 66.6.

(a) Input (b) DRN-A-50 (c) DRN-C-26 (d) Ground truth

Figure 8: Semantic segmentation on the Cityscapes dataset. The degridded DRN-C-26 produces cleaner results than the

deeper DRN-A-50.

gesting that the degridding construction presented in Sec-

tion 4 is particularly beneficial for dense prediction tasks. A

qualitative comparison between DRN-A-50 and DRN-C-26

is shown in Figure 8. As the images show, the predictions

of DRN-A-50 are marred by gridding artifacts even though

the model was trained with dense pixel-level supervision.

In contrast, the predictions of DRN-C-26 are not only more

accurate, but also visibly cleaner.

6. Conclusion

We have presented an approach to designing convolu-

tional networks for image analysis. Rather than progres-

sively reducing the resolution of internal representations un-

til the spatial structure of the scene is no longer discernible,

we keep high spatial resolution all the way through the final

output layers. We have shown that this simple transforma-

tion improves image classification accuracy, outperforming

state-of-the-art models. We have then shown that accuracy

can be increased further by modifying the construction to

alleviate gridding artifacts introduced by dilation.

The presented image classification networks produce in-

formative output activations, which can be used directly

for weakly-supervised object localization, without any fine-

tuning. The presented models can also be used for dense

prediction tasks such as semantic segmentation, where they

outperform deeper and higher-capacity baselines.

The results indicate that dilated residual networks can be

used as a starting point for image analysis tasks that involve

complex natural images, particularly when detailed under-

standing of the scene is important. We will release code

and pretrained models to support future research and appli-

cations.
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